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Abstract. Incomparing two populations, sometimes a model incorporating stochas-
tic order is desired. Customarily, such modeling is done parametrically. The objective
of this paper is to formulate nonparametric (possibly semiparametric) stochastic or-
der specifications providing richer, more flexible modeling. We adopt a fully Bayesian
approach using Dirichlet process mixing. An aftractive feature of the Bayesian ap-
proach is that full inference is available regarding the population distributions. Prior
information can conveniently be incorporated. Also, prior stochastic order is pre-
served to the posterior analysis. Apart from the two sample setting, the approach
handles the matched pairs problem, the k-sample slippage problem, ordered ANOVA
and ordered regression models. We illustrate by comparing two rather small samples,
one of diabetic men, the other of diabetic women. Measurements are of androstene-
dione levels. Males are anticipated to produce levels which will tend to be higher
than those of females.

Key words and phrases: Dirichlet process mixing, linear functionals, Monte Carlo
sampling and integration, semiparametric models.

1. iIntroduction

In comparing two populations, it is sometimes anticipated that observations from
one will tend to be larger than those from the other. One formal way to capture this
is to assume that the two populations are stochastically ordered. That is, labeling the
population c¢.d.f.’s as Fy and Fj, if X is drawn from Fj and Y is drawn from F3, we say
that Y is stochastic larger than X if Fy(c) > Fi(c) for all c.

Customarily, stochastic order is modeled parametrically. A parametric family of dis-
tributions is selected with c.d.f. F(-;8) such that whenever 6; < 8a, F(c;01) > F(c;62).
Then, we take Fj(-) = F(;0;), j = 1,2. For instance, F'(-;f) might be a one-parameter
exponential family therefore having monotone likelihood ratio which implies stochastic
order (as discussed in, e.g., Lehmann (1986), Section 3.3). Alternatively, for random
variables on R!, taking a fixed c.d.f. Fy, we might introduce a location parameter 0
creating F'(+;8) = Fo(- — 0). Now, if F}(-) = Fo(- — 6;), j = 1,2, with 8; < 02 we achieve
stochastic order. n = 8, — 6y is referred to as the shift parameter (see, e.g., Randles and
Wolfe (1979), Chapter 9, for a full discussion). In the fully parametric context, infer-
ence about Fy, Fb and 7 is straightforward but the modeling is limited by the required
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specification of the parametric family.

Joe ((1997), p. 21) employs the terminology that X is stochastically increasing in 0
if the conditional distribution of X given  is such that F(z | §) decreases in 8 for fixed
z. The foregoing examples illustrate this definition.

Classical inference regarding 6; and 65 (hence F; and F3) is implemented under the
« hard restriction #; < #,. If we adopt a Bayesian approach, the modeling requires 6;
and 0y random and thus a prior confined to the set {(61,602) : 61 < 62}. Attractively,
such a prior restriction implies that, after data collection, stochastic order is retained a
posteriori. Bayesian inference avoids constrained optimization.

The objective of this paper is to formulate stochastic order and stochastically
increasing model specifications which arise nonparametrically, providing a richer, more
flexible class of models to work with. A fully Bayesian approach is developed through the
use of nonparametric mixture models. We illustrate using Dirichlet processes (Ferguson
(1973)) implemented through Dirichlet process mixing, as in Antoniak (1974) and Lo
(1984).

Focusing on the two sample problem, again prior stochastic order implies poste-
rior stochastic order. Additionally, full inference regarding Fy and Iy is available. By
contrast, classical nonparametric approaches to the two sample problem, e.g., the Mann-
Whitney test (as in, say, Randles and Wolfe (1979)), assume F; is shifted from F; but
do not specify Fy. Inference is limited to the shift parameter. Comparison of c¢.d.f.’s
requires empirical c.d.f.’s which need not be stochastically ordered. Such order would
have to be imposed in an ad hoc fashion. _

The parametric Bayesian approach requires a prior on (f;,02). As a first step
toward nonparametric extension (in the spirit of Lehmann (1986), p. 84), suppose g(z)
is a strictly increasing function such that g{z) > z and F is a c.d.f. Set Fy(-) = F(g(-)),
Fy(-) = F(-). Then F; is stochastically larger than F;. Assuming F is unknown, let it
be random; then F; and F, are. However, if g is fixed this class is too limited; this “F™
prior specification is such that F} determines F5 and vice versa. The parametric analog
is to select #; at random and then set 9 = 6; + ¢, with ¢ a fixed positive constant.
To make g(x) an arbitrary random increasing function lying above z is awkward. A
simplification would set g(z) = = + p where u is a positive random variable. This
“(F, )" prior specification is semiparametric. The parametric analog here is to draw 6,
at random and then u at random, setting #9 = 6; + u. This, of course, is equivalent to
drawing (61,02) at random on the set {(61,62) : 81 < 62}. In what follows we develop
an “(F1, F»)” prior specification, a nonparametric prior yielding Fj, Fy random with
F5 stochastically larger than Fy. In this regard, the only existing Bayesian work we
are aware of appears in Arjas and Gasbarra (1996). For survival models, they specify
a random pair of piecewise hazard functions obeying a partial ordering which implies
stochastic order for the associated distributions.

Note that, in the parametric case we might introduce a dispersion parameter o,
extending the parametric family to F(-;0,0) which is stochastically increasing in 6 for
each fixed o. In the Bayesian framework, the prior must then be extended to 0. We
shall similarly enrich the nonparametric case, adding a random ¢ to Fj and F3, yielding
a semiparametric prior specification.

The plan of the paper is the following. In Section 2 we briefly review the Dirichlet
process (DP), Dirichlet process mixing and inference under a nonparametric Bayesian
specification for the distribution of a population. In Section 3 we describe our approach
to creating random bivariate distributions with stochastically ordered marginals. The



NONPARAMETRIC STOCHASTIC ORDER 867

advantage to DP mixing rather than working directly with DP’s is revealed. Section 4
presents a range of applications. Apart from the two sample problem we consider the
matched pairs case, the k-sample slippage problem, ordered regression models, ordered
ANOVA models and partial stochastic order structures. Section 5 addresses computa-
tional matters; DP mixing is implemented using Gibbs sampling but the details are a bit
different from the usual implementation (see, e.g., Escobar and West (1995)). In Sec-
tion 6 we indicate how rough prior knowledge can be conveniently utilized in the required
prior specifications. Section 7 provides an illustrative analysis with a small dataset.

2. Dirichlet process and Dirichlet process mixing

Following Ferguson (1973), a distribution G on © follows a Dirichlet process
DP(aGy) if, given an arbitrary finite measurable partition, By, ..., B, of ©, (G(By), ...,
G(B;)) ~ Dirichlet(aGo(B1), . ..,aGo(B,)) where G(B;) denotes the probability of set
B; under G, and similarly for Go. Here, Gy is a specified distribution on © and o > 0
is a precision parameter.

Let F'(-;0) be a parametric family of distributions (c.d.f.’s), indexed by 8 € ©, with
associated densities, f(-;8). If G is proper we define the mixture distribution

2.1) F(56) = [ F(;6)G(as).

In (2.1) it is useful to think of G(df) as the conditional distribution of @ given G. Dif-
ferentiating both sides of (2.1) with respect to (-) defines f(-;G) = [ f(-;8) G(d8).

If G is random say G ~ DP(aGy), then F(-;G) is random. If the data D are
Y1,...,Y, independent and identically distributed from F(-;G) then, using the conve-
nient bracket notation of Gelfand and Smith (1990), we write the posterior of F(-;G)
as [F(-;G) | D]. Functionals of F(-;G), which we denote by H(F(+;G)), are of interest
with posteriors denoted by [H(F'(-;G)) | D).

In the context of (2.1), suppose for each Y;, i = 1,...,n we introduce a latent 8; and
assume that the Y;’s are conditionally independent given the 8;’s. Assume further that
the ;s are conditionally independent and identically distributed given G. As a result
the ¥;’s are marginally independent, with joint density [T, f(y;;G) = [T, J f(v:;6:)
G(df;). Adding G ~ DP(aGy) completes the Bayesian model specification, apart, per-
haps, from a hyperprior on « (see Escobar and West (1995)). Antoniak (1974) noted
‘that this Bayesian model can be marginalized over G to obtain [T, f (v:;0:)[01,--.,65 |
Go, @). After marginalization the 8; are no longer independent but a Gibbs sampler can
be routinely implemented (Escobar and West (1995)) to obtain samples from the poste-
rior [0y,...,0, | D].

Gelfand and Mukhopadhyay (1995) describe how to use these samples to compute
moments of [H(F(-;@)) | D] when H is a linear functional. Such functionals include
expectations with respect to F(-;G), enabling the mean, variance and characteristic
function functionals to be studied along with the “c.d.f-at-a-point” and “p.d.f-at-a-
point” functionals. The important quantile functional is not linear.

Restriction to posterior moments of linear functionals necessarily limits inference.
In a recent paper, Gelfand and Kottas (2001) show how to obtain the entire posterior
distribution for more general functionals. Hence, exact inference is available for many
population features and for comparing such features across populations.
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Briefly, note that for H, a linear functional, H(F(-;G)) = [ H(F(-;600))G(dbo).
Now, instead of marginalizing over G in [0y,0,G | D] « [D | 6][6o,8 | G][G], observe that
this joint posterior is proportional to {6y | G] [G | 8] [# | D]. Hence given 63,6 =1,...,B
from [6y,...,0, | D), for each 8 draw G; ~ [G | 6;] and then 6, ~ G}, for I =1,..., L.
Finally, Hf = L7} zle H(F(-0;)) is a Monte Carlo integration for a realization
from [H(F(;;G)) | D]. To obtain an approximate realization from [G | 8;], which is
an updated Dirichlet process (Ferguson (1973)), we use the constructive definition of
Sethuraman (1994). Sampling from the posterior of the “c.d.f-at-a-point” functional,
for a grid of points, we can invert to obtain samples from the posterior of any quantile
functional. Other functionals of interest can also be handled.

In the interest of clarifying Bayesian learning under this DP mixing framework we
might wish to summarize prior features associated with F'(-; G). The approach of Gelfand
and Mukhopadhyay (1995) can be applied to prior expectations in the same fashion as
for posterior expectations. Also the foregoing ideas of Gelfand and Kottas (2001) can
be applied a priori by approximately sampling {G] rather than [G | D].

If we write 8 = (0(1),9(2)), we might place a DP prior on 0V ie., 8 ~ @ where
G ~ DP(aGyp) with a parametric prior on 6?) . For instance, 81 might be a location
parameter p and 8 a dispersion parameter o yielding F( G, 0) = [ F(;; u,0)G(dp),
semiparametric specification. In Section 7 we take F(-; u,0) = ®((- — p)/0), where @ is
the standard Normal c.d.f.

3. A nonparametric approach for modeling stochastic order

Following the introduction, we seek joint distributions (Fy, F) over the space P =
{(F1, F) : Fy <4 F>} where Fy <, F> means F is stochastically larger than F;. Again,
the elements of P are a pair of univariate functions. In general, the richness of a family
of probability measures over a function space is hard to assess. Special spaces offering
analytic characterizations can clarify this assessment, e.g., scale and location mixtures
of a continuous symmetric density on R! provide all distributions on R* (Lo (1984),
p. 355).

For P we only know 0 < Fy(c)/Fi(c) < 1 (defining Fa(c)/Fi(c) = 0 if Fi(c) =0.)
Consider the subspace of P,P = {(Fy,Fy) : F1 = G, F, = G1G2} where G, and G»
are c.d.f’s. Obviously, on P’, Fy(c)/Fi(c) increases from 0 to 1 in ¢. P’ provides a
constructive characterization for developing classes of probability measures. Any joint
distribution over (G, G2) induces a distribution on P’. In fact, it is helpful to think of
F as the distribution of # and F, as the distribution of max(f,6) where § ~ G; and
independently 6 ~ Gs.

Customary probability models for G; and G2 would be independent Dirichlet pro-
cesses or more generally Polya tree processes (see, e.g., Walker, et al., (1999) and ref-
erences therein). Suppose Gy ~ DP(aGhg), Go ~ DP(BG4y), then the distribution
for the pair of univariate random variables (F(c), Fa(d)) with, say ¢ < d, can be ob-
tained. Letting B; = {z : z € (—00,¢]}, By = {z : ¢ € (¢,d]}, Bs = {z : 2 € (d,00)},
Cy = {Z tz € (-—OO, d]}, Cy = {Z 1z € (d,OO)}, U; = Gl(Bi), 1=1,2,3, V7 = GQ(CJ'),
j = 1,2, we have Fi(c) = Uy, Fy(d) = (U1 + U2)V; so that the joint distribution of
(Fi(c), Fa(d)) is obtained by simple transformation. We note that E(Fi(c)) = G1o(c),
i.e., EF1 = GIO‘ But also E(FQ(C)) = E(G1 (C)GQ(C)) = EG] (C)EG2(C) = Glo(c)Gzo(C),
i.e., EFy = G19G20. Other moments of Fj(c) and Fi(c) can be readily calculated. Also
it is straightforward to show that Cov(Fi(c), Fa(d)) > 0.
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In principle we could similarly obtain the joint distribution of any finite collection
(Fi(ci),t = 1,...,1,F(dj), 7 = 1,...,J). However, this distribution will be messy,
awkward to sample and only provides a finite approximation to [Fy, F2|. Introducing DP
mixing simplifies matters considerably as we now clarify. We begin with a lemma which
is a general version of a result in Shaked and Shanthikumar ((1994), p. 8). It indicates
how stochastic order can be preserved through mixing.

LEMMA 1. Suppose F(;6) is a family of c.d.f’s, 0 € (6,6), which is strictly
decreasing in 0. Let Fy and Fy be two c.d.f.’s on (0,0) such that Fy <4 F,. Let

F(;F) = [L F(;0)F(d9), i = 1,2 (as in (2.1)). Then F(5F) <yt F(; Fy).

PRrOOF. Since F(c;0) is strictly decreasing in 6, for each c we can define the mea-
sure I'; on (6,0) by T'c((8,6]) = I'c(0) = F(c;8) — F(c;8). Then

) _ 7
0< / (Fi(6) — Fo(8))dTo(6) = Te(6)(Fi(8) — F(8)) [§ — / T.(6)d(F,(0) — Fa(6)
44 2

4
:/0 F(c;0)d(F1(0) — Fa(0))

= F(c; Fy) — F(c; Fy).

Remark 1. Under the assumptions of Lemma 1, we see that the “c.d.f.-at-a-point”
functional is ordered under F; and Fy. (By inversion, the quantiles of F; and F, are
ordered.) Such order applies to other linear functionals. If say H(F(-;6)) increases in
6, then H(F(-; F1)) < H(F(-; F)), e.g., provided the expectations exist, E(Y | F}) <
E(Y | Fz) if E(Y | 0) increases in 6.

Remark 2. We can add a dispersion parameter o to the model, as at the end of
Section 2, and extend Lemma 1 to conclude that F'(-; F1,0) <4 F(-; F»,0). This applies
to all of the examples below.

To clarify, Lemma 1 is applicable to any (F}, F») € P with common support (8, §)
and by such mixing we obtain the class Pr = {(F(;F1),F(;F)) : (F1,Fy) € P}
where the subscript F' denotes the choice of kernel F(-;0) in (2.1). The Lemma asserts
that Pr C P. Hence, a probability model over P induces a probability model over
Pr. Applied to (Fi, F2) € P’ we note that F(:; Fy) = [ F(60)G1(df) and F(-; Fy) =
Jf F(-;max(8, 6))G1(d0)G2(d6). Attractively, if G; and G are from independent Dirich-
let processes, we can perform the marginalization over Fj and Fs noted in Section 2.

For instance, if G; ~ DP(aG1g) and Gy ~ DP(SGg) and H is a linear functional
then straightforwardly, E(H(F(-;F1))) = H(F(-;G1)). However, E(H(F(-; F»))) =
Eg,.c, J| H(F(-;max(6,6)))G1(d0)G2(d6). Building from indicator functions, this latter
expectation is [[ H(F(-;max(0,06)))G10(df)G20(d6). Prior and posterior inference for
more general H(F(-; F;)) was discussed in Section 2.

In summary, working with location mixing of a continuous kernel (as we do below),
we model the c.d.f.’s directly, the resultant c.d.f.’s are continuous, the location mixing
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provides flexible distributions and ready interpretation, the computation is relatively
straightforward (Section 5 below), finite approximation is avoided and full prior and
posterior inference is available.

4. Examples

We now apply our approach to a range of stochastic order problems which are
usually addressed parametrically.

e The two-sample problem. Here we seek X1,..., X, i.id. F(; Fy), Yq,..., Y, iid.
F( F;), X;, Y; independent for all ¢ and j, with say F(-; F}) < F(-; F2). Suppose we
introduce 01,60, ...,0m, Om+1,- -+, 0mtn iid. Gy, 61,...,6, i.id. G3. Then we assume
Xi | 6; ~ F(;0;), 4 =1,...,m so that marginally X;,...,X,, are i.id. F(-; F}), where
Fy = G,. Letting n; = max(,1;,6;), j = 1,...,n, we assume Y; | n; ~ F(:;n;) so
that marginally Y3,...,Y, are i.id. F(; F3) where F» = G1G,. Note that X; and Y; are
conditionally independent given Fy and F,. F(-;F}) and F(-; F3) are not independent
since Fy and F5 are not.

e The paired comparison or matched pairs problem. Here we seek (X;,Y;), i.id.
pairs, ¢ = 1,...,n such that, marginally, X; ~ F(;F), ¥; ~ F(:; Fy) with again,
F(-; F») stochastically greater than F(-; F;). Now we introduce only #y,...,8, iid.
G, with 81,...,8, i.id. Gp and n; = max(6;,6;). Then, given Fy and Fp, (X;,Y;) are
jointly distributed as F(z,y; F1, Fs) = [[ F(x;0)F(y; max(0,8)) G1(df) G2(d6); as in
the previous example, marginally, X; and Y; are stochastically ordered.

e The k-sample slippage problem. Here we seek X,;, i =1,...,k, j = 1,...,n,,
independent such that X;; ~ F(-; F;) and the F(-; F};) are, say stochastically increasing.
Using Lemma 1, it suffices that the F; be stochastically increasing. Most generally, we
could set F; = Gy ---G; with the G} independent ~ DP(o;Gyp), 1 = 1,...,k. We can
draw a parallel with the nonparametric version of the one way ANOVA model in Akritas
and Arnold (1994). Though they do not consider stochastic order, they do represent F;
as an additive form. We represent log F; as an additive form. In practice, specifying
k prior Dirichlet processes may be too much to ask. We may instead set F; = G?,
i.e., F; is the distribution of max(ﬁ(l) : 1 =1,...,i), where the %) are i.i.d. from G,
and G ~ DP(aG)). Following the two sample problem above, implementation requires

051),...,9,(113 for sample 1, (0§2) ye ..,0,%) ,0,(122) +1a--"0§i)2) for sample 2 with n; = max

(9;2),07(122)“), etc.

e The ordered two way layout. Here we seek X, k = 1,...,n;; independent such
that X;jx ~ F(-; F;) and the F(-; F};) are stochastically increasing in i for fixed j and
in j for fixed 4. Again, using Lemma 1 it suffices that Fj; be stochastically increasing
in ¢ for each j and in j for each i. Here, we might set F;; = G’iG%"l, ie., F;; is the
distribution of max(y,...,6;,61,...,6;-1) where the §; are i.i.d. from Gy, the &, are
iid. from Gq, with G, ~ DP(aGqg) and G ~ DP(BG2), G; and Go independent.
LogF}; is again additive with a component for each factor. Also, the n;; can be 1 since
we have only two unknown G’s. Implementation parallels the one-way ANOVA slippage
problem.

The previous two examples reveal how, within ANOVA modeling, any parametric
order restrictions can be replaced with nonparametric stochastic order restrictions.

e Ordered regression models. To illustrate possibilities in a regression context, we
recall the Dirichlet process mixed generalized linear models introduced in Mukhopadhyay
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and Gelfand (1997). In an attempt to enrich the class of generalized linear models
beyond the rather restrictive one-parameter exponential family of stochastic mechanisms,
they consider F(+278,G) = [F(;a+ z7B)G(da), where F(-;a + z7B) is the c.d.f.
of a customary generalized linear model. But then, if Fi <s F2, F(;37B,Fy) <
F(-;z7B, F,). Remark 1 shows that regressions remain ordered, e.g., med(Y | 278, F}) <
med(Y | 7 B, F2) and, provided they exist, E(Y | 278, F}) < E(Y |78, F,).

5. Computational details

With regard to fitting DP mixed models using Markov chain Monte Carlo, the path
is well laid out in Escobar and West (1995). However, our context raises some novel
wrinkles. We present the details in the case of the two-sample problem. In fact, we
assume Gaussian mixands, mixing on the mean.

Formally then, our model is: X;i,...,X,, iid. F(;Fy,0?%) and Yi,...,Y, iid.
F(-; Fz,0?), where F(-; F;,0?) = f@(‘—;g)ﬁ}(de), i=1,2F =Gy ~ DP(aGy), F» =
G1G2, Gy ~ DP(BG2) independent of Gi; 02 ~ IG(a,b) (an inverse Gamma with
mean b/(a — 1), provided a > 1), Gig = N(u1,72), Gao = N(u2,72); a, b, p1, 72,
pa, 72 all known. Also, we assume that « and § are known. If @ and /3 are assumed
unknown, Escobar and West show how the inclusion of latent Beta-distributed variables,
one associated with «, one with 3, simplifies the MCMC sampling.

The Bayesian model is now fully specified. Recall from the previous section that
we introduce latent 8 = (61,...,0m,0m+1,. .., 0m4n) Lid. Gy and § = (§y,...,6,) Lid.
G in order to marginalize over G4 and G2. The MCMC algorithm is implemented as
a Gibbs sampler to obtain draws from the posterior, [0,8,02 | D] where D denotes the
data X1,...,Xm,Y1,..., Y. The required full conditional distributions [6; | 8;, [ # i, 6,
a2, D}, [6; | 81,1 # j,6,02%,D] and [0? | 0,8, D] are given in the Appendix.

6. Prior specification

Tllustrating with the two-sample model of the previous section, prior specification
requires Gig, Goo and IG(a,b). A sensible, vague prior for ¢ can usually be gotten by
taking a = 2 (to provide infinite variance) and a mean based upon o being one-sixth of
the anticipated range of the data.

Turning to Gyg and Ggp we recall that EF; = Gig and EFy = G10Gay. Since Fi
generates the 0’s, with two elicited features for this distribution, say two quantiles or a
center and a range, we obtain two equations to solve for y; and 7'12, hence determining
G1o. But then since F» generates the 7’s, with again two elicited features for the dis-
tribution of the n’s and Gy¢ determined, we can determine Gog. For instance, with two
quantiles say ¢p, and g, we set G1o(gp, )G20(@p,) = D1, G10(dps)G20(gp,) = p2 which
gives Gao(gp, ) and Gag(gy, ) hence o and 74 and therefore Gog. Similarly, a shift relative
to G1o and a range will again determine Gogp.

We note that a proper, rather noninformative, specification should not place es-
sentially all of its mass near the boundary, Fy = F5, as this is, in fact, quite informa-
tive. Recalling the parametric analog using the notation of Section 1, a noninformative
prior over —oo < #; < f2 < oo would be rather flat over this range and not concen-
trated near the line ; = 0. Next, though F; follows a Dirichlet process, F» does
not so it will be easier to provide priors for G; and G5. If we start with a fixed c,
Gi(c) ~ Be(aGio(c), a(l — Gio(c))) and Ga(c) ~ Be(BGao(c), B(1 — Gao(c))). Jeffreys’
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Table 1. Androstenedione levels for a sample of diabetic men and a sample of diabetic women.

Males Females
117 126 84 55 80
123 70 87 77 101
80 63 77 73 66
140 147 84 56 84
115 122 73 112
135 108 66 56
49 70 70 134

Table 2. A descriptive summary of the data.

Mean Median StDev First quartile Third quartile
Males 104.64 116.00 31.83 70.00 128.25
Females 79.72 77.00 20.09 66.00 84.75

prior for G;(c) and Go(c) is Be(1/2,1/2) yielding a = 8 = 1, Gio(c) = Gaolc) = 1/2.
Of course, Gip(c), i = 1,2 can not equal 1/2 for all ¢ but if we take G1o and Gy to
be normal with common mean roughly at the center of the data and a large variance,
then for ¢’s in the range of interest G;(c) ~ Be(1/2,1/2). We adopt this approach in
the example of the next section.

Prior information may more naturally arise on F(-; F1,02) and F(-; Fy,0?%). This
may be handled but at a bit of additional computational expense. Suppose we have

two quantiles for F(-; Fy,02), say 'y,(,i) and 'y,(,i). With a prior guess for ¢ say & we can

set p; = f@(('y(:) — 6)/5) Gho(dF), i = 1,2 yielding two integral equations in y; and
7£. These may be solved using analytic methods or perhaps stochastic approximation.
Similarly, with two quantiles for F(-; F3, 02), say '7,(5), 7,(,2) we obtain p; = [f @((7(?) -
max(8, 6))/5)G10(d0)Gao(d6), i = 1,2 yielding, with u; and 77 determined, two integral
equations in u, and 72.

7. Data illustration

To illustrate our methodology we consider a dataset providing androstenedione levels
for a sample of 14 diabetic men and a sample of 18 diabetic women. The data from
Koopmans (1987) appears, slightly modified, in Table 1. The modification is benign. We
changed the smallest male measurement to make it immediately evident that stochastic
order would not be seen in the pair of empirical c.d.f.’s. It is anticipated that males will
produce levels which will tend to be larger than those of females. Descriptive summary
of the data appears in Table 2.

The sample sizes are small, encouraging nonparametric modeling. We model the
distribution for each population as a location mixture of normals with common variance.
That is, we assume '

(7.1) F(;Fyy0%) = / &((- - 0)/0)Fi(d6), i=1,2,
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E(F (c, F,02)) denoted by the dotted line, E{(F(c; F2,0?)) denoted by the smaller dashed
line, E(F(c; Fi,0%) | D) denoted by the dashed line and E(F(c; F3,02) | D) denoted by
the solid line.
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Fig. 2. Prior and posterior means for the p.d.f. functionals f{c; Fi, 0?) and f(c; Fa,0%).
E( f(c; F1,0%)) and E(f(c; F2,0?)) denoted by the dotted and the smaller dashed line,
respectively. E{(f(c; Fi,02) | D) and E(f(c; F2,0%) | D) denoted by the dashed and the
solid line, respectively.

where i = 1 denotes the female population, i = 2 the males. Under (7.1), o is not
a scale parameter and the two distributions need not have a common variance. As
above we set F; = Gy and F, = (G1G>. Following the suggestions in Section 6, we
) take Gl ~ DP(aGlo), G2 ~ DP(ﬂGgo) where Gm = N(QO, (50)2)i Gzo = N(QO, (50)2)
‘and @ = B = 1. Standard deviations larger than 50 were experimented with revealing
negligible change in the resultant posteriors. Also, 0% ~ IG(2,900) suggesting a prior
mean for o2 of (30)? with infinite variance.

The implications of this prior specification can be determined using the discussion
of Section 2. Taking B = 1,000, in all Monte Carlo integrations and using a grid of ¢
values, the prior expected c.d.f. of F(-; Fi,0?) and the prior expected c.d.f. of F(-; Fa,0 2)
are plotted in Fig. 1. Also, for the median functional, denoted by n(F), a priori, a point
and interval estimate for n(F(-; F1,0?)) is 91.566 (13.879,165.968), for n(F(-; Fa,0?))
we obtain 116.111 (59.233,178.956). For the interquartile range functional IQR(F'), a
priori, a point and interval estimate for IQR(F(-; F1,0?)) is 49.271 (21.776,125. 203) for
IQR(F(-; F3,0?)) we obtain 47.810 (22.956,106.018). For the difference n(F( Fy,0%))~
n(F(-; F1,0?%)) we obtain 15.757 (0.042,104.042).
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Turning to the posterior analysis, we can compare the posteriors for the c.d.f.’s
F(c;Fy,0%) and F(c; Fy,0%). In fact we overlay plots of E(F(c; Fy,0?) | D) and
E(F(c; Fy,0%) | D) on Fig. 1. We can see the Bayesian learning relative to the prior
expectation. The posterior curves increase more rapidly implying more concentrated
distributions and the separation between the curves becomes noticeably greater on the
interval (75,125). Note that such stochastic order will not emerge from the empirical
c.d.f’s (possibly smoothed) for the two samples. Also, were we to adopt stochastic order
through a location model with say Fi(c) = Fo(c — 61) and Fp(c) = Fo(c — 62) with Fo
given, this implies the constraint EyY(Fi(e)) — Ey Y (Fy(c)) = 02 — 6, regardless of c.

The posteriors for the p.d.f.’s, f(c; Fi,02), f(c; F2,0?) can also be compared again
both a priori and a posteriori. We do this in Fig. 2 where we again see the Bayesian
learning and the emergence of a bimodality for the males. This latter feature is not
surprising upon reexamination of the data but it can not be captured with standard
parametric shift models.

Finally, using the median functional, point and interval estimates for the posteriors
of n(F(; F1,02)), n(F(:; Fa,0?)) and n(F(-; Fz,0%)) —n(F(-; F1,0?)) become respectively
76.785 (68.125,87.844), 108.437 (83.863,127.491) and 31.203 (6.002,52.925). We find
evidence that median androstenedione level for men is roughly 1.4 times higher than for
women.

Appendix

We present the full conditional distributions needed in Section 5. Fori=1,...,m,
[0; | 61,0 # i,6,02,D] is a mixed distribution placing point mass o ¢((z; — 01)/0)/
(i o (i — O)/o) + oA(z;,0%) at 0; = 6, 1 = 1,...,m+n,l # i and con-
tinuous mass aA(xi,ag)/(Zl#ia_lqb((a:i — 0,)/0) + aA(z;,0?)) on the normal distri-
bution N(p1(z:,02), v1(c?)). Here, ¢ denotes the unit normal p.d.f, pi(z,0?) =
(02py + 722) /(02 + 77), v1(0?) = 0?7 /(0® + 7{) and

A(zi,0%) = /0_145((3% —0)/5)G10(d0) = (02 + 72) M 2¢((zi — )/ (0 + 1))

For Omsjy § = 1,...,n, [Omyj | 01,1 # m+J,6, 02,D] is again a mixed distribution
placing point mass o' ¢((y; — max(61,65))/0)/ (Lm0~ ¢(y; — max(6y,65))/0) +
aBi1(y;,6,02)) at Omy; = 6 and continuous mass aB1(y;, 65100 /(X 1m0 (Y5 —
max(6;,8;))/o) +aBy(y;,6;,0)) on the mixture distribution (9 (y;,6;,02)TN(p1, 783
Ormg < 87)+KS" (5, 85,0)TN (w1 (y5,0%),01(0%); Omes > 60} K (w5, 85,0%) + k5" (93,
8;,02%)). Here, TN denotes a truncated normal distribution, in particular for 8,,; over
the indicated range, :

KD (5, 65,0%) =/H 4<5~U_1¢((yj —65)/0)G10(d0m+;)
= o p((y; — 6;)/0)®((6; — p1)/m1), and
K05 65,0%) = [ a6~ e ) Gr0(dm)
m+j 05

= (02 + 72) " Y2((y; — m)/(0® + 1))
(1= B((8; — o) /o1 2 (02)))
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and
Bl(yj76jaa2) = kil)(yj: 5j7d2) + kél)(ijéja 02)-

For &;, j = 1,...,n, [6; | 8,1 # j,0,0% D] is again a mixed distribution plac-
, ing point mass o™ ¢((y; — max(Om+j,61))/0)/ (X1; 0~ $((y5 — max(Om+j,8))/0) +

BB2(y;, 0m+5,02)) at §; = & and continuous mass, BB2(y;, O, 02)/(21# o ((y; -
max(0m+j5,61))/0) + BB2(Y;, Om+j,0%)) on the mixture distribution

{62 05, 0m47, 02T N (42, 72565 < O )
+ké2)(yj70m+j’JQ)TN(ﬂQ(yjao-Q);UZ(GZ);6j > Omi)}
J B W), Omis,0%) + K52 (47, 6y 02)).

Here,

6 = 07 (Y5 = Omts)/0)B(Omps — H2)/72)s

ks = (02 + 1) 720 ((y — 12) /(02 + )AL = ©((Omsg — 12w, 0%) /0% (0%)))
and
Bo (Y, O0m+,02) = kO (U7, Omts, 02) + K (95, Omerj o)

with po(y, 02) = (622 + 73y) / (02 + 72) and v2(0?) = 027 / (62 + 73).

Finally {¢? | 6,6, D] is an update inverse gamma IG(a+ ™2, b+ 2 (3, (z; — 0;)% +
Y5 (5 — max(Ome,85))2)).

In practice the above truncated normal distributions are efficiently sampled using
the suggestion of Devroye ((1986), p. 38). A moment’s reflection reveals that, even if
we introduce more than two ordered populations, the full conditional distributions for
the DP parameters will still be mixed distributions and the continuous mass will still
involve a mixture of at most two distributions. Computation for DP parameters does
not worsen with an increasing number of ordered populations. Lastly, note that the
Gaussian mixands with the Gaussian base measures provide convenient conjugacies in
the foregoing calculations. If F'(-;6,0) is not normal, Monte Carlo integration may be
required. ~ Alternatively, the generic approaches of MacEachern and Miiller (1998) or
Walker and Damien (1998) can be tried.
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