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Abstract. We precisely evaluate the upper and lower deviations of the expectation
of every order statistic from an ii.d. sample under arbitrary violations of the inde-
pendence assumption, measured in scale units generated by various central absolute
moments of the parent distribution of a single observation. We also determine the
distributions for which the bounds are attained. The proof is based on combining the
Moriguti monotone approximation of functions with the Hélder inequality applied for
proper integral representations of expected order statistics in the independent and
dependent cases. The method allows us to derive analogous bounds for arbitrary
linear combinations of order statistics.
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1. Introduction

Consider independent identically distributed random variables X1, . .., X, with com-
mon distribution function F', and finite mean y = fcl F~l(z)dz. Let Y1,...,Y, denote
a sequence of identically distributed random variables with the same marginal distribu-
tion F' and arbitrary joint n-dimensional one. Write Xj.,,, Y}, 1 < j < m, for respective
order statistics. In the paper, we present the extreme deviations of each order statistic
under violations of independence assumption

(1.1) Dyp(jyn) = sup (ErYjn — ErXjn)/op, 1<j<n<oo, 1<p<oo,
FeF,
in terms of scale parameter units determined by central absolute moments

1
op = Bels — P = [ 1P @) = ppdz, 1<p<oo,
0

oo = ess sup| X1 — pl = sup |F~(z) - pl.
z€(0,1)

The supremum in (1.1) is taken over the class 7, of all marginals with finite respective o,
and all possible dependences of Y;, 1 < j < n.

Once we determine optimal bounds (1.1) for the upper deviations, we immediately
obtain those for the lower ones

D;(Ju TZ) = Ssup (EFXj:n - EFY'j:n)/Up-
Fer,
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Indeed, introducing X;” = —Xj;, 1 < j < n, with common distribution function F~(z) =
1 — F(—z—) and order statistics X, = ~Xnt1-jin (with the same notation for Y’s),
we have )

Dy (j,n) =

= Ff‘él;__ (Er-Yoiajm —Er-Xop jm)/0p = Dp(n+1—j,n).

- Fiéljftp(Eij:n — EpXjin)/op

For arbitrary fixed F' with o1 < 0o, and all possible interdependences of ¥}, 1 < 7 <
n, we have

1
ErXj.p = / F—l(x)fjm(z)dx
0
1 —— . .
= / F‘I(a:)n(n 1):c"l(l — )" dz
0 Jj—1
(cf., e.g., Arnold et al. (1992), p. 109), and

1 1
1.2 sup ErY;. =/ F Y 2)gin(z dx:———l——./ FYz)dx
( ) PLFYjm A ()gjn() ntl—j Go1y/m ()

(cf. Caraux and Gascuel (1992), Rychlik (1992)). Setting

(1.3) hjn(Z) = gjin(®) = fin(2)
_fj:n(a;)’ if 0<z< (J - 1)/”:
= {ﬁﬁ“_—j—fj:n(m), if (j-D/n<z<l,

we therefore have
1
(14)  sup(BrYjm — BrXjn) = / F(2)hjum(2)de
]

1
- /0 [F~1(z) — pl[hjom (@) ~ cJdz
< ”F_1 - N”p”hj:n —cllg = l|hjin — C”qap

with conjugate exponent ¢ = p/(p — 1) and arbitrary constant ¢. The equality in (1.4)
holds iff F~1(z)—p = g,(hj.n(z)—c) for some monotone function g, and properly chosen
constant ¢ (precise definitions will be presented further). The problem is that monotone
increase of F~! — y is required, whereas hj.,(z) — ¢ and accordingly g,(hjn(x) — c) are
not so except of the case j = 1, and D,(j,n) < ||hjn — |4 for j > 2.

The idea of calculating general sharp bounds consists in replacing h;., by its mono-
tone approximation h;., due to Moriguti (1953) so that we have

(15) Sup(ErYim = B Xpm) < [ 1F7(@) = (@) ~ o

< “Bj:n — cllqop-
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We shall see that some nondecreasing functions F~!(z) — u = g,(hj.n(z) — ) provide the
equality in the former inequality of (1.5) as well, which enable us to determine marginal
distributions F' = F(p, j,n) which attain extreme deviations D,(j,n). Joint distributions
providing equality in (1.2) are characterized by condition

j—1
(1.6) Vi1 < F71 (Lﬁ_) <Yjin =Ynn  almost surely.

One can construct an example of identically F-distributed sample satisfying (1.6) by
taking independent V =Y., = --- =Y, _1nand Z =Y}, = - .- = ¥,,.,, with distribution
functions min{nF/(j — 1),1} and max{0,(nF + 1 — j)/(n + 1 — 5)}, respectively, and
random rearrangement of Yi.p,...,Y,.,. Constants ¢ for 1 < p < oo are determined
uniquely by moment conditions. Otherwise they are selected so to minimize (|A;.n, — c[|q-

In Section 2, we construct the Moriguti monotone approximations l_zj:n, based on
greatest convex minorants of antiderivatives of h;.,. In Section 3, we present main
results, describing optimal bounds D,(j,n) forall 1 < p<ooand 1 < j <n < oo and
distributions which attain the bounds. Most generally, the extreme marginal is a mixture
of a three-point distribution with a smooth one which is the inverse of a polynomial of
(noninteger in general) power of standarized argument. The respective joint distribution
of the dependent sample is determined by (1.6). Simpler cases j = 1,n of extreme
order statistics will be studied separately. Numerical values of (1.1) for p = 1,2, 00 and
1 <7 <n =20 are presented in Table 1.

It is worth pointing out that our method can be applied for calculating respec-
tive deviations for arbitrary linear combinations of order statistics. Then we take the
counterpart of (1.2) for general L-statistics

n 1
n supEchijmzf F~Y{z)C'(x)dz,
0

j=1

where C’ is the right continuous version of the piecewise linear function C which is the
greatest convex one satisfying

. J
C(Gi/m) <D e, j=0,1,...,n,
i=1
(cf. Rychlik (1993a)). Therefore C' has the form

C'() = diliG—1y/ni/m) ()
i=1

for a well-defined nondecreasing sequence d;, 1 < j < n, and we can consider
n n
(1.8) sup | Er Z ¢jYjm — EF Z ¢ Xjn
FeF, paasy jaars

1 n
= su F iz A1y /mi /) (X)) — € fon(2) ]| d2z,
28 [ P70 Y [3i6mmgm @) )]
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constructing the Moriguti approximations for the expression in braces and the modifica-
tions mentioned above. We can similarly determine sharper inequalities for symmetric
parent marginals. Using the relation F~*(z) — y = u — F~'(—z—) and changing vari-
ables in (1.8), we are left with the task of analyzing the sum in braces folded about 1/2
on the interval [1/2,1].

Problem (1.8), which describes bias-stability of L-statistics against departures from
the independence assumptions, stems from robust statistics. Robustness of L-statistics,
which are popular tools in robust and nonparametric inference, was studied by many
authors (we refer merely to monographs by Huber (1981) and Hampel et al. (1986)).
Mainly violations of marginals were considered. Dependence-robustness for location
models was analyzed in Rychlik (1993b). Estimation of population quantiles is the sim-
plest application of single order statistics, and the extreme ones are used for evaluating
the population range. The best general reference to applications of order statistics in
estimation is Balakrishnan and Cohen (1991).

Moriguti (1953) presented a simple numerical procedure for getting a bound on
Ep(Xj.m — p)/o2 in the i.id. case. Analytic formulae for the sample maximum were
given in Gumbel (1954) and Hartley and David (1954), and respective extensions for
arbitrary p-th moments are in Arnold (1985), where the dependent case was also stud-
ied. Gascuel and Caraux (1992) evaluated Ep(Yj., — p)/o2, 1 < j < n, using (1.2).
A number of inequalities based on (1.7) for general L-statistics, and general and sym-
metric samples in various op-units, 1 < p < oo, with some sample counterparts, can be
found in Rychlik (1993c). Papadatos (1997) obtained bounds on expected order statis-
tics and their differences for nonnegative i.i.d. samples in terms of u. We also mention
moment bounds of Gajek and Rychlik (1996, 1998) and Rychlik (1998, 2001a, 20015),
and quantile bounds of Blom (1958), van Zwet (1964), Ali and Chan (1965), Barlow and
Proschan (1966), Lawrence (1975) and Rychlik (1998) for restricted families of marginals
determined by some stochastic ordering relations. For a recent review of bounds on ex-
pectations of L-estimates we refer the reader to Rychlik (1998). The Moriguti monotone
approximations, especially some discrete versions, have numerous applications in or-
der restricted statistical inference (see Robertson et al. (1988)). Recently, Ragab (1997)
used the Moriguti method for evaluating moment bounds on k-th records, and Gajek and
Okolewski (2000) combined it with the Steffensen inequality and derived some integral
bounds on expectations of order and record statistics.

2. The Moriguti monotone approximation

We first recall a result of Moriguti (1953) in a simpler form that will be used in
the sequel. Suppose that a function h is defined and has a finite integral on some
interval [a,b]. Let H(z) = [ ; h(t)dt, a < x < b, stand for its antiderivative, and H be
the greatest convex minorant of H. Note that H < H in countably many open intervals
at most, and H is linear in each of the intervals. Write A for the right-continuous version
of the derivative of H. Obviously, h is nondecreasing and constant in intervals where
h # h.

LEMMA 1. For every nondecreasing function g on [a,b] for which both the integrals
in (2.1) are finite, we have

b b
21) / o(2)h(z)ds < / o(2)h(z)ds.
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The equality in (2.1) holds iff g is constant in every interval contained in the set where
H<H.

Consider (1.3) with antiderivative

(2.2) Hin(z)={ na+1-j . i (i-1)/n<z<
o inl(z), if (j-1)/n<z<,

where

Fjn(z) = / Fim(t)dt = Z(Z)xk(l_m)n—k.

k=j
If j = 1, then hy.n(z) = 1 —n(l — 2)*~! is increasing and s0 Ay = hym. For j =n we

have
if 0<z<1-1/n,

Hrin(z) = {n(:c—l)+1—x if 1-1/m<z<l,

which is decreasing on [0,1 — 1/n] and increasing on [1 — 1/n,1], and concave on both
the intervals. Therefore

Hon(z) = —(1-1/n)" 1z, if 0<z<1-1/n,
m T A n(l -1z —-1), if 1-1/n<2<1,
e (1 - 1/n? /
7 - -=1/n)», if 0<z<1l~1/n,
(2:3) finin(2) = {n(l ~1/n)*,  if 1-1/n<z<1l

A deeper analysis is needed for 2 < j < n — 1 for which each f;., is first increasing
and then decreasmg, and vanishes at both ends of [0,1]. It is important to know the
sign of hj., at £=3 where f;., is maximized. One can see that hj.n(i=% ) < 0 for
small and moderate j with a given n. Also, the proportion of j’s for Wthh the relation
holds is greater and increases to 1, as n becomes large. Indeed, sequence fi: n(n 1) is
decreasing-increasing in j, and symmetric about (n+1)/2, whereas g;.n (1= 1) = P
2 < j < n— 1, increases from -5 to n/2. For hpyi1. 2m+1(1/2), m > 1, corresponding
to the sample medians, yields 0= ho.3(1/2) > hs.5(1/2) > ---. The equahty is easily
checked, and calculating

fmtromi1(1/2) _ 1+ 1
fm—l:2m—-1(1/2) 2m’
Imt1:2m+1(1/2) _ 1
gm-12m-1(1/2) 2m? +m—1’

we see that fr+1:2me1(1/2) increases faster than gmi1:2m+1(1/2), and verify the inequal-
ities. On the other hand, we have 0 = ho.3(1/2) < h3.4(2/3) < - - -, because

fatml(n=2)/(0=1) _ &)

gn-1n((n—2)/(n—1))  £(n-2)
where £(n) = (1 +1/n)", n > 1, is a sequence increasing to e. For n — oo and
j/n — z € (0,1), we can take an asymptotic representation

ma(t - a)/ol 2 fym (121) =1

n

<1,
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(cf. Lorentz (1953), Theorem 1.5.2) for proving that hj:n(;%) — —00.
We now present the Moriguti approximation of hj., for 2 < j < n — 1. Let

04 (o) = Hyn(@)/z, 0<az<1,
@9 Tinlo) = [Hin) -1 (53] [ [ 2], It <oz,

n n

denote the slopes of straight lines secant to the graph of Hj.,, at points (0, H;.,(0) = 0),
and (%,Hjn(g—;—l) = ‘—'Fj;n(l'%—l')), respectively, and some (z, H;.,,(z)).

THEOREM 1. If hjin(4=1) < 0, then there erist unique r € (;Eli,l) such that

Rjn(r) = 0 and s € [£=%,7) such that either s = I=L f Sjm(L=1) < Bjn(L=L) or s is
the solution to Sj.,(z) = hjin(x) otherwise.

If
j—1 j—1
(26) hj:n (n—_—l-) <0 and Sj:n(s) < Sj:n (T) ’
then (s)
: _J Sjnl(s), if 0<z<s,

(2.7) hjin(z) = {hj;n(:c), if s<z<l

If
(2.8) cither hjm (%) <0 and Sja(s) > Sjm (J — 1) or hjn (“i — i) >0

then there ezxists a unique t € (%:—i, 1) such that T, (t) = hj.n(t), and

- -
%mCL—),if0§x<——i,
n n

hjn(t), if ~
hjn(z), if t<z<1.

(2.9) hjin(z) =

For the prevailing number of cases, we have (2.6) with s > Z=L Then (2.7) is
continuous, and can be written as hj.,(z) = hjn(max{s,z}). This form is easier to
handle in numerical calculations. Function (2.9) has the only jump at '%1

PRrROOF. Assume that hjm(%) < 0. Starting from the origin, h;., continously

n
decreases on (0, '%1), jumps up and again decreases to a negative value hj.p( nL:—i), and
eventually increases to hj.,(1) = 71— > 0, passing through the horizontal axis at some
re (=L 1). It may happen that hjm(j-;—l) > 0, but by far more frequent is the other

n—17
case. It follows that (2.2) is concave decreasing on [0, *7—%1], and either concave decreas-
ing on [1%1-, ‘111:}1] when hj;n(i';_il) < 0 or concave increasing-decreasing on {-%1, ;31-:—}
otherwise, and then convex decreasing on [%—:—11, 7], and eventually convex increasing on
[r,1]. Also, Hjin(z) < 0 for 0 < z < 1 with H;:n(0) = Hjin(1) = 0, and Hj.n(z) is
differentiable except of at %l, where the left derivative is less than the right one.
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We determine the left part of the greatest convex minorant by minimizing (2.4).
Our purpose is to assert that

(210) inf S.n(c) = min {sjm (J—;—1-> ,S',-:n(s)} .

z€(0,1]
The infimum cannot be attained in (r, 1], because
(2.11) 728 () = Thyin(z) — Hyun(0)

consists of positive and nonnegative terms there. The minimum over [0, -%1] is attained
at the right end, because each point of the graph of the concave part of Hj.,, lies above
the line secant at 0 and *%1 Likewise, geometrical arguments lead us to the conclusion

that the minimization problem for z € [*%1, Jrﬁ] has the solution at either of the end-
points. Accordingly, we are reduced to considering points of {151—} U [Jﬁ,r), and we

now analyze behavior of S}., in the interval. Differentiating (2.11), we obtain zh}_, (z),

which is positive in (1=3,r] and implies strict increase of S}, there. Since S7.,(r) =
—~Hjn(r)/r* > 0, we have minge((j—1)/n;r) Sjin(Z) = Sjn(s) for s defined in the first
assertion of Theorem 1. This proves (2.10).

Suppose that Sj.n(2=1) > Sjin(s). Since Hj.p, is convex on [s, 1], we conclude that

o _f Sjm(s)z, if 0<z<s,
Hijn(z) = {Hj:n(:r), if s<z<l.

is the greatest convex minorant of Hj.,, and (2.7) is the respective derivative. .

If Sjin(£1) < Sjin(s), we have only found Hj.,(z) = Sjn(Eh)z for z € [0, 1),
The next piece will be derived by minimizing (2.5). We merely sketch the solution,
because arguments similar to the above are used. By concavity, we exclude points of
[£=2, i=1). Relations

n 'n—1

(2.12) [(m— j——;i>21}:n(x) /

[hjm(a:) (w - 3——;—1) + Hjm (l—;i) - Hjm(w)]l

j—-1 j-1
_f;n(x) (.’E—T> >0, ﬁ<$<1,

I

imply increase of T}, in [£=3,1]. Since ming s=1 i1 hjn(Z) = hjin(Li=%), we have

j—1 j—1 j-1 (7-1)/(n-1)
h. ( )( - ></ hi(x)dx
I \n—1 n-—1 n G-1)/n 5n(®)

_g (I _ gy (i1
—Hazn(n_l) HJ:n< n >’

which in combination with the first line of (2.12) gives Tj'n(nL_D < 0. Putting z = 1,

we obtain
ji—1\2 j—1
!
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Therefore T}., changes the sign once in [£=3,1] (from — to +), and Tj.,, is minimized
at the change point ¢, say, for which T}.,(t) = hjn(t) holds (cf. (2.12) again). Observe
finally that Hj., is convex on [t,1]. Summing up, we can construct the greatest convex
minorant as follows

Sjn|{— ]z if 0<:c<‘7;,
n

R L G R ) R e

o,

n

(), if t<z<1.

It remains to deduce the same formula in the case h;: n( ) > 0. Then hj., is

negatlve decreasing in (0, ) positive decreasing in [ %1, ﬁ) and positive increasing

(n 7:1). The antlderlvatlve Hj.,, is concave decreasing in [0, L] concave increasing

in [£=2, Z=1] and convex increasing in [£=},1]. It is clear that S;., is minimized at 1.
Repeating arguments of the previous paragraph, we conclude that T}., has the minimum

at £, and the final form of the Moriguti construction. O
3. Main results

Below we present bounds on expectation increase for order statistics under violation
of independence assumption. The bounds are expressed in the scale units determined by
p-th central absolute moments, 1 < p < co. If bounds are attainable by some distribu-
tions of samples X;, Y}, 1 < j < n, we describe respective common marginal distribution
functions. We shall tacitly assume that the joint distribution of the dependent sample is
one that provides the extreme expectation of the order statistic for the given marginal
(see (1.6)). If a bound is not attained, we present an example of a sequence of marginals
for which expected order statistics approximate the bound. In three subsequent theo-
rems we analyze bounds for nonextreme order statistics measured in op-units for p = 1,
1 < p < 00, and p = oo, respectively.

THEOREM 2. Let 2 < j < n—1 < o and s* be equal to either s or l—;l if
either (2.6) or (2.8) holds. Then

- 1 Jj—1 .
(3.1) FS‘:.%(EFYj:n - EFXj:n)/Ul = D1(j,n) = oor [m + Fj;n(s )] .

For the sequence of three-point distribution functions Fy, k > 1/(1 — s*), assigning
probabilities s*, 1—s*—1/k and 1/k to values p—o1/(2s*), u and p+koy /2, respectively,
we have Ep, X3 = p, Ep | X1 — p| = 01, and

(32) D, (], n) - Sup(EFkYrj:n - EFka:‘n)/Ul < f]n(l - 1/k)/2 — 0.

Proor. By (1.4) and Lemma 1,

(3.3) sup(ErYym — EpXjm) < /O [F~(z) = l[hjon(z) — clda

IN

i
sup fjin — | /0 \P\(z) - plde

= [|Ajin = cllooo



STABILITY OF ORDER STATISTICS UNDER DEPENDENCE 885

for arbitrary real c. Since l_zjin is nondecreasing, the maximal value of the supremum is
provided by ¢ = 3[h;.n(0) + hj:n(1)] for which

Fsin — clloo = 5 [Rsin(1) ~ Bin(0)] = D1y,

'

The first relation in (3.3) becomes equality iff F~! — p is constant on {hj., = hjn(0)}.
The condition for equality in the latter one is that F~1 — p is almost surely negative,
zero, and positive on the sets {hJ i = Rin(0)}, {As:n(0) < Bjm < Rjn(1)}, and {hjm =

hin(1)}, respectwely Since {h;.n, = hj.n(1)} has zero measure, the conditions contradict
EpX; —p= fo ~1(z) — pldz = 0. However, for sequence Fj, we easily verify both
moment assumptions, and the equality in the first line of (3.3). Finally,

[ @) ~ llsn(e) - s = Dyimen - 55 b [* (D)~ B
> Dy (j,n)o1 — {h,-m(l) . (1 - %)} o1/2,

which is identical with the inequality in (3.2). O

For 1 < p < oo our solution has complicated representations. Altogether, we have
four cases. Under either of conditions (2.6) and (2.8) we have two cases, when each bound
D,(j,n) depends on a parameter, denoted below by either ¢ or d, which is implicitely
defined by an equation. Generally, the distributions for which the bounds are attained
have the form

(34)F(z) = F(z;0,6,7)

_ _a. q/p
0’ if r H < — [’Y Sjn(a)] ,
Op D
_S. a/p —
a, if — [’Y SJZn(a):I S T 14
D op
B .~ lalP
< [ =T sgnhn(8) - ),
plq Bim a/p
_nt (7+ D| sgn(s - u)> it P = hn(8) - )
Op D
n a/p
c—p _|n+ti-jg !
< < ,
T oop T D
n a/p
T p n+yi-;
1, if > J :
Op D

\

for ¢ = p/(p—1) and D = Dp(j,n). Parameters 0 < o < 8 < 1and Sjn(@) <7 < 7715
will be precisely defined in Theorem 3. Distribution function (3.4) has a finite support
with one (if Sj.n(@) = hj:n(B)) or two jumps (otherwise) at the left-end of its support.
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On the right, it has a smooth density which cannot be written explicitely, because the
third formula in (3.4) is actually the inverse of a linear modification of a Bernstein
polynomial of degree n — 1 of a linear function of some, generally noninteger, power
of the standarized argument. In the specific cases, representation (3.4) can be slightly
simplified.

THEOREM 3. (i) If (2.6) and

(3.5) Sjin (%) <hjn (fi’%) )
09324 fon (122) -0 (D] "> L [ (428) -] "o

n—1

hold, then there exists Sj;n(‘%) <e< hj;n(%) such that

. . /p 1
j—1 ji—1\1?
(37) m_1 [C —~ Sj:n (TL———_:[):I = /_J__:_ll_ [hjm(a;) —_ C]‘I/Pd.’B,
and
(38) Sup (ErYjin — ErXjin)/0p = Dp(j,n)
with ‘ )
, j—1 j—1
(3.9) Di(j,n) = —— {c — Sjin (;—IH + /L;l [hjn(z) — c]%dz.

-1

Bound (3.8) is attained by F(x) = F(z; 1=} i=L ¢) defined in (3.4).

n-1?n—-1"

(i) If (2.6) is true and either of (3.5), (3.6) is false, then there exrists s < d < 1
such that

(3.10) slhjin(d) — Sjn(8)]9/P + / d[fj:n(x) ~ fin(d)]/Pdz
= [ sn@ ~ (@7,
and then we have (3.8) with
(3.11) Di(j,n) = s[hjin(d) — Sjn(s)]? + / 1 |fin(2) = fin(d)|%dz.

The bound is attained by F(z;s, s, hjn(d)) deﬁned in (3.4).
(iii) If (2.8) and
P ' i1\ 1
(3.12) % [hj:n(t) - Sj:n (La“):l > /t [fj:n(t) - fj:n(x)]q/pdx

hold, then there exists Sjm(ii—l) < ¢ < hjn(t) such that

31912 [e- 5 (2] " (1= 252) tsmo-aes | @)=t/ ds,

n
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and then

(314)  Di(jn) = = ! lc— Sim (’%)]q + (t - ’—;—1) [hjin(£) - ]

1
+/t [hjin(z) — c]idz.

The bound in (3.8) is attained by F(z; %,t,c).
(iv) If (2.8) is true and (3.6) is false, then there exists t < d < 1 such that

I i@ (Z2)] 77 4 (5= 222 )~ frmtan

n

1
d

d
+ [ snl@) = L@ = [ 1fynd) = finl@)re,
and . N . . :
(3’15)D§(ja n) = ]—';;—” [hgn(d) - Sj:n (%)] + (t - 2‘%“') [fj:n(t) - fj:n(d)]q
1
+ [ 1fsnl@) = fim(@0da:
This bound is attained by F(z; =2, t, hjn(d)).

ProOOF. Proof is based on the Holder inequality

/0 1[F“l(ﬂc) — pl[hjin(z) — cldz < [ /0 1 |F~Y(z) - ,u]pd:c] v { /O 1 Fjon () — c|quJ

= |lhjin — cllqop,

1/q

where the equality holds true iff

(3.16) F~Yz) — p = a|hjm(z) — c|Psgn(hjn(z) — c)
for some a > 0. Condition fol |F~(z) — p[Pdz = 0B forces

(3.17) a = op/||hjn — c|§/P.

Constant c¢ is uniquely determined by condition
1 1
G18) [ (F@) - ddo = o [ [hsn(e) - clsgalhin(z) - )dz =0,
0 0

Clearly, h;.n(0) < ¢ < hj.n(1), because otherwise the latter integrand in (3.18) has one
sign. One can easily verify that the integral is stricly decreasing continuous function
of ¢, and so the solution to (3.18) is uniquely determined. Also, (3.16) is nondecreasing,
and constant on all intervals of {I—I jin < Hjn}, which are contained in ones where hj.,,
is constant. Summing up, (3.16) with constants defined in (3.17), (3.18) determines the
unique distribution function for which

1
sup(EpYjm — ErXjn) = /0 [F~(z) ~ pllhjin(z) — cldz

1
= /O [F~H(z) = pllhjin(z) = cldz = [[Bj:n = cllq0p-
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It suffices now to determine values of D,(j,n) = HhJ :n — ¢|lq and functions F for various
forms of hJ .n described in Theorem 1.
Suppose first that (2.6) holds. Condition (3.5) implies that s = 1— and discontinu-

ity of hj.p, at Jn;_% By (3.6), function (3.16) is negative for ¢ = ]:n(f;—ll) = hjm(ﬁl— ,

n-—1
and so ¢ € (SJ n{ J—‘i) hjn( l:l)) The constant is determined by (3.7). Consequently,
Di(j,n) = fo |hj:n(z) — c|?dz can be written as (3.9). Distribution function (3.4) with
parameters a = 3 = ’ 1 and v = c is derived from (3 16) combined with (3.17)—(3.18).

If either (3.6) is false, or Sjn(L=h) = sn(L1), or s > Z=1 "then ¢ € [hjin(s),
hj.n(1)), and hence ¢ = hj.(d) for some d € [s, 1). The new parameter, defined by (3.10),
provides simpler formulae (3.11) and (3.4) with o = 8 = s, v = h;.n(d) for the bounds
and extreme distribution than the original one.

Under condition (2.8), we can apply similar arguments. Then h] .n has a single jump
at 121, If ¢ € (hy n(l———l )s Pjen( _1)) = (Sjn (1), Jn(l:—l—)) (cf. (3.12)), then this is
determined by (3.13). Otherwise ¢ = hjn(d) = hjn(d) for some d € [t,1). In both
the cases, we obtain bounds (3.14) and (3.15), and the respective extreme marginals by
elementary calculations. O

THEOREM 4. Ifs* > 1/2 (see Theorem 2 for definition), then
(3.19) Deo(jsn) = =Sjin(s¥),  2<j<n-—1.

The bound is attained for the two-poznt marginal distribution on p— =0, and bt 0s
with probabilities s* and 1 — s*, respectively.
If either s < 1/2 with (2.6) or t < 1/2 with (2.8) hold, then

(3.20) Doo(j,n) = —S;n(1/2), 2<j<mn—1,

which is attained for the symmetric two-point distribution on p F 0oo.
In the remaining case for which (2.8) with 7——::-1- <1/2 < t hold, we have

(3.21) Deo(j,m) = (2¢ — Dhjin(t) — 2H;.n(t).

This bound is attained by the three-point marginal distribution assigning probabilities
3—— ,t— l—_—l andl—t top—0co, p+(E—1+ u)am/(t—— L——) and p+ 0o, respectively.

Proor. We here use evaluations

1 1
(3:22) / (P74 (@) = Wlin(a) = ddz < [ (P = ihgm(a) - iz

0
1
< sup|F@) ~ | [ [hgn(o) ~ cldo
0
= lBjn — cll10eo-

It is well known that for arbitrary nondecreasing hj.,,, function ¢ +— [|hjn — cf|y is
minimized by any ¢ € [hj.n(1/2-), Ajin(1/2+)]. The latter inequality in (3. 22) becomes
equality iff ~

(3.23) F~Yz) — p=sgn(hjmn(z) — ¢)00o
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on the intervals where ﬁj;n — ¢ does not vanish. This holds for the former one if the
intervals where F~! — 1 is constant contain those of hj.n —c.

Assume first that s* > 1/2, which implies that ¢ = h;.,(0), and

_ 1
Dealsym) = s = el = [ [hsn(0) = Syin(s")lda
= j:n(s*) - (1 — s*)Sj:n(s*) = - jm(s*).

Condition (3.23) implies that F~! — 4 = 0, on (s5*,1). Since F~! — y is required to

be constant on (0,s*) (see Lemma 1), and integrate to 1, we conclude that F~! — p =
1-s" *

=05 on (0,5%).

In the second case ﬁjm — ¢ has a single zero at 1/2, and (3.23) implies that

[ —0ee, i 0<z<1/2,
F (=) ““{+aoo, if 1/2<z<l.

This is clearly constant on (0,s), and (0,421) and (£*,t) in cases (2.6) and (2.8),
respectively. In the former,

1/2
Doo(j1) = 8ljin(1/2) — Syin(s)] + / (jin(1/2) = hjon()ld
+ / By () = hjon(1/2)]dz = —2H;m(1/2).
1/2

Similar calculations in the latter one lead us to the same conclusion.
The last statement is proved as follows

Darlim) = L2 i@~ 5m (152) ]+ [ hint@) — (0
g om0t (1) (27)
-5 P S |
| 7 v
Hjn(®) — (1 1) Hjm(tt_}?i SJ—{’“) ,

which is identical with (3.21). By (3.23), F~! — u = —0o and +0c on [0,451) and
[t, 1], respectively. By Lemma 1, this is constant on [1—%1, t). The value is determined by
the first moment condition, and belongs to (4 — 0oc, t + 000 ). O

In the same manner we can obtain analogous results for extreme order statistics. We
only need to replace the Moriguti approximations f;j.,, 2 < j < n—1, by hy. and (2.3).
The details of proofs are leff to the reader.

THEOREM 5. Forj=1 and p=1 we have

;ug (ErYim — ErXimn) /o1 =n/2 «— sup(EpY1:n — Er, X1:0)/01, as k — oo,
€F1
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where Fy, is the three-point distribution function with atoms at p—koy /2, p and p+koy /2

and respective probabilities 1/k, 1 — 2/k and 1/k.
For1 <p< o0, and 0 < d < 1 uniquely defined by the equation

d 1
/ (dn«l _ mn——l)q/pdx =/ (xn——l _ dn—l)q/pdl.
0 d

we have

sup (EF},].:n - EFXlzn)/ap = Dp(17n)
FeF,

d 1
= [@rt e tydn s [t - s,
1] d
The supremum is attained by

Dp(l)n)
n

T—p
Op

p/q 1/(n-1)
sgn(x—u)} o,

~ n(l — dn1) a/p _z-n_ ndn—1 19/7
Dy(1,n) op ~ [ Dp(1,n)

F(z) =1- [d""l -

Finally, for p= oo the bound

sup (EF)/l:n - EFXlzn)/Uoo =1~ 21—‘"’
FEFo

is attained by F symmetrically distributed ot p F 0.

THEOREM 6. Set
[ n(n—1)p1
&) = [m
doo(n) = 1.

1/p
] y 1< p<oo,

Then for 1 < p < oo yields

sup (EF'Yn:n - EFXn:n)/Up = (1 - l/n)n_ldp(n)7
FeF,

which is attained by the two-point marginal distribution concentrated on p—dy(n)o,/(n—
1) and p + dp(n)o, with respective probabilities 1 — 1/n and 1/n.

Observe that dp(n) — doo(n), as p — 00. Arnold (1985) proved that
sup (EpYnm — p)/op = dp(n), 1< p<oo,
FeF,

and the bound is attained for the distribution defined in Theorem 6. Therefore

SupFe]-‘p (EFYn:n - EFXn:n)
SUPFeF, (ErYnm — 1)

= (= 1/n)t =

-1
oy N\ et & 0.3679
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holds for arbitrary 1 < p < oo.
It is worth mentioning that our formulae are significantly simplified in the case
p = 2. Then, referring to (3.18), we conclude that

1
c= / hjn(z)dz = Hj.n(1) = 0,
0

D2(j: ’I'L) = “sz1”27
F~Y(z) = = hjin(x)02/Da(j, n).

We specify results of Theorems 3 and 5 for this important case in Corollary 1. For the
sample maximum it suffices to recall the statements of Theorem 6 with dy(n) = (n—1)1/2.

COROLLARY 1.

The bounds
Dy(1,n) = (n—1)/(2n — 1)'/2

are attained by the marginal distribution functions

Flz) = 1—[% (1

T (2n-1)172 oy

1/(n-1) 1/2
n—1 :c——u)] , _(2n_1)1/23$;u< (2nn— 11)/ .
y _

If (2.6) holds for 2 < j <mn—1, then

(3.24)

for

(325) D3 = 1 |

S o G R

sup (ErYjin — ErXj.p)/02 = Da(j,n)

Fer,
. 2 2
ns+1—j n?(1—s) 2n
Br7) R - [1 - F},
n+l—j 7 (S)] +(n-{—l—j)2 n+1—j[ n(8)]

Bound (3.24) is attained by

(3.26) F(z) = 4

4

\

T K < Sjm(8)
02 DQ(jvn),
Sim(s) _ T it _ hyn(s)
D2(j7n) oo T D2(j7n),

(Dz(j,n)x—u)’ if Lunl) czop nfn+1-j)

Dy(j,m) = o2 —  Da(j,n)
r—p . n/(nt+1-7j)

> : )
o2~ Da(j,n)

02

Under conditions (2.8) we have (3.24) with

(327)  Dj(j,n) =

3 (1) + (1) [ o]
j—1"7" 7 n n+l-3j I

n(l-t)  2n
(n+1-37)2 n+l1-—j

[1 - Fj:n(t)]

S [ oy
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Table 1. Bounds on deviations of expectations of order statistics of samples of size n = 20
under violation of independence.

i s/t Di(3,20) D2(j,20) Doo(j,20)
1 — 10.0 3.04243 0.999998
2 0.081632 3.34901 2.12540 1.05259
3  0.154426 2.35514 1.80169 1.11071
4 0.220794 1.92629 1.62166 1.17389
5  0.282865 1.69323 1.50515 1.23818
6 0.341654 1.55523 1.42409 1.29194
7 0.397736 1.47326 1.36564 1.31325
8 0.451461 1.42942 1.32301 1.27529
9 0.503044 1.41503 1.20228 1.16338
10 0.552604 1.42632 1.27102 1.03446
11 0.600174 1.46278 1.25775 0.92556
12 0.645684 1.52674 1.25148 0.83126
13 0.688884 1.62382 1.25162 0.74763
14  0.729075 1.76447 1.25770 0.67180
15 0.763548 1.96757 1.26921 0.60180
16  0.808151* 2.27656 1.28635 0.55312
17  0.861456* 2.75716 1.31285 0.51431
18  0.914198* 3.57151 1.35206 0.47635
19  0.965194* 5.21764 1.41421 0.43527
20 — 3.77354 1.64485 0.37735

The supremum is attained by (3.26) with s, Sj.n(s) and hj.n(s) replaced by =2, S;.,(£21)
and hj.n(t), respectively.

Table 1 contains numerical values of bounds D,(j,20), p = 1,2,00, 1 < j < 20
for samples of size n = 20. We recall that Dy(j,n) = D, (n + 1 — j,n) are both the
upper and lower bounds for deviations of the j-th smallest and largest order statistics,
respectively. Parameters p = 1,2, oo refer to the most popular scale units: the mean
absolute, standard and maximal absolute deviations, respectively. For 2 < j < 19, in the
second column we provide values of parameters s and ¢ which allow us to determine the
Moriguti approximations ﬁj;go, bounds Dp(j,20), and distributions attaining them, when
- conditions (2.6) and (2.8) are satisfied, respectively (see Theorem 1). The former holds
for 2 < j < 15, and then numerical values of parameter s are presented. Accordingly,
hj.20 is defined by (2.7), and then we calculate D; (], 20) and Dy (37,20) using (3.1) with
s* = s and (3.25), respectively. Conditions hj,(1=}) < 0 with Sjn(s) > S;. n(Z1)

of (2.8) are satisfied for j = 16, and h]:n(;?;—;ll) > 0 holds for 17 < j < 19. Therefore hJ;Qo,
16 < j < 19, have form (2.9), dependent on parameter ¢, whose numerical values are
marked with asterisks. Then we use (3.1) with s* = l—;—l and (3.27) for determining values
of Dp(j4,20), p = 1,2, respectively. In the last column, we evaluate (3.20) and (3.19) for
2<j<8and9<j <19, respectively.

We see that the central order statistics are more stable under departures from inde-
pendence than the extreme ones when measured in terms of the first two central absolute
moments. The upward inclination of the small (large) order statistics is greater (smaller)
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than the downward one. The opposite tendencies can be observed for p = co. Relations
Di(j,m) > Da(j,n) > Duo(j,n) are certainly forced by the reversed ones for the re-
spective gauge units o,. Applying Theorems 4, 5, and Corollary 1, we can immediately
conclude that asymptotic deviations for sample extremes Dp(j,n), j = 1,n, n — 00,
have orders O(n), O(n'/?), and O(1) for p = 1,2, 00, respectively. More sophisticated
arguments are needed for showing that all the D,(j,n) remain asymptotically bounded
for the central order statistics.
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