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Abstract. In this paper we present the intermediate approach to investigating
asymptotic power and measuring the efficiency of nonparametric goodness-of-fit tests
for testing uniformity. Contrary to the classical Pitman approach, the intermediate
approach allows the explicit quantitative comparison of powers and calculation of
efficiencies. For standard tests, like the Cramér-von Mises test, an intermediate
approach gives conclusions consistent with qualitative results obtained using the Pit-
man approach. For other more complicated cases the Pitman approach does not
give the right picture of power behaviour. An example is the data driven Neyman
test we present in this paper. In this case the intermediate approach gives results
consistent with finite sample results. Moreover, using this setting, we prove that
the data driven Neyman test is asymptotically the most powerful and efficient under
any smooth departures from uniformity. This result shows that, contrary to classical
tests being efficient and the most powerful under one particular type of departure
from uniformity, the new test is an adaptive one.
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of-fit test, data driven test, smooth test, Schwarz rule.

1. Introduction

The basic classical approach to the comparison of tests consists of the calculation
of powers and efficiencies under contiguous alternatives. This approach works nicely for
statistics which are asymptotically normal. In this case, in fact, many approaches to
measuring the efficiency of these tests give the same results. For an explanation see
Kallenberg (1983) and Kallenberg and Ledwina (1987). In more complicated cases a
simple and explicit determination of the asymptotic power and efficiency by applying
contiguity is not feasible. The Cramér-von Mises (CvM) test for uniformity, throughly
studied by Neuhaus (1976, 1986), serves as an illustration of this. He investigated the
asymptotic power of the CvM test under a sequence of alternative densities

(1.1) pn(z) = 1+ 1" 2pa(z),

where fol a(z)dr = 0, fol a%(z)dz = 1, p > 0. The constant p represents the distance
from po(z) = 1 and a(x) the direction of the alternative (1.1). Let a denote a given
significance level and B(a,a,p) denote the asymptotic power of the a-level CvM test
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under the alternative (1.1). B(c,a,p) coincides with the tail probability of an infinite
series of weighted non-central chi-squared random variables. To evaluate this function
Neuhaus (1976) used the Héajek-Siddk (1967) approach based on a comparison with the
power of the best test for a related asymptotic testing problem. The power ((a, p) of
this best test does not depend on the direction a. The function e = e(a, a, p) defined by

(12) :B(av a, ,0) - ,3(0!, p\/é),

is taken to be asymptotic efficiency of the CvM test in the direction a. Finally, the
asymptotic local efficiency is defined as :

(1.3) e(a,a) = lirr(1) e(a, a, p).
p—

There is no closed expression for e(c, a). Also, according to the best of our knowledge, the
finite sample interpretation of this notion has not been formally discussed (cf. however
Chapter VIL.2.3. in H4jek and Sidék (1967)). For further discussion and developments of
this approach we refer to Milbrodt and Strasser (1990), Strasser (1990), Janssen (1995)
and references therein. An alternative attempt to calculate Pitman efficiencies for some
statistics with non-normal asymptotic distributions can be found in Rothe (1981). The
results of that paper are restricted to asymptotically chi-square distributed statistics
with different degrees of freedom. The resultmg efficiencies depend both on the given
level o and the power 3.

Another approach to measuring asymptotic efficiency has been proposed by Ba-
hadur. In this approach, which is known as the exact Bahadur efficiency, an alternative
is fixed while the significance level tends to 0 at an exponential rate, which is determined
by the large deviation index of the test statistic under the null hypothesis. Since explicit
expressions for this index are not available, the next step is to consider the efficiency
measure under alternatives converging to the null distribution. This approach, applied to
classical nonparametric tests, is presented clearly in Nikitin (1995). A related approach
aiming to calculate the limiting (as the significance level tends to 0) Pitman efficiency
by limiting (as the alternative approaches the hypothesis) the approximate efficiency has
been proposed by Wieand (1976). The approximate Bahadur efficiency, however, is in
itself of little value as a measure of the performance of tests, since monotone transfor-
mations of a test statistic may lead to entirely different approximate Bahadur slopes. In
this sense the exact Bahadur efficiency is superior to the approximate one. Some results,
. stating when exact and approximate Bahadur efficiencies locally coincide, can be found
in Ledwina (1987), Inglot and Ledwina (1990, 1993) among others. »

Despite of the technical complexity of the above approaches, there are statistics for
which they simply fail or give conclusions, which are in sharp contrast with finite sample
results. An example is the data-driven Neyman test we present in Section 2.

The aim of this paper is to present and develop an alternative solution to investi-
gating asymptotic power and measuring the efficiency of nonparametric test procedures.

Our main goal is to show some application orientated advantages of this alternative
approach. Namely, we aim to show that this solution yields an explicit expression for
the efficiency, is more widely applicable than classical approaches, allows an intuitive
interpretation of finite sample results and gives conclusions consistent both with those
following from standard solutions and with simulation experiments with moderate sample
sizes.
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The idea of this approach goes back to Oosterhoff (1969), Oosterhoff and van Zwet
(1972) and Kallenberg (1978, 1983) and shall be called the intermediate approach. Fur-
ther extensions can be found in Inglot and Ledwina (1996), Inglot (1999), Inglot et al.
(19984, 2000). Its essence lies in calculating the asymptotic power and efficiencies of a
test in situations where the significance level tends to 0 more slowly than in the Bahadur
approach and simultaneously the alternative tends to the null distribution more slowly
than in the Pitman case. To be more specific, we first give some general comments on
the setting and then briefly discuss our results. Throughout the paper we resign from
generality to the benefit of technical simplicity. We restrict attention to sequences of
alternative densities of the form

(1.4) po(z) =1+n"%pa(z), &€ (0,1/2).

The Pitman approach would correspond to £ = 1/2 while in the Bahadur approach
£ = 0. It is easily seen that the distribution of n ii.d. observations obeying (1.4) is
asymptotically orthogonal to the n-fold product of po(z) = 1 (cf. Appendix). So, perfect
discrimination between p, and pp is possible under (1.4), since n is increasing. This
seems to be a natural reflection of the fact that the information contained in the sample
is increasing in n. In this situation the natural approach of a statistician seems to be
to require that the precision of inference is also increasing in n. This is realized in the
intermediate approach by requiring that the significance level tends to 0 as n — oo while
the asymptotic power under p, is nondegenerate (staying away 0 and 1). This is the basic
difference to the Pitman approach, which is designed to protect against the possibility
of perfect discrimination between p,, and pp and then avails it allowing test comparisons
at a fixed asymptotic level and supposing asymptotic power to be nondegenerate. On
the other hand, in the Bahadur approach the alternative is fixed and any consistent test
has degenerate power. In this case only efficiency calculations are common practice.

In this paper we show the advantages of the intermediate approach, applying it to
the comparison of three nonparametric tests for testing uniformity: the CvM test, the
Neyman-Pearson test for uniformity against a nonparametric alternative p,, and some
data-driven Neyman test. The results yield interesting conclusions about the powers and
efficiencies of the three tests. They can be summarized as follows.

First of all, explicit results for the power and efficiency of Cramér-von Mises test
in comparison to the Neyman-Pearson test are obtained and shown to be fully con-
sistent with the qualitative results developed using the Pitman approach by Neuhaus
- (1976) and the Bahadur efficiency calculations of Nikitin (1995). The essence of our
approach to intermediate power comparison is examined in Subsection 3.3. The results
on the intermediate power and efficiency of the Cramér-von Mises test with respect to
the Neyman-Pearson test we obtained (cf. Theorem 3.3.(2), Remark 3.3.(2) and Re-
mark 4.(2)) clearly show that our approach is well suited to classical ideas of measuring
the efficiency of tests (cf. e.g. Hajék and Sidsk (1967), Chapter VIL.2.1., Remarks (c),
(d)). We would like to emphasize once more that the Cramér-von Mises goodness of
fit statistic is probably the simplest empirical process functional to analyse using the
Pitman approach. How complicated this approach can be for other statistics and testing
problems is seen from Milbrodt and Strasser (1990) and Stute (1997). Note also, that
exploiting the results of Inglot and Ledwina (1993) and Inglotet al. (1993), the findings
of the present paper can be extended to a large class of statistics, which are weighted
or bilinear functionals of the empirical process. A case where some nuisance parameters
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ought to be estimated can also be treated by the approach. Inglot and Ledwina (2001)
can serve as an illustration.

Parallel to results for the Cramér-von Mises test, we present results for a data driven
Neyman test. On one hand this statistic serves to illustrate that classicial approaches
to test comparison may fail. On the other hand, we show that for such statistics the
intermediate approach is a reliable remedy for this drawback of the classical approaches.
The intermediate approach to investigating a data driven Neyman test with the original
Schwarz rule incorporated has been developed in Inglot and Ledwina (1996) and Inglot
et al. (1998a) under a very general setting. Here we only use the simplified Schwarz rule
S2 and contamination alternatives (1.4). This allows us to get slightly stronger results
and to present the essence of the approach due to avoiding technicalities needed in the
general case. The results we get for the data driven test are qualitatively different to
those known for classical tests and those derived here, in particular for the Cramér-von
Mises test. Contrary to the previously mentioned tests being asymptotically efficient
and most powerful under one particular departure from uniformity, the data driven test
we consider can be declared to be an adaptive one in a very natural sense. Simply, it is
asymptotically as powerful and efficient as if the alternative were known.

The content of the paper is as follows. In Section 2 we present the data- driven
Neyman test and show that for this test classical asymptotics fail or say very little about
power behaviour for moderate sample sizes. We also give a few additional remarks on
some papers, where classical asymptotics have not appeared to be the most natural
one. Section 3 is the main part of the paper. We state limit theorems concerning
the asymptotic behaviour of the power functions of the three tests under the above

setting. Most of the auxiliary technical results we present here are conclusions from

results derived by Inglot, Kallenberg and Ledwina in recent papers. The basic results
on the shortcoming of the CvM test are new, while Theorem 3.3.(3) on the shortcoming
of data driven test is similar to results of Inglot et al. (1998a).

In Section 4 we present the notion of intermediate efficiency using a formulation of
Inglot (1999) and use it to compare the three tests. Again efficiency calculations for the
CvM test are new, while the data driven test is considered for comparison. Some proofs
are given in the Appendix.

For completeness, note that in Inglot et al. (2000) the problem of the relation of
vanishing shortcoming and asymptotic relative efficiency is studied in general. General
results are illustrated by an application to the CvM test among others.

2. Data-driven test and classical approaches

The data-driven test we discuss here is Neyman’s smooth test with the number of
components determined by the simplified Schwarz rule. Tests of this kind were introduced
and investigated in Inglot et al. (1997), Kallenberg and Ledwina (1997a, 1997b) and
Inglot (1999). For simplicity of presentation, we shall consider here a particular member
of the class of such tests. To define the test statistic we introduce some notation.

Let Xi,...,X, be independent and identically distributed random variables with
values in [0,1]. Let ®;,®,,... be normalized Legendre polynomials on [0,1]. For some
fixed ¢ set my, = [cn!/®], where [z] denotes the integer part of z. Define

(2.1) $2 = min{l < k < m, : n|®f — klogn > n|®|} — jlogn, j=1,...,m,},
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where

22) B =(By,8,..), 12 (X;) and |82 =Y (@)
=1 =1

3

52 is the simplified Schwarz model selection rule. The original Schwarz rule shall be
presented and related to S2 later in this section.
The data-driven test rejects uniformity for large values of

2
(2.3) Nsz = n|®|%, = Z{ —1/22@ } .

j=1

In Inglot (2000) it was shown that for any = > 0

— lim —logPo(ng > zv/n) =0,
TT—00 711

where Fy stands for the uniform distribution on [0,1]. This means that large deviation
index degenerates to 0 and the Bahadur approach does not apply to this statistic.

As to the Pitman approach, a similar argument to the proof of Theorem 3.2 in
Kallenberg and Ledwina (1995) yields
(2.4) nlg:%o Py(S2=1)=1.
An immediate consequence of (2.4) is that under any sequence {P,} of alternatives con-
tiguous to Py lim, oo P,(52 = 1) = 1, as well. So, on one hand, (2.4) implies that
the asymptotic null distribution of Ngg is central X?1)~ On the other hand, from the
above, for the contamination family (1.1) the asymptotic power of Ng, takes the form
PHZ+p fol ®:1(z)a(z)dz}? > cy), where Z ~ N(0,1) and ¢, is the asymptotic critical
value. This shows that the Pitman efficiency can be considered only for alternatives for
which fo ®1(z)p(x)dz # 0. Also, only such alternatives can be detected with proba-
bility greater than the significance level a. Since CvM test has local power under any
alternative (1.1) strictly greater than a and for any alternative sequence (1.1) its local
efficiency is well defined, it may appear from the above that the CvM will be more ef-
fective than Ng, in detecting alternatives that are close to the null. The same opinion
could be formulated for the data-driven Neyman’s test with the original Schwarz rule,
which was introduced in Ledwina (1994) and investigated in Kallenberg and Ledwina
(1995), Inglot and Ledwina (1996) and Inglot et al. (1998a). The original Schwarz rule
* is defined as follows

k .
S:min{lgkgmn:[Ik——§logn2£j—%logn,jzl,...,mn},
where

Ly = sup lochk(B) exp ZH i®5(x;) p s

J=1
while the related data-driven test is given by

S n 2
(2.5) Ng =n|®|3 =" {n~1/2 qu(xi)} :



INTERMEDIATE APPROACH 815

Table 1. Empirical powers of Ng and Ngy under the alternative pn(z) = 14+n~1/2p®5(z) and
related empirical distributions of S and S2.

P n [lpn — poll2 | llpn — pollec | power test | power distribution
of CvM 1 2 3
.2 50 .028 .063 .05 Ng .05 S .93 { .05 | .01
Nga .06 S2 ] .93 .05 | .01
500 .009 .020 .05 Ng .06 S 98 | .02 700
Nga | .06 | S2 | .98 | .02 | .00
.5 50 071 .158 .06 Ng 07 S 92 1 .06 | .01
Ngs .08 521 .91 .07 | .01
500 .022 .050 .06 Ng .06 S .98 [ .02 ¢ .00
Ngo .06 52| .97 | .03 | .00
1 50 141 316 .08 Ng .14 N .84 | .14 ] .02
Ngs | .16 | S2 | 81| .15 | .02
500 .045 .100 .07 Ng 11 S 94 | .06 | .00
_ Ngs | 11 | s2| .93 ]| .07 | .00
2 50 .283 .632 .15 Ng 41 S 53 | 43 | .03
Ngo .44 S2 | 49 | 45 | .05
500 .089 .200 .13 Ng .33 S 70 | .30 | .00
Ngo2 .35 S2 ) .68 | .31 | .01
3 50 424 .949 .33 Ng .75 S 19 | 75 | .04
Ngg | 77 | S2 | 16 | 75 | 07
500 134 .300 .31 Ng .69 S 32 66 | .01
Ngo | .11 | s2| .31 | 68 | .01

52 arises as an approximation of the maximal log-likelihood, ‘which is in fact the
log-likelihood ratio statistic and which is locally equivalent to 3n|®|Z. In other words,
n|®|2 is the score statistic for testing # = 0 in the exponential family defining Ly.

However, in our opinion, to be decisive the above pessimistic “first order” asymp-

totic results should be compared with the existing theoretical results of Neuhaus (1976)

showing how CvM distributes its power in the space of all alternatives on one hand and

- with the empirical rates of the convergence of S and S2 to 1 and the respective powers
of Ng and Ngj to « on the other hand.

As an illustration of the gap between the asymptotics and typical empirical results
we now present some simulation results.

Table 1 presents the empirical powers of Ng and Ng» under alternative (1.1) with
a(z) = @5(z) ie. under p,(z) = 1+ n~2pdy(z) with n = 50 and n = 500. We
took msp = msgo = 10. In the case of such “low dimensional models” large m,,’s are
not necessary, since starting from relatively small m,, the power is practically constant.
For evidence see Kallenberg and Ledwina (1997a). According to the Pitman approach,
the asymptotic powers of Ngo and Ng under such p,(z) are «, while S2 and S should
concentrate on 1 as n becomes large. We took o = .05. The simulated empirical
distributions of S2 and S are also presented. We restrict attention to events {S2 = k},
{S = k} with £ = 1,2,3. For each n and p we also give Ly and supremum distances
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Fig. 1. Empirical powers of five tests under alternatives gl-g4 and n = 50, 100.

between p, and pg, which we denote by || - |2 and || - ||oo , Tespectively. For comparison
empirical powers of CvM test are also reported. The number of Monte Carlo runs is
N = 10000.

It is seen that only in the cases p = .2 and p = .5 one gets results not far from the
expected ones. For larger p’s the rate of convergence of the powers of Ng and Ng, to o
is so slow that the limiting result gives a very poor approximation of the finite sample
situation. It is also evident that, in contrast to the asymptotic results, the CvM test is
much worse than data driven tests when the sample size is finite.

One can expect that for more complicated alternatives (i.e. those having several
terms in their Fourier expansion in the system ®;,®,,...) the situation is even more
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transparent. Figure 1 presents the simulated powers of Ng; and Ng under the following
alternatives:

g1(z) =1+ 9cos(frz), [f=12,...,9,

g2(z) =1+dcos(dnz), d=.1,2,...,.9,

g3(z) = ca(0) exp{01®1(z) + .2®2(z) — .3P3(z) — 4Py(z)}, b =-3,...,.3,
ga(z) = B(p,q) — the beta distribution density, p = g € (.5,2.8)

and n = 50,100. As in Table 1, we took msg = myge = 10, @ = .05 and N = 10000.
As an illustration consider go(z) with d = .9. Since [ ®;(z)g2(z)dz = 0, the predicted
(local) power under Pitman asymptotics would be .05, while S should concentrate on 1.
However, under n = 50 the simulated power is .85, S = 1 only in 15% of the runs, while
S = 6 in 57% of cases. The reason is that [ ®;(z)ge(z)dz, j = 4,6 and 2, take Monte
Carlo values .50, .35 and .15, respectively. Obviously, for much smaller d’s the situation
is not so drastic.

For comparison purposes empirical powers of the Cramér-von Mises (CvM) and the
Kolmogorov- Smirnov (KS) test as well as the Neyman-Pearson (NP) test for po against
gi, 1 = 1,2,3,4, are also given. For simplicity we write NS and NS2 for Ng and Ng2,
respectively. It is seen that in most cases NS2 and NS are more sensitive than the CvM
and KS tests and adapt well to the data at hand as the sample size increases. It is seen
that, as a rule, as n increases the empirical powers of NS, NS2 and NP become closer
to each other. We prove in Section 3 that the intermediate approach predicts such a
tendency. Moreover, looking at Fig. 1, one has the impression that in most cases the
empirical power function of CvM increases more slowly in n than the power functions of
NS and NS2. The intermediate approach also predicts this tendency.

We close this informal section with a few remarks on other approaches to test
comparison in a nonstandard setting. Obviously we are not the first ones faced with the
problem of the necessity of using alternatives not converging at a parametric rate n~1/2,
Some literature in the area is discussed in Section 2 of Eubank and LaRiccia (1992), for
example. A typical and very well known example is the test statistic introduced by Bickel
and Rosenblatt (1973). However this case is relatively easy, since asymptotic normality
holds under both the null hypothesis and the sequence of alternatives. So, the classical
Pitman approach can be extended to cover this case as in Bickel and Rosenblatt (1973)
and further discussed in Ghosh and Huang (1991). A similar group of results related to
-multinomial goodness of fit tests, which is not mentioned in Eubank and LaRiccia (1992),
is developed and throughly reviewed in Cressie and Read (1984), Sections 2.3 and 3.2.
Further extensions in this direction can be found in Inglot et al. (1990a). Parallel results
for Neyman test statistics are given in Inglot et al. (1990b). A different problem has
been solved by Eubank and LaRiccia (1992), where a rather complicated approach is
developed to roughly compare CvM statistics with an asymptotically normal one. It is
worthy to observe that in all the above mentioned situations the intermediate approach
could be applied. As an illustration of the case of asymptotically normal statistics see
Corollary 2.2 and Examples 2.1 and 2.2 in Kallenberg (1983). The situation considered
by Eubank and LaRiccia (1992) could be treated similarly as Ngo and CvM in the present
paper (cf. also Theorem 7.23 in Inglot and Ledwina (1996)).

In light of the existing literature we briefly discussed here and in Section 1, it seems
that the intermediate approach promises to be the most widely applicable.
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3. Asymptotic power functions under a contamination model

3.1 Neyman-Pearson test
Throughout this paper we consider the contamination model

(3.1) pr(z) =1+n"%pa(z), €£€(0,1/2).
Define

A= {a: [0,1] = R: sgp la(z)| < oo,/o1 a(z)dz = O,/O1 a®(z)dz = 1}.

We shall restrict attention to sequences of alternative densities {p,} obeying (3.1), which
belong to the following set

(3.2) P = {{pn} : Pn(z) = 1 +n"%pa(z), £ €(0,1/2), p>0, a € A}

X1,...,Xn are independent and identically distributed random variables obeying the
law under consideration.

A standardized version of the logarithm of the Neyman-Pearson test statistic for
testing po(x) = 1 against p,(z) has the form

(3.3) V,f,lgn Vo) Z{log Pr(Xi) — eon},

where ) .
eon = / log pp(z)dz, 'ugn = / log2 Pr(x)dx
0 0

Note that v3,/ Varlogpn(X1) — 1 (cf. Lemma 5.4 in_Inglot and Ledwina (1996)). For
simplicity we shall write

v = V“,?
Additionally define
1
(3.4) bV (py) = vy /2 { /0 pn(z)log pr(x)dz — eOn}.

For further consideration and to facilitate refering to results contained in other papers
~we quote below the following chain of relations which, under (3.1) and (3.2), follow from
Proposition 2.10 in Inglot (1999),

(3.5) {8 (9,)}2 = 2Dy || po) + O(H®(Dn, 10))
= |lpn = poll5 + O(H®(pn, po)) = 4H?*(ps, po) + O(H*(pn, po)),

where .
D(pn | po)=/0 pn(z) log pu(z)dz

is the Kullback-Leibler distance,

lpn — polla = {/Ol(pn(w) - 1)2dx}1/2
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is the Lo distance,
1 1/2
Honm) = { [ (/5a@) - P}

is the Hellinger distance.
In particular, the above relations imply that for {p,} € P

(3.6) b (pa) =n"%p+ O(n™%).

The asymptotic behaviour of the power function of the Neyman-Pearson test re-
jecting uniformity for large values of VY is determined by the following two results.

THEOREM 3.1.(1) For any {p,} € P
(3.7) lim P,(V(V —nl260(p,) < 2) = ®(z), =z€R,

where ®(x) is the standard normal distribution function and P, the distribution with
density py,.

Theorem 3.1.(1) is a special case of Proposition 6.6 in Inglot and Ledwina (1996).

THEOREM 3.2.(1) Set 02 = Varp, VY. For any {pn} € P and sequence {z,} of
positive numbers such that ,, — 0 and nx2 — oo, it holds that

2
(3.8) Po(o7 V) > iz, = exp {~% +O(nzl) + O(logn:ti)} :
In particular, if T, = O(n™¢) and &€ € (1/4,1/2), then (3.8) takes the form

2
(9) POV > i) = e { =752 + o276 ).

Theorem 3.2.(1) follows from Corollary 2.22 of Book (1976) (cf. also Jureckovd et
al. (1988) or Inglot et al. (1998a)).

Let 1(B) be the indicator of the set B. For given {p,} € P and a sequence {k;(n)}
of real numbers define the critical region

(3.10) ) = (VI >k (n) + vnbM (p,)}
with related significance level

(3.11) o) = Py(cV).
Moreover, denote

A
(3.12) v, 2 = 1ed),

7,Pn 0
the nonrandomized test based on V,ﬁl) and

(3.13) ﬁ(l)(ag),pn) = EPHVT(LI()I(U = Pn(cr(zl))
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its power under p,,.
By Theorem 3.1(1), for {p,} € P, it holds that

(3.14) BN (M, pp) = (1 = B(k1(n))) 0 as n— oo,

while, by Theorem 3.2(1), under the additional assumption that
limsup, ., n/2H4[ED (n)] < p,

(3.15) ol = Py(CV) = exp{—(k1(n) + vnbD (p,))?/2 + O(n* %) + O(log n)}.

So, if k1(n) is bounded (3.14) states that the test V( )m has asymptotic power staying

away 0 and 1, while (3.15) implies that, contrary to the Pitman case (£ = 1/2), in the
intermediate case ({¢ € (0,1/2)) the probablhty of type I error tends to 0 (at a rate

related to the rate of convergence of p, to pp).
The next section contains analogous results for the Cramér-von Mises test. Re-

lated considerations of the difference in powers of y @) and the CvM test are given in
0,0,

Subsection 3.3.

3.2 The Cramér-von Mises test
Denoting by F,, the empirical distribution function of X;,...,X,, the CvM test
statistic for uniformity is defined by

1
(3.16) Ve —q / (Fa(z) — 2)2da.
4]

To state some counterparts of Theorems 3.1(1) and 3.2(1) for Vi get

. T 1
(3.17) Alz) = /0 at)dt, [AZ = /0 A2(z)dz
and
1 1
o2 = min(s,t) — s .
(3.18) /0 /0 (min(s, £) — st) A(s) A(t)dsdt

THEOREM 3.1.(2) For any {p,} € P it holds that

(2 1-2¢
: —n'~%p?| Al
(3.19) lim P, ( = SniTEE pg 2<z|=&(), =zeR

n—00

Theorem 3.1.(2) can be deduced from Theorem 5.1 in Inglot et al. (2000). The
lemma is proved by strong approximation techniques in a similar way to Theorem 3.1 in
Inglot et al. (1993), e.g. Details are given in Inglot et al. (1998b).

The proof of the next theorem follows from inequalities derived in Inglot and Led-
wina (1990) (cf. also Theorem 2.1 and Proposition 2.3 in Inglot et al. (1993)). The
number 7 appears due to the tail behaviour of V¥ (see (3.20)) and can be deduced
from Nikitin (1995), e
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THEOREM 3.2.(2) Ifz, — 0 and nz2 — oo, then for every 2 < vy < 3 it holds that

1
(3.20) Py(V D > nz?) = exp {—éwznwi + O(nz}) + O(log nm%)} .

By analogy with (3.10)-(3.13), for a given &2 € R, set
P = (VD 2 n! X2 Al + 20124 poks},
2 A L2
o = R(C) VY o =V = 1CP),
A (0P, pr) = Ep, V) o) = Po(CD).

Then, by Theorem 3.1.(2), for {p,} € P
(3.21) B (@), pn) = 1~ &(ks).

So, (3.21) states that the test V( )(2) has asymptotic power staying away from 0 and 1.
Theorem 3.2.(2) implies that for f € (0,1/2) and any v € (2,3)

(3.22) &@ = Py(Cc?)
1
= exp {—§n1 %2 p?|| Al2 — nt/ 2472 poky + O(n!778) + O(log n)} .

3.3 The shortcoming between powers of the Neyman-Pearson and the Cramér-von Mises
tests
Consider o ) and ko as in (3.22), the related test y@ » and its power el
n)pfnan

@ pn)-

The question is: Under which {p,}’s, or equivalently, under which £’s and a’s, does
there exist k;(n) = k2 + o(1), such that

(3.23) Po(V) > ky(n) + vnb (pn)) = oP) ?

(am

Obviously, the existence of such {k;(n)} is equivalent to the existence of y (2 With
,Pn,0n

power ﬂ(l)(a ,Pn)-
For the two tests V' z)z o and V( ) o set R(Q)(a(z) Pn) = (1)(a(2) p) —

ﬂ(2)(a(2),pn) The quantity R( )(a(z) pn) is called the shortcoming of V(z) L@ In

,Pn,Cn

view of Theorems 3.1.(2) and 3.2.(2), the question posed above is equivalent to the
following one: Under which p,’s (or equivalently, under which £’s and a’s) does

(3.24) lim RP(a?,pa) =07

Property (3.24) is called vanishing shortcoming. Vanishing shortcoming means that
both tests (the Neyman-Pearson and Cramér-von Mises) have the same asymptotic power
and the same probability of type I error.

The conditions for (3.24) are given in Theorem 3.3.(2)(i), below. For a better
understanding of the result note that if {p,} € P, then ||Als < 7! and 0 < 72
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(cf. Lemma 4.(2)). Moreover, in these inequalities equality holds if and only if a(z) =
V2 cos(mz). Some more comments are given in Remark 3.3.(2).

THEOREM 3.3.(2) (i) Suppose {p,} € P, ¢ € (1/4,1/2) and o2 is given by (3.22).
Then
lim RP (P, p,) =0,

if and only if a(z) = +2cos(nz). Moreover, for any other function a,

lim, o ﬂ(l)(ag),pn) =1 and RP (af),pn) does not converge to 0.
(i) Consider the following “shifted” alternatives from P

(3.25) PP (z) =1+n"¢dpa(z), d>1,

and set

(3.26) oD (d) = By (VP > n'=%d2p%|| AlJ3 + 2n1/2~4dpoks,),
D = (n[lA]|2)~".

Then it holds that
(ii-a) If d = D then

lim {5M (2P (d), pn) — B (2P (d),p{D)} = B(kn) — B(sk2),
where k = wo||A|l;! = n%do.
(ii-b) Ifd < D then
lim BN (aP(d),ps) =1, while lim 8P (P (d),p®) =1 - B(k,).

n—oo
(i-c) If d > D then
lim SO(afP(d),pa) =0, while lim P (afP(d),p?) =1 - B(k»).
n—oo T

(iii) There exists a shift depending on n, say d,, given by d, = D + ¢,,, where D is
defined above and €, = n~Y2+¢Dky(1 — k) /p, such that

Jim {89(af?(dn), pn) = B2 (0P (dn), p{)} = 0.

A proof of this theorem is given in the Appendix.

Remark 3.3.(2) Part (i) of Theorem 3.3.(2) is a counterpart of (2.12) of Theorem
2.2 of Neuhaus (1976). Parts (ii-a)-(ii-c) show how to shift the alternative p, to get
a given difference in the asymptotic powers of Neyman-Pearson test for py against p,
and the CvM test under p%d). Point (iii) shows that shifting an alternative by d,, yields
asymptotically the same (local) power for CvM and NP. For a simple relation of this
result to the intermediate efficiency result see Remark 4.(2).

We illustrate part (ii-a) of Theorem 3.3.(2) by a small simulation study. We consider
here the alternatives p(z) = 14 pcos(2nz) and p((z) = 1 + dpcos(2nz). By (ii-a),
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Table 2. Empirical shortcoming between NP and CvM under alternatives p(z) = 1+ p cos(2nz)
and p(¥) = 1+ dpcos(2rz).

n=100, a=.05,d=2

NP CvM shortcoming

P B(ap) dp BDp®) ke D .
45 .9329 .90 .9992 -3.16 -—.0663 —.0560
.40 8761 .80 9866 —-2.22 —.1106  —.12056
.35 7732 .70 .9081 —-1.33 ~.1349 -.1612
.30 6451 .60 7467 —.66 -.1016 —.1166
25 .5064 .50 .5026 -.01 0038 —.0013
.20 3635 40 .2923 .55 0712 .1000
15 .2442 .30 .1581 1.00 .0861 .1500

Table 3. Empirical powers of NP and CvM under p(z) = 1 + pcos(2rz) and sample sizes n
and nE~1, respectively.

a = .05 a=.01
NP CvM NP CvM
n =50 n = 200 n = 100 n = 400
p BYp) BP(ap) p BY(a,p) BP(a,p)
.90 .9999 1.0000 .70 .9980 1.0000
.80 .9987 1.0000 .60 9757 .9999
.70 9829 .9998 .55 9415 9982
.60 .9323 .9888 .50 8776 .9851
.55 .8860 9632 .45 .7833 .9280
.50 8151 .9030 40 .6621 .7838
45 7371 L7971 .35 5115 5451
40 6387 6434 .30 3672 3183
.35 .5384 4727 .25 2475 1458
.30 .4307 .3228 .20 1468 0665
.25 .3305 .2065 .15 .0820 .0334
.20 .2477 .1339 .10 .0404 .0190
.15 .1762 .0898
.10 1138 .0648
.05 0711 .0506

(3.26), (4.18) and (4.19) we get d = D = 2 and k£ = 1/2. In Table 2 we use the
following notation. ﬁ(l)(a,p) is the simulated power under p of the NP test at the
level . Similarly, 3 (o, p9) is the simulated power of the CvM test under p(® with
d=D =2.

So, from (ii-a) one could expect B = BV (a,p) — fP(a,p?) ~ Roo where

= ®(ky) — ®(rks). Obviously R can also be calculated only approx1mately This
apprommate value of Reo we denote Roo and calculate msertmg ko = ko into the above
formula , where k, is such that 3® (o, p9) =1 - <I>(k2). A comparison of R%) with
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R, shows that we get very similar results, as long as the alternative is not too close
to the null hypothesis. For alternatives close to the null hypothesis power functions are
rather flat and this causes bigger errors. Table 2 exemplifies the typical power behaviour
we observed in a more extensive simulation study we do not present here. Obviously,
one can also investigate Ry analytically. E.g. in the case of a(z) = v/2cos(2nz) we
have k = 1/2 and R, attains its extremal values at ks = 41.360 with respective values
R, = +0.1614.

Point (iii) of Theorem 3.3.(2) supplements (ii-a) by showing that slightly greater
than D shift dn, d, — D as n — oo, guarantees that asymptotically the NP and
CvM tests have the same power. This result can be equivalently expressed in terms of
intermediate efficiency of CvM to NP. This is detaily described in Remark 4.(2). The
remark states that the efficiency, say £, equals to D=2, D=2 < 1. It means that we need
approximately £7! times more observations to ensure that the CvM test will achieve
the same power as the NP test. Table 3 illustrates how this asymptotic result works for
finite samples. For the alternative p(x) = 1 + pcos(27z), we consider, we have D = 2
and £ =1/4.

3.4 Data-driven Neyman test
To formulate counterparts of Theorems 3.1.(1) and 3.2.(1) for Ngo, we shall first
introduce some notation and make some comments. Set

(3.27) V.3 = Ng,

and )

(3.28) a = (ay, o, . . .)  with a5 = / a(z)@a(m)da:
0

Recall that m, = [cn!/®] and |&|n,, = {327 a2}/2. To get the limiting distribution
of V¥ under Pn, we shall apply Theorem 4.2 of Inglot (1999). To this end, we have to
ensure that {p,} from P belongs to Pj,, (or equivalently satisfies (3.5), (4.1) and (4.2)
in the notation of that paper). Now, (4.1) and (4.2) will be satisfied, if £ € (1/8,3/8),
but (3.5) is trivially satisfied as a € L»[0,1] (see Remark 3.1 and Example 4.4 in Inglot
(1999)). We shall also use Theorem 4.2 of Inglot (1999) in the more restricted case,
£ € (5/16,3/8) and a € W}, where W} is the Sobolev space of absolutely continuous
functions, whose derivatives belong to L[0, 1]. Then by (7.4) of Barron and Sheu (1991)
- weget 1—a|2, = O(m,?) = O(n~1/4). This allows us to replace the centering constant
n!=%p?(a|2,  in Theorem 3.1.(3)(i) by n!~%p? (see (i) below).

THEOREM 3.1.(3) (i) Suppose that {p,} € P and ¢ € (1/8,3/8). Then

V,§3) _ n1‘25p2|d|2
UL =d .
( i, (&), ek

lim P,

n—+00

(i) If {pn} € P is such that a € W} and & € (5/16,3/8), then

(3) 1-2¢ .2
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The following theorem can be obtained along the same line of argument as Theorem
4.3 in Inglot et al. (1998a). As above, we take m,, = [cn!/®] and w = 1/2 in the proof.

THEOREM 3.2.(3) Let {z,} satisfy z, — 0, nz2 — oo and mpz, — 0. Then

1 1
PO(V,E3) > nmi) < exp {——énxi(l — 1) + 3Mn log(en:ci/Q) + 0(1)} ,

where 0 < 1, < Cmy, max{zy,, (Mmyn~logn)'/2} for some constant C > 0. In particu-
lar, for {z,} such that nY/8z, — 0 and n38z, — oo we have

1
Po(V®) > nz2) < exp {—57193% + O(n%®z3) + O(n'/® logn)} .

As in previous cases, for a fixed ks € R set

€O = (V9 > '~ 4 /24 pks),

(3.29) ol®) = py(Cc®)),
(3 L, (3)
Vn,pn,aﬁf) - Vn,aif‘” = 1C7)

B3 (0@, p,) = EPﬂVS()xﬁ?) — P,(C®).

3.5 Shortcoming between powers of the Neyman-Pearson and the data- driven Neyman
tests
Consider oY) as in (3.29) and set

RP (), pn) = BV (0, ) — 8D (), pn).
THEOREM 3.3.(3) Suppose {pn} € P, &£ € (5/16,3/8) and a € W}. Then
nl—l—»r{olo R’Ezs) (a1(1,3)>pn) =0.

The proof of this theorem is based on Theorem 3.1.(3)(ii) and Theorem 3.2.(3) with
2 — n=2%p2 4 9n~1/2-{pks and is given in the Appendix.

Ty =

Remark 3.3.(3) Theorem 3.3.(3) shows that Vi) has qualitatively different prop-
erties to V2. Vanishing shortcoming takes place for any smooth (a € W) departure
from pg.

4. Intermediate efficiency

This section deals with the comparison of V,El), V,$2) and V,§3) using the notion of
intermediate efficiency. We shall start with a definition of this notion and a basic theorem
allowing to calculate it. Both the definition and theorem are stated in the framework
of Inglot (1999). On the other hand, the statement is adopted to the framework of the
present paper. To ensure maximal precision when defining the notion, we shall use new
notation. The test statistics shall be denoted by T,(f;z,k, while related tests by ’Z;(,?,k,a.
Then the theorem is formulated for T,(Lfg,n. Subsections 4.2 and 4.3 shall be devoted to

the calculation of the efficiencies of V,£2) and Vf’) with respect to VTSI).
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4.1 The notion of efficiency and main theorem

When defining intermediate efficiency, we shall consider a general sequence {p,} of
alternative densities to pp. Later on we shall restrict attention to some contamination
models.

Assume we have a sequence {p,} of densities on [0,1] satisfying

(4.1) lim H(pn,po) =0 and lim nH?(pn, po) = oo.
n—0o0 TE— 00

Let T,(sz)gk, i = 1,2, be two test statistics for Hy : p(z) = po(z) against Hy : p(z) =
pr(z) based on a sample of size n. Moreover, let ’];(fgk,a, i = 1,2, be two tests at
significance level « rejecting Hy for large values of T,&f},k. Denote by \/ﬁtﬁf ,)p,ﬁa, i=1,2,
the respective critical values corresponding to level o.. We have

42) P(T), 2 vntd), ) <a and  Po(T{), >d)>a forall d<atl, ,.

TPk Pk
Let {an} be a sequence of significance levels such that
(4.3) lim ap = lim n"'loga, =0
n—oo n—00
and

(44)  0<liminf Po(TZ) > vat@) ) <limsup Po(T3) > vat® | )< 1.

,Pn,0n ,Pn,0n
T—00
Set

Npaypom (r,{pn}) = Nreyra (0, {pn}, {an})
=inf{N : Po(T ), ,. > VN + ktyy) ) > Po(T3) > atl) ) for all k > 0}.

N4k, pn,an TPnQn

DEFINITION. Suppose {p,} satisfies (4.1) and there exists {a,} satisfying (4.2),
(4.3) and (4.4) with p; = p,. Assume

(45) lim NT(2)T(1)(TI,, {pn})

n—00 n

= epE@)ypm ({pn})

and this limit does not depend on a particular choice of {a;, }. Then we shall say that the
asymptotic intermediate efficiency of {T,S?,Zn} with respect to {Té}gn} under {p,} exists

and equals ep@ra ({Pn}).

As said before, for simplicity of presentation we introduce here the approach for a
contamination model and do comparisons of V7§2) and V,f?’) with respect to V,fl). So Vél)
shall play the role of T,g};),n in the above approach. Before stating the theorem providing
tools to compare V,gi), 1= 2,3, with V,El) we first introduce the auxiliary contamination

family and list some properties of V,Sl), which are needed for the comparison.
Set

(4.6) Pe = {{pn} : pn(r) =1+ 0a(z), a € A, 0, — 0, nb2 — oo}.

Obviously, we have P C P, and for {p,} € P, the condition (4.1) holds. Moreover, for
{pn} € P, (3.5) implies that the function b(1)(-) defined in (3.4) satisfies

(4.7) b (pn) = 2H (pn, po) + O(H?(pr,po)) = O + O(62).



INTERMEDIATE APPROACH 827

By Theorems 5.3 and 5.8 of Inglot and Ledwina (1996) it follows that for any
{pn} € P

o

— 1

Vb (py,)
2

. 1 1
(4.9) — nh—rnéo ?—w—%logPo(Vn(l) > zpvn) =V = 5 for any z, — 0, nz, — oo.

n—o0

(4.8) lim P, ( < e) =1 foreach €>0,

By Remark 3.3 of Inglot and Ledwina (1996), relations (4.7) and (4.9) imply that
the expression

(4.10) OO (po))? = 262+ 0(62)

is the intermediate slope of Vél).

The following theorem is a special case of Theorem 2.7 in Inglot (1999) (cf. also
Lemma 3.2 in Inglot and Ledwina (1996)). We would like to emphasize that the {p,}
appearing there are chosen from P only (cf. also Remark 4.1).

THEOREM 4.1. Suppose {T,g?,))n} is a sequence of test statistics for testing po against
Pn. Let {p,} € P and € € (0,1/2). Assume that
(i) there exists a sequence {b'®(p,)}, such that for each € > 0

lim P, ( < e) =1,
-0

(ii) there exists a constant @ and a bounded sequence {q,}, such that for any
T, = 0(qn), nT2 — 00

-1

. 1 2 2
= Jim > log (T, 2 anv/) = o,
(iii) there erists a sequence {ay} satisfying (4.2), (4.3) and (4.4), such that log o, =

o(ngs),
(iv) the following limit exists

& {b@)(pn)}2 = E({pn})-

=00 gﬁ b(l)(pn)
Then the asymptotic intermediate efficiency epmrm ({Pn}) of {Tr(fz),n} with respect to

{T,g},),n} under {pn} exists and equals E({pn}).

Remark 4.1. Note that the intermediate efficiency notion is not symmetric with
respect to the two test statistics. In view of this we need stronger assumptions for
{T,(l};n} than for {T,E?,),n}. In particular, we require (4.8) and (4.9) for T{%).. for a rich
enough family of sequences. Checking (4.8) and (4.9) for an actual sequence {p,} € P
is far from being sufficient. The minimal assumption we have to impose is so- called
renumerability (cf. Definition 2.6 in Inglot (1999)). Here we take a family P, which is
obviously renumerable.
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4.2 The intermediate efficiency of Vn(z) with respect to V,fl) .

Let {p,} € P. We shall check that for T\, = {Vi2}1/2 conditions (i)~(iv) of
Theorem 4.1 are fulfilled.

Taking

(4.11) 5@ (p,) = n~p||Al2,

condition (i) becomes

{Vn@)}l/z
4.12 P, —_— 1| >
1) " ( W2=Ep[ A, | = °
Vi) — 1% 2] A2 1/2-¢ €+ 2¢ 2
- Pn ( 2”1/2 E,OO' > 2% “A“2
Vi) =t %p2 AR _ 1ppeg €
n /2-65 2%
+Fn ( 2n1/2~€pg =n % P”A”z

By (3.19) of Theorem 3.1(2), this tends to 0 if € € (0,2) and condition (i) holds with

b3 (p,,) given by (4.11).
Theorem 3.2(2) implies that (ii) is satisfied with

2
(4.13) c® = %

and g, = 1.

Taking o, = . (see Subsection 3.2) and tg‘)j;,man = {n~%p?|| 4|3 + 2n"1/2-¢
poko}/?) by (3.22) and (3.21), (iii) is fulfilled with g, = 1.

By (4.6), (4.7), (4.9), (4.11) and (4.13)

1
2 =2, —2€ 2 2
e LN S Ll o TR
b(l)(pn)

n—00 1

n—oo ¢(1)
¢ 5N~ %% (1+0(1))

Therefore (iv) holds with
- (414) E({pa}) = {llA]l2}>.

By the above, for each {p.} € P the intermediate efficiency of {(V)1/2} with
respect to {Vé )} exists and

(4.15) evervw ({pa}) = E({pa}) = {7l Al2}*.

To interpret result (4.15), we shall first state the following auxiliary technical lemma.
LEMMA 4.(2) Suppose a(z) is such that fo a(z)dz =0 and fo (x)dz = 1. Set

(4.16) ne(z) = V2cos(wkz) and ck=/0 a{z)ne(z)dz
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Then A(x) has the following representation in L0, 1]

o0

1

(4.17) A@) ==Y fk’ﬁ 9 sin(rkz).

T =1
Moreover,

o_1\~G
(4.18) fAlz = ) Z %2’ R
k=1

and

:_ 1 g
(4.19) of=— I; =

Since fol a’(z)dz = 1, then ||A||2 < 772, 0% < 4, with the equalities holding if and
only if a(z) =m(z).

The proof of Lemma, 4.3 can be found in Inglot et al. (1998b).

Remark 4.(2) Relations (4.15) and (4.18) imply that the asymptotic intermediate
efficiency of {(V752))1/ 2} with respect to {V,El)} under {p,} € P is always smaller or
equal to 1. It is 1 if and only if a(z) = m(x). Moreover, for any other direction 7y,
k > 1, the efficiency is smaller and decreases monotonically as k increases. This obser-
vation provides a counterpart of Corollary 2.6 in Neuhaus (1976). However, contrary to
Neuhaus’s approach, the intermediate approach provides explicit quantitative results. In
particular, the efficiency of {(Vi{®)¥/2} with respect to {Vi{"} in the direction n; equals
1/k2%.

We also see that for {p,} € P we have £({p,}) = D~? in the notation of Theorem
3.3.(2). Looking at (iii) of this theorem, we see that “shifting” an alternative p, by
1/4/E({pn}) + €n the CvM test has the same asymptotic power as the most powerful
test. It shows that the notion £({p,}) posesses an interpretation as ratio of sample sizes
and is closely and in a traditional way related to the shift necessary to get comparable
powers of both tests.

4.3 The intermediate efficiency of V,g?’) with repect to V,E”
Similar to the case of Vi, for {pn} € P and £ € (1/8,3/8) we shall check the

" assumptions of Theorem 4.1 for T, ,(1,21),,, = {V,§3)}1/ 2. As before VTE3) is determined by
my, = [en'/8).
Taking

(4.20) b (pr) = n"*plé|m,

(4.21) P, ( > e)

V(3) — pl-2 21512 2,9
:pn( : Pl /e 12 = b,

(cf. (3.27) and what follows), we have

{V753)}1/2

NSSL NS A
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(3) _ .
+p, (V= n %Al 12— € — 2 2€pldl

Since |@|m, — 1 as n — oo, by Theorem 3.1(3), this tends to 0 for ¢ € (0,2) and
condition (i) is satified with 5@ (p,) given by (4.20).

Since Po(Vi® > na?) > Po(2 37, ®1(X;) > v/nxy,), by Proposition 7.8 in Inglot
and Ledwina (1996) and Theorem 3.2(3), if z, = o(n"'/%) and nz2 — oo then

’ 1
(4.22) — lim — log Py(V) > na?) = %

n-—00 7. n

Therefore (ii) follows with

1
(4.23) = 5

and ¢, =n~1/8,

Taking a, = o) (cf. (3.29)) and t(n?,man = {n"%p?al2, +2n"12¢pal, k3}l/?,
by (4.22), logo®) = O(n'=%) and (log oP)/n!=% 1/2. Hence (4.3) follows. Since
&€ > 1/8, then log o) = o(ngZ). Moreover, Theorem 3.1.(3) yields (4.4). Hence (iii) is
fulfilled.

By (4.6), (4.7), (4.9), (4.20) and (4.23)

D(py) A T

1 .
@ {b@)(pn) }2 57 %P Ak,
37 %p%(1+0(1))

(4.24) lim

porE—, Py 1 A2 P
Jm = lim |af,, =1.

n-=—00

By the above, for each {p,} € P with £ € (1/8,3/8), the intermediate efficiency of
{V,?)}l/2 with respect to {Vél)} exists and ey@ya ({pn}) = E{pn}) = 1 irrespective
of the direction a.
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Appendix
PrROOF OF THEOREM 3.3.(2). Let of? be given by (3.22) and £ € (1/4,1/2).

Choose -y sufficiently close to 3 that O(n'~"¢) = o(n!/2-¢). Applying Theorem 3.2.(1),
with z,, = 27| A]|261) (p,), we get

o (V49 = V) > (Gl —1) Vit o)

= exp { gt %A1+ o) |
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which is greater than o for large n. Hence it follows that there exists a unique k;(n)
such that

(A1) () > (Al = 1) VA o)

and o) = of?) = PQ(V,gl) —/nbM)(p,) > k1(n)). On the other hand, by Theorem 3.1.(1)
ﬁ(l)(ag),pﬂ) — (1 — ®(k1(n))) — 0, which together with (3.21) gives

(A2) {81, pn) — BP (@, pn) — (B(k2) — B(k1(n)))} — O
As VSI)] @ is the most powerful test, (A.2) implies k1 (n) < ko +0(1). So, we can again

apply (3.9) of Theorem 3.2.(1), taking z, = n~1/2k;(n) + b)(p,) and obtaining from
(3.6)

1
(A.3) o) = exp {*ﬁ(kl(n) +nt2M (p,))% + o(nl/2”§)}
1 1
= exp {_"‘2‘”1_2€p2 - n1/2—£pk1 (TL) — 5’{5?(7’},) -+ 0(n1/2'—£)} .

Comparing this equality to (3.22), we see that if 7||Alls = 1, i.e. if a(z) = V2 cos(rz)
(cf. (4.18)), then

282 poky = n'/? ¢ pky (n) + %k%(n) + o(n!/27¢).

Consequently k;(n) = w20ks + 0(1) as the second root of this equation does not satisfy
(A.1). Now, by (4.18) and (4.19) we see that 720 = 1 and ki(n) = k2 + o(1). Hence by

(A.2) RP ({2, p,) — 0.

If 7||Alla < 1, ie. a(z) # v2cos(wz), then comparing (A.3) to (3.22), we have
k() = (]| Alla — D)n/2~¢p(1 + o(1)) — —oo, ie. BV (D, pn) — 1 as n — co. This
proves part (i) of the theorem.

To prove (ii) we use an argument analogous to the one in the proof of (i) obtaining

1
o (d) = exp {—§n1'257r2d2p2”AH% — M2 En2dpoky + o(n1/2“5)}
and . .
o) = exp {50257 1/ 2~S () ~ G2 ) + o) ).
If d = D, then comparing the above expressions we get
1
(A4) —2—n_1/2+§k%(n, d) + pki(n,d) — kpke + o(1) =0

and consequently k;(n,d) = xks + o(1). By Theorem 3.1.(1) and (3.19) we see that

lhnn_,oo{ﬁ(l)(a,(f) (d), pn) — BP (ag) (d), p;d))} = ®(ky) — ®(xk2), which proves (ii-a).
Similar analysis in the case d < D (d > D) gives a related ki(n,d) tending to —co

(400). This yields ﬁ(l)(ag)(d), pn) — 1(0), respectively. This ends the proof of (ii).
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To prove (iii), a slight modification of the above argument is needed. Therefore we
again give some hints. First of all a counterpart of (3.26) follows from Theorem 5.1(a)
in Inglot et al. (2000). Theorem 3.2.(2), with v as before, gives us an expression for

a$,2)(dn). Applying Theorem 3.2.(1) with z, = D6 (p,), there exists k;(n,d,) >
(D=1 —1)y/nbM(p,,), such that

(A.5) a{P(dn) = Po(V = v/nb M (py) > ki(n, dn)).

Then application of Theorem 3.2.(1), with z, = 2b()(p,), allows us to infer that
ki(n,dy) < /nb(p,) for n sufficiently large. This implies that we can get an ex-
pression for (A.5) applying Theorem 3.2.(1) again with z,, = n~Y2k;(n,d,) + b®(p,).
The rest of the proof relies on comparing the two expressions for ag) (dr) and exploiting
the form of €,. This yields the equation for k;(n, dy) with solution k1 (n,d,) = ks +0(1).
Using Lemma 5.3 and Proposition 6.6 of Inglot and Ledwina (1996), we see that these
more general CLTs conclude the proof.

PRrROOF OF THEOREM 3.3.(3) Recall that {p,} € P with £ € (5/16,3/8) and

V(3) _ pl-26,2
(3) = Yo TN P
o’ =Fo ( oty k3) '

By Theorem 3.1.(3)(ii)
lim 83 (o, pn) =1 — B(ks).
n—oo
Set z2 = n~%p? + 2012 € pky = n=%p?(1 + o(1)). Since £ > 5/16 and £ < 3/8, we
have n%/823 = 0(n!/2-¢) and n'/8logn = o(n'/2-¢). By Theorem 3.2.(3) we get
(A.6)
o® < exp {—%nxi + o(n1/2_5)} = exp {—%nl_%pz —nl/2=¢py + o(n1/2"5)} .

Observe now that if we consider ;") and z, = 16 (p,) = tn~¢p + O(n~%) (cf.
(3.6)), then by (3.9) of Theorem 3.2.(1), since £ > 1/4

(A7) Po (Vrfl) > %\/ﬁb(l)(m)> = exp {—énl“%pz + o(n1/2‘5)} .

Comparing (5.6) and (5.7), we see that there exists ki(n) > —31+/nb)(p,) such that
oY = RV = y/abD (pa) 2 k(). By (3.14) we get SO(af?, pa) — (1B (k1(n))) —
0. Hence, for sufficiently large n, k1(n) < k3 + o(1), since otherwise one would have
ﬁ(l)(agf'), pr) < BG4 (ag’), Dr), which is obviously impossible. The above implies we can
again apply Theorem 3.2.(1) for a new z, given by z, = n™1/2k;(n) + bV (p,). This
together with the assumption & € (5/16,3/8) yields

1, _ 1 _
(A8 of¥ exp {—gnt %~ Cph(n) — K + o)}
Comparing (A.8) and (A.6), we get n1/*~pky < n!/2~5pks(n) + 2k3(n) + ofn/2~6).

Since, for sufficiently large n, k1(n) > —%nl/ 2=¢p, this inequality yields k;(n) > ks+o(1).
In this way we have proved that k;(n) = k3 + o(1). Hence lim,_, o RrY (as{o’), pn) = 0.
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Orthogonality of product measures. Two probability measures P, Q with densities
p,q with respect to some o-finite measure are orthogonal if and only if H2(P,Q) = 2,
where H?(P,Q) = 2(1 — [ ,/Pq) (cf. Rao and Varadarajan (1963)). Let P(™ and Q(™
be n-fold products of P,; and @Qy;, respectively. By (1.4) in Oosterhoff and van Zwet
(1979)

2/ pn) Hn)y _ o _ . _l 2 ) .
HY(P™, QM) = 2 2E{1 Ly (Pm,c;m)}.

Hence, for the contamination model given by p,(z) = 1+ n~4pa(z) with £ € (0, 1), from
(3.5) and (3.6)

. n 2 if 2¢ <1,
HX(P™ PMy=2-2 {1 —gn XL+ 0(1))} —{ 2-2e7F"/8 if 26 =1,
0 if 26> 1.

This, in particular, proves the asymptotical orthogonality of the products in the con-
tamination model (3.1).
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