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Abstract. In this paper we first point out a simple observation that can be used
successfully in order to translate results about the hazard rate order into results about
the reversed hazard rate order. Using it, we derive some interesting new results which
compare order statistics in the hazard and in the reversed hazard rate orders; as well
as in the usual stochastic order. We also simplify proofs of some known results
involving the reversed hazard rate order. Finally, a few further applications of the
observation are given.
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1. Introduction

The hazard rate order is a well-known and useful tool in reliability theory and in
other areas of applied probability and statistics. A little less well known is the reversed
hazard rate order. The latter has received less attention, mainly because it has a some-
what less obvious intuitive meaning in reliability theory. However, there are quite a few
instances in applications where the reversed hazard rate order appears genuinely as a
natural condition which implies useful inequalities, and which leads to optimal strate-
gies. For example, Kijima (1998) has shown that certain first-passage times, associated
with some continuous time Markov chains, have increasing failure rates if the underlying
chain is monotone in the sense of the reversed hazard rate order; see also Shaked and
Shanthikumar (1988). Shanthikumar et al. (1991) have shown that if the service times
of servers in a tandem queue with blocking are comparable in the reversed hazard rate
order, then there exists an optimal allocation where the server allocated to the first stage
has a larger mean service time than that assigned to the second server. Cheng and Zhu
(1993) and Cheng and Righter (1995) have extended the results of Shanthikumar et al.
(1991) to more versatile queueing systems, and obtained further optimality results, still
under the condition (which arises naturally) that the service times of different servers
are ordered according to the reversed hazard rate order. Shaked et al. (1995) showed
that if a family of random variables is increasing in the reversed hazard rate order then
a corresponding family of partial sums has a useful stochastic transposition increasing
property. Shaked and Wong (19974, 1997b) noticed that the reversed hazard rate order
implies the Laplace transform ratio order, which in turn, yields some useful inequalities.
They also showed that comparability of some random counters in the reversed hazard
rate order implies the hazard rate ordering of some related random sums and random
minima and maxima. Finally, it is worthwhile to mention that the reversed hazard rate
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order arises naturally also in economics and risk theory. Eeckhoudt and Gollier (1995)
considered an agent that has an increasing concave utility function, and a choice among
several random risks. If the agent maximizes his expected utility by selecting an opti-
mal level of exposure to a specified risk, then this optimal level of exposure decreases
when the random risks are increasing in the reversed hazard rate order (but, interest-
ingly enough, not necessarily when they are merely increasing according to the usual
(first-order) stochastic dominance); further results in this vein can be found in Kijima
and Ohnishi (1999).

Tt is thus seen that mathematical results which constitute the reversed hazard rate
ordering of pairs of random variables can be very useful. Therefore it is not surprising
that recently several researchers have devoted some effort in order to obtain results of
this kind. However, in some recent papers, the proofs that have been utilized in order to
establish the reversed hazard rate ordering of some pairs of random variables are quite
complicated; see, for instance, Block et al. (1998), Nanda et al. (1998), Ma (1999), and
Hu and He (2000). The purpose of the present paper is to point out a simple observation
that can be used successfully in order to translate results about the hazard rate order
into results about the reversed hazard rate order. Thus, the effort that has been made in
some recent instances in the literature, in establishing the reversed hazard rate order, is
often unnecessary once an analogous result exists for the hazard rate order. The above
observation is also useful in deriving new comparisons of random variables in the hazard
and the reversed hazard rate orders.

The paper is organized as follows. The observation, mentioned above, is stated and
proven in Section 2 as Theorem 2.1. In Section 3 we derive some interesting new results
which compare order statistics in the hazard and in the reversed hazard rate orders;
as well as in the usual stochastic order. We also give there a short overview of the
current literature on comparisons of order statistics, and, using Theorem 2.1, we point
out simple proofs of many known results. It should be mentioned that order statistics
have a useful interpretation in reliability theory as the lifetimes of k-out-of-n systems,
and in nonparametric statistics as the values that determine the empirical distribution
function. Finally, a few further applications of Theorem 2.1 are described in Section 4.

The definitions of the hazard rate and the reversed hazard rate orders, in a general
setting (that is, without necessarily assuming that the compared random variables are
nonnegative), are the following.

Let X and Y be two continuous (not necessarily nonnegative) random variables,
each with an interval support which we denote by (Ix,ux) and (ly,uy), respectively;
Ix and ly may be —oo, and ux and uy may be oo. Let F and G be the distribution
functions of X and Y, respectively, and let F =1-F and G = 1-G be the corresponding
survival functions.

DEFINITION 1.1. The random variable X is said to be smaller than the random
variable Y in the hazard rate order (denoted as X <pr Y) if

)

(1.1) g—g—) is increasing in t € (—oo, max(ux,uy))-

Note that in (1.1), when ux < uy, we use the convention a/0 = oo when a > 0.
In particular, it is seen that if ux < ly, then X <p, Y. From the definition of <y it
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follows that
(1.2) X< Y= (lX <ly and ux S’u,y)

The hazard rate order is useful in many areas of probability and statistics; in particular,
in reliability theory. Various results that establish the hazard rate ordering of various
pairs of random variables can be found in the literature (see, for example, Section 1.B
in Shaked and Shanthikumar (1994)). Often it is assumed that the random variables
X and Y that are compared are nonnegative, but using the definition (1.1) this is not
necessary.

DEFINITION 1.2. The random variable X is said to be smaller than the random
variable Y in the reversed hazard rate order (denoted as X <mY)if
G(1)

) is increasing in t € (min(lx,ly), o).

In particular, it is seen that if ux < ly, then X </n Y. From the definition of <,y it

follows that if X <,, Y then Ix <ly and ux < uy. The reversed hazard rate order also
has recently received a lot of attention (again, see, for example, Section 1.B in Shaked
and Shanthikumar (1994)).

2. An observation

A simple useful observation is the following result.

'THEOREM 2.1. Let X and Y be two continuous random variables with supports
(Ix,ux) and (ly,uy), respectively. Then

X She Y = ¢(X) 20, ¢(Y)

for any continuous function ¢ which is strictly decreasing on (Ix,uy). Also,
X < Y = ¢(X) 24 ¢(Y)

for any such function ¢.

PROOF. Let ¢ be a continuous strictly decreasing function on (Ix, uy ). Denote its
range by (l,us). Let F and G be the survival functions of X and Y, respectively, and
denote the distribution functions of ¢(X) and ¢(Y) by Fy and Gy, respectively. Since
¢ is continuous and strictly decreasing, its inverse, ¢~!, is uniquely defined on (I, uy).
For t € (lp,us) we have )

Fyt) _ B~ (t)
Gs(t)  Glo1(1)
If X <p Y then F/G is decreasing on (Ix,uy). Also, the decreasingness of ¢ implies

that ¢~! is decreasing on (l4,u4). Therefore g:((?) is increasing in ¢ € (I3, uy); that is,

The proof of the second part of the theorem is similar. 01

Sengupta et al. (1999) have used a special case of Theorem 2.1 (that for nonnegative
random variables X and Y we have X <3, Y & X! >4 Y1) in some derivations of
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their results. Kijima and Ohnishi ((1999), p. 358) have pointed out another special case
of Theorem 2.1; that is, that for any random variables X and Y we have X < Y &
-X Zhr -Y.

Theorem 2.1 highlights a mistake in Theorems 1.B.2 and 1.B.22 in Shaked and
Shanthikumar (1994)—the parenthetical statements there are incorrect. Theorem 2.1
straightens out these errors. For completeness we state here the correct results which
are slightly more general than those stated in Shaked and Shanthikumar (1994) (because
here we do not require the random variables to be nonnegative); these results will be used
in the sequel. The proof of the following results is similar to the proof of Theorem 2.1
and is therefore omitted.

THEOREM 2.2. Let X and Y be two continuous random variables with supports
(Ix,ux) and (ly,uy), respectively. Then

X <pe YV = ¢(X) <ir $(Y)

for any continuous function ¢ which is strictly increasing on (Ix,uy). Also,
X <h Y = ¢(X) < ¢(Y)

for any such function ¢.

A referee has pointed out that the statements in Theorems 2.1 and 2.2 hold also
in the reversed direction. For example, in Theorem 2.1, if ¢(X) > ¢(Y) for some
continuous function ¢ which is strictly decreasing then X <y, Y. This can be seen by
applying the second part of Theorem 2.1 with the function ¢! (which is also continuous
and strictly decreasing).

3. Ordering order statistics

A particular set of results in the literature, which establish the hazard or the reversed
hazard rate ordering, involves order statistics; these results have useful applications in
reliability theory—see, for example, the references that are mentioned throughout this
section. We describe below some new results, and we also provide, with the aid of
Theorem 2.1, simple proofs to some known results. :

The notation that we use in this section is the following. For any set {X1, Xo,...,
X} {Y1,Ya,...,Ys}, etc] of random variables, the corresponding order statistics will

~ be denoted by X(1) < X(2) < -+ < X(m) [Y) £ Y(2) < -+ < Y(n), etc.]. When we want

to indicate the sample size in the notation, we denote the order statistics by X(i.m),
1<i<m [, 1S5 <, etc.].

Khaledi and Kochar (1999) have proven recently that if Xy, Xs,..., Xm [respec-
tively, Yi,Ya, ..., Yy are independent and identically distributed (i.i.d.), then for any m
and n we have that

(3.1) X1 <st Y1 = X(iim) Sst Y(j:ny Whenever i< and m—1i>n-—j,

where <. denotes the usual stochastic order (see, for example, Shaked and Shanthikumar
(1994)). Lillo et al. (2001) have proven, among other things, that in this (i.i.d.) case, for
any m and n, we have that

(3.2) X; < Y1 = X(im) <ir Y(jin)  Whenever i< and m—i>n-—j,
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where <, denotes the likelihood ratio stochastic order (again, see, for example, Shaked
and Shanthikumar (1994)). The next two results show that the above implications hold
also for the hazard rate and the reversed hazard rate orders. The first result extends a
result of Singh and Vijayasree (1991), which is also given as Theorem 1.B.4 in Shaked
and Shanthikumar (1994).

THEOREM 3.1. Let X1, Xa,..., Xm [respectively, Y;,Ya, .. . Yq] beiid. absolutely
continuous random variables with support (Ix,ux) [respectively, (ly,uy)]. Then

X1 <we Y1 = X(iim) <hr Yiiny whenever i < Jand m—i>n—j.

PrROOF. The supports of X(;.,,) and Y(j.n) are (Ix,ux) and (Iy,uy), respectively.
From (1.2) it follows that Ix < ly and ux < uy. If ux <ly then the stated result is
obvious. Thus, let us assume that Iy < uy. Denote by f, F, F, and rx = f/F, the
density, distribution, survival, and hazard rate functions of X 1, respectively. Similarly,
denote by g, G, G, and ry = g/G, the density, distribution, survival, and hazard rate
functions of Y7, respectively. The condition X; <p, Y; is equivalent to

(33) ‘ X Tx(t) > Ty(t), t e (ly,’u,X).
Let us now compute the hazard rate function r X(s:my Of X(imy- Fort € (Ix,u x ) we have

I O et 090

rX(i;m)( ) - j;oo Fi—l(s)f(s)pm_i(s)ds
__pgEnng
i W (1 - w)midu P

- ) () ] e

_ Ltl(1;§g¥9)rdvm—an_ln¥uy

Similarly, for ¢t € (ly,uy) we have

Ty () = [/01 (l_—(%?’)_(ﬁ)j_l v"—jdv} h ry (t).

1\_Iow, since v <1 and m —1i > n — j we have v™ ™% < yn—J, Also, X <, Y; implies that
F(t) < G(t) for t € (Iy,ux). Therefore

1—w@i”<1—mmi*<1—@m14
F(t) - G(t) - G(t) ’
where the second inequality follows from i < j and the easily verified fact that (1 —

vG(t))/G(t) > 1. Combining these inequalities with (3.3) we obtain "X (iomy (8) > Ty, (2)
for t € (ly,ux); that is, X(i:m) <hr Y(jin)- O

Using Theorems 2.1 and 3.1 we obtain the following result.
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THEOREM 3.2. Let {X1,Xo,..., Xm} and {Y1,Y2,... , Y} be two sets of i.i.d. ran-
dom variables as in Theorem 3.1. Then

3.4 X1 < Y1 = Xiim) Seh Y(iin whenever i<j and m—i>n-—j.
(#:m) (4:n)

PRrOOF. Note that from X7 <4 Vi it follows that x < ly and ux < uy. Let ¢ be
some strictly decreasing continuous function defined on (Ix,uy), and denote W; = &(Xi),
i=1,2,...,m,and Z; = $(¥;), j = 1,2,...,n. I X3 <pp, Y; then, by Theorem 2.1,
Zy <pr Wi. Therefore, by Theorem 3.1,

Zj:n) <hr Wiim) whenever j<i and n—j>m—1i.

Note that ¢! is also a strictly decreasing continuous function. Using Theorem 2.1 again,
we get

¢ (Wiiim)) <en ¢ Z(n)) whenever j<iand n—j2>m—i.

Since d)—l(W(i:m)) st X(m—i+1:m)7 i = 172a~"am7 and ¢~1(Z(j:n)) st Y(n-—j—l—l:n)a
j=1,2,...,n, we thus have

Xom—istom) <rh Yinoji1m) ~ whenever j<iand n—j>m—i,
which is easily seen to be equivalent to the right hand side of (3.4). O

In the next four theorems we give a short up-to-date review of the literature on
comparisons of order statistics from non-i.i.d. samples in the hazard and the reversed
hazard rate orders. The purpose of this short review is two-fold. (a) Most of the results
mentioned in it will be used later in the section. (b) We also point out in passing proofs,
involving the reversed hazard order, that are much simpler than the original proofs in
the literature; and, using Theorem 2.2, we slightly extend some known results.

THEOREM 3.3. Let X1,Xa,...,Xm be independent (not necessarily i.i.d.) abso-
lutely continuous random variables, all with support (a, b) for some a < b. Then

(3.5) X(k:m) <hr X(k-(—l:m)a k=1,2,...,m-1,
(3.6) X(k:m) <rh X(k+1:m)> k=1,2,...,m—1.

Remarks on Theorem 3.3. Boland et al. (1994) proved (3.5) for nonnegative ran-
dom variables; however, by Theorem 2.2, the inequality (3.5) is valid under the weaker
assumptions of Theorem 3.3. The result (3.6) is Theorem 4.1 of Block et al. (1998); in
that paper it has a lengthy proof, however, using Theorem 2.1 and the ideas in the proof
of Theorem 3.2 it is seen that (3.6) is actually equivalent to (3.5).

THEOREM 3.4. Let X1,Xo,...,Xm be independent (not necessarily i.i.d.) abso-
lutely continuous random variables, all with support (a,b) for some a <b. Then -

(3'7) X(k:m) <hr X(k::m——l), k=12,...,.m— 1,
(38) X(k:m—-l) <rh X(k+1;m), k=1,2,...,m— 1.
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Remarks on Theorem 3.4. Both (3.7) and (3.8) were proved in Hu and He (2000).
They provided quite lengthy proofs to each of these. However, again, using Theorem 2.1
and the ideas in the proof of Theorem 3.2 it is seen that (3.8) is actually equivalent to
(3.7). Thus, the lengthy proof of (3.8) in Hu and He (2000) is unnecessary.

THEOREM 3.5. Let X1,Xs,..., X, be independent (not necessarily i.3.d.) abso-
lutely continuous random variables, all with support (a,b) for some a < b.
(1) If Xz <hr va 1= 1,2: cee, M — 17 then X(k:m—l) <hr X(k+1:m)) k= 172;' L)
m — 1.
(ii) Ime <in _Xi, 1= 1, 2, . .,m——l, then X(k:m) <th X(k::m—l), k= 1,2, cooym—1.

Remarks on Theorem 3.5. Boland et al. (1994) proved part (i) for nonnegative
random variables; however, by Theorem 2.2, the inequality in part (i) is valid under the
weaker assumptions of Theorem 3.5. Part (ii) is Theorem 4.2 of Block et al. (1998);
however, using once more Theorem 2.1 and the ideas in the proof of Theorem 3.2 it is
seen that part (ii) is actually equivalent to part (i).

In analogy to (3.7), one may wonder whether the condition Xi <he X in Theo-
rem 3.5(i) can be disposed of. To see that this is not the case, let X;, i = 1,2,3, be
independent exponential random variables with rates Ai =1,1=1,2,3. Then it is easy
to verify that X(2:2) is not smaller than X(3:3) in the hazard rate order. Similarly, the
condition X,,, <. X, in Theorem 3.5(ii) cannot be disposed of.

THEOREM 3.6. Let Xi,Xo,..., X, [respectively,Yl,Yz,...,Ym] be m indepen-
dent (not necessarily i.i.d.) absolutely continuous random variables, all with support (a, b)
for some a < b.

(i) If X; <p Y; for alli and j, then Xkm) <br Yiom), kK =1,2,...,m.

(i) If X; <un Y; for all i and j, then Xkmy <eh Ygim), £ =1,2,... ,m.

Remarks on Theorem 3.6. Boland and Proschan (1994) proved part (i) for non-
negative random variables; however, by Theorem 2.2, the inequality in part (i) is valid
under the weaker assumptions of Theorem 3.6. Part (ii) strengthens Corollary 3.1 of
Nanda et al. (1998). Note again that by using Theorem 2.1 and the ideas in the proof
of Theorem 3.2 it is seen that part (i) is actually equivalent to part (i).

We now proceed to derive some additional new results. To motivate the first result,
we recall that Lillo et al. (2001) have extended (3.2) as follows. Let X1, Xo,..., X,
[respectively, Y1,Ys,... ,Yy] be independent (not necessarily i.i.d.) random variables.
Then, for any m and n we have that

X; < Y; forall i,j= X(i:m) <ir Y(jin) Whenever i < j, m—i>n —J.

The next result shows that in the above, the order <q can replace the order <. Of
course, this next result also strengthens the result of Khaledi and Kochar (1999) given
as (3.1) earlier in this section.

THEOREM 3.7. Let X1,Xo,..., X [respectively, Y;,Ys,... , Yy] be independent
(not necessarily i.i.d.) absolutely continuous random variables, all with support (a,b)
for some a < b. Then for any m and n we have that

(39) X.<sY: forall i= X(izm) Sst Y(jin) wheneveri < j m—i>n ~ .
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Proor. First suppose that m < n. Then

X(i:m) <th X(m—n+j:m) (by (3'6) andi<m-—n +])
<st Yim—ntjm) (since X; <s Y; for all i)
<th Y(jin) (by (3.8) and m < n).

Since the order <,y implies the order < we obtain (3.9) when m < n.
Next suppose that m > n. Then

Xim)y <nr X@m) (by (3.7) and m 2> n)
<st Y(iin) (since X; <s Y; for all 4)
<wr Yjmy  (by (3.5) and i < j).

Since the order <y, implies the order <4 we obtain (3.9) when m > n. O

We have not been able to obtain a complete analog of (3.9) for the hazard and
the reversed hazard orders. However, some partial results in this direction are given in
the following two theorems. For example, the conclusions in the first theorem below
are not complete analogs of the conclusion in (3.9) because each of the conclusions
X(i:m) Shr Y(jin) and X(i:m) <rh Y(jin) holds for fewer choices of 4, m, j and n than in
(3.9).

THEOREM 3.8. Let X1, Xa, ..., Xm [respectively, Y1,Ya, ..., Yn] be independent (not
necessarily i.i.d.) random variables as in Theorem 3.7. Then
(3.10) X; <ne Y; forall i,j = X(im) <br Y(j:n) wheneveri<j, m2=mn,

and
(311) Xi<m Y; forall 4,5 = X(im) <rh Y(jin) whenever m—i>n—j,m<n.

PROOF. The proof uses the ideas of the proof of Theorem 3.7. In order to prove
the first statement we see that
X(i:m) <pr X(i:n) (by (37) and m > n)
<tr Y(in) (by Theorem 3.6(i))
<pr Yijmy  (by (3.5) and i < j).

The proof of the second statement is similar to the first part of the proof of Theorem 3.7,
using, respectively, (3.6), Theorem 3.6(ii), and (3.8). O

Using Theorem 3.5 we obtain the following results. We omit the proofs.

THEOREM 3.9. Let X1, Xa, ..., Xm [respectively, Y1,Ya,. .., Yn] be independent (not
necessarily i.i.d.) random variables as in Theorem 3.7. Then for all m and n we have
(3.12) X; <wr Yj <he Y1 for alli,§ = X(iim) <hr ¥Y(jm) whenever i < j, m—1i>n—j,

and
(3.13) X1 <ih Xi <in Y for all 4,7 = X(i:m) <rh Y(jin) whenever i < j, m—i>n-—J.



THE HAZARD AND REVERSED HAZARD RATE ORDERS 861

Comparing Theorems 3.8 and 3.9 it is seen that whereas the assumption in (3.12)
[respectively, (3.13)] is stronger than the assumption in (3.10) [respectively, (3.11)], the
conclusion X (;.my <nr Y{;:n) [respectively, X(i:m) <rh Y(j:n)] in (3.12) [respectively, (3.13)]
holds for more choices of 4, m, j and n than in (3.10) [respectively, (3.11)].

To end this section we mention that using Theorem 2.1, some results of Kochar and
Kirmani (1995) and of Khaledi and Kochar (1999) which compare normalized spacings
involving the hazard rate order, can be recast as new results that give comparisons
involving the reversed hazard rate order. We will not detail these results here.

4. Some other applications

In this section we describe a few further instances in which, using Theorems 2.1
and 2.2, we provide simple proofs for known results which in the literature have compli-
cated or incomplete proofs. We also derive some new results.

In Shaked and Shanthikumar ((1994), Subsection 1.B.6) some results about the
hazard rate order have been translated into results about the reversed hazard rate order.
Shaked and Shanthikumar noted the special case of Theorem 2.1 that if X < a and
Y < a as. for some finite a, then X <,,, ¥ if, and only if, a — X >y, a — Y, and they
used this equivalence as the main tool for their translations. However, they encountered
some technical difficulties in situations in which X and Y were not bounded from below
or from above. With the use of Theorem 2.1 these difficulties disappear.

As a first simple example, consider the following result which is stated in Shaked and
Shanthikumar (1994) (without an explicit proof) as Theorem 1.B.25. Using Theorem 2.1
we will give here a simple formal proof of it. In the following theorem and proof we use
the convention log0 = —oo0.

THEOREM 4.1. Let (X;,Y;),i=1,2,...,m, be independent pairs of random vari-
ables such that X; <., Y;, i =1,2,...,m. If X3,Y;,1=1,2,...,m, all have decreasing
. reversed hazard rate (that is, have logconcave distribution functions over (—o00,00)), then

m m
Do Xi<m > Vi
i=1 i=1

PrOOF. It is well known (see, for example, Theorem 1.B.6 in Shaked and
Shanthikumar (1994)) that if (Z;, W;), i = 1,2,...,m, are independent pairs of ran-
~dom variables such that Z; <,, W;, i = L2,...,m, and if Z;, W, i = 1,2,...,m, all
have increasing hazard rate (that is, have logconcave survival functions over (—00,00)),
then 3%, Zi <we 3212y Wi |
Now, since X; and Y; have logconcave distribution functions, it follows that —X; and
—Y; have logconcave survival functions. From Theorem 2.1 we have that —X; >y, Y.
Therefore, by the above result (that is, by Theorem 1.B.6 in Shaked and Shanthikumar
(1994)) we have that — 377 X; >, —>°™ Y}, and, using Theorem 2.1 again, we get
the stated inequality. 00

The transformations described in Theorems 2.1 and 2.2 can be used to derive new
results from known results, when the known results hold for random variables with spe-
cific supports. For example, using Theorem 2.2, a result which establishes a comparison
of two nonnegative random variables in the hazard rate order, can be translated into
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a similar result for two random variables with support (—oo,00), by using a strictly
increasing ¢ : (0,00) — (—00,00) (for example, ¢(t) = logt, t > 0). Similarly, a result
which compares nonnegative random variables in the hazard rate order, can be trans-
lated into a result which compares nonnegative random variables in the reversed hazard
rate order, by using a strictly decreasing ¢ : (0,00) — (0,00) (for example, o(t) = 1/t,
t > 0).

As an example of the use of the latter transformation, let us recall some results of Ma
(1999). Let X1,Xs,..., X0, A1 and A, be independent nonnegative random variables.
Define

X;
(4.1) T;; =

K;:
For each j = 1,2, Ma (1999) interpreted the Tj;’s as the lifetimes of n components

which perform under a random environment (or stress) A; which affects the scale of the
lifetimes of the components. Let

i=1,2,...,n, j=12.

Nty => Ir, (1), =12 t20,
=1

where I, ,(t) = 1 if Tj; > t, and Iz, ,(t) = O otherwise. That is, N;(t) denote the
number of components that are still functioning at time ¢ in each of the systems j = 1, 2.
Ma (1999) proved

(4.2) Ay <n Az = Ni(t) >ne No(t),  £20,
and
(4.3) Ay <pe Az = Ni(t) > No(t), 20

He provided detailed proofs for both (4.2) and (4.3). However, using Theorem 2.1 it
is seen that (4.2) and (4.3) are, in fact, equivalent statements (in fact, for the validity
of this claim we need to use, in addition to Theorem 2.1, a version of that theorem,
involving discrete random variables, which we have not stated and proved in the present
paper—such a version can be obtained by a straightforward modification of Theorem 2.1
and its proof). Thus it is sufficient to provide a detailed proof for only one of these two
statements.
Model (4.1) may be modified to the model

(4‘4) Sj,i = @in, 7= 1,2, N Y ] = 1,2,

where X1, Xa,...,Xn, ©1 and O are independent nonnegative random variables. Model
(4.4) may be more intuitive than Model (4.1) in some applications. Let here M;(t) be
the number of components that are still alive at time ¢ > 0 in system j, j = 1,2. Using
the fact that we may set ©; = AJTI, j =1,2, and that the transformation ¢ : (0,00) —
(0,00), defined by ¢(t) = 1/t, is continuous and strictly decreasing, it is seen from
Theorem 2.1 and (4.2) [respectively, (4.3)] that

@l Shr [Srh] 92 = Ml(t) <hr [Srh] MZ(t)7 t> 0.

In a similar vein, the last parts in Theorems 2, 3 and 4 of Ma (1999) need not be
proven because, by Theorem 2.1, each of those statements is equivalent to the statement
preceding it in Ma (1999).
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