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Abstract. An asymptotic expansion of the logarithm of the likelihood ratio for
Markov dependent observation is obtained. A functional limit theorem for the likeli-
hood ratio is proved, which gives a way to study limiting distributions of the likelihood
ratio based on stopping times, in particular, that of sequential probability ratio test.
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1. Introduction

In the paper Akritas and Roussas (1979), an asymptotic expansion of the logarithm
of the likelihood ratio is obtained for a random number of Markov observations. This is
done on the basis of the expansion for non-random sample size of quantities in Roussas
(1972), using additional conditions on the family of distributions. In this paper, we
obtain a more general result, namely, a uniform (over sample size number) asymptotic
expansion of the likelihood ratio (Theorems 1 and 2), from which the result of Akritas
and Roussas (1979) follows easily (see Theorem 4). More than that, our results provide
us with tools of asymptotic analysis of the likelihood ratio based on stopping times
of more complicated nature, e.g., stopping time of the sequential probability ratio test
(SPRT). In this case, the result of Akritas and Roussas (1979) does not apply, as is
suggested by the form of the limiting distribution of the likelihood ratio at the stopping
time, which is a two-point distribution, in contrast to the limiting normal distribution
of the stopped log-likelihood in Akritas and Roussas (1979). We prove a functional limit
theorem for the likelihood ratio (Theorem 3), which is a base for such an investigation.

We make use of conditions even less restrictive than those in Roussas (1972), and do
not suppose that the distributions are absolutely continuous with respect to each other,
similar to Ibragimov and Has'minskif (1981).

It should be mentioned in passing that the concept of contiguity employed in this
paper was introduced and exploited by Lucien Le Cam in his fundamental paper (Le
Cam (1960)). See also Chapter 6 in Le Cam (1986), as well as Le Cam and Yang (1990).

2. Assumptions and hotation

Let © C RF be an open set of parameters, and let zg, 21, %2,...,%n, ... be a random
sequence on a probability space (2,2, Py), which is a stationary Markov process given
any § € ©, taking values in a complete separable space X supplied with the o-algebra of
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Borel subsets X. Without loss of generality, let us suppose that Q = AN =X xXALx-,
and that the o-algebra A =X ® X ® - - - is generated by cylinder sets.

Let the distribution of the sequence zg, 21, ... be defined by the transition density
functions f(z1|xo; @) and the initial distribution with the density function f(zo;8) with
respect to some measure p on (X, X). Let us suppose that the function f(-|-;0) is X ® X-
measurable, and f(-;0) is X-measurable. Let us denote by P the restriction of the
measure Py to the o-algebra 2, = XX ® .- -X = xntl)

For the points 6 € © and 84+ h € O, let us define the likelihood ratio corresponding
to a fixed number n of observations as the Radon-Nikodym derivative of the absolutely
continuous part Pg,, , of the distribution Fg', , with respect to Fg":

dPg
Zg(n,h) = ;T?L’a(xo,xl, ., Zn) = exp{As(n, h)},

where

f(zo;0+h) | ~—~, f(@i|zi-1;0+h)
f(z0;0) +2 o flzi|zio1;0)

if f(zo;0) [1; f(zs | £i-1;0) > 0, and Ag(n, h) = —oo, otherwise. Under the hypothesis
that all the distributions of the family {Pf,0 € ©} are absolutely continuous with
respect to each other, in Roussas (1972) an asymptotic expansion of the random variable
Ag(n, hy/+/n) is obtained for each sequence h, — h as n — co. The main aim of this
paper is to obtain a uniform over 1 < k£ < n asymptotic expansion of the random variable
Ag(k, hy/+/n) and to prove corresponding functional limit theorems.

Let us introduce the following notation. Let h’ be the transposed vector of h,
(h,g) = g'h be the scalar product of the vectors h and g, |h| = |(h, h)|*/? be the length
of the vector h , and let us assume that integration without indicating limits corresponds
to the integral over the entire space.

The regularity conditions below are close to those of Roussas (1972), but do not
require that the distributions be mutually absolutely continuous.

Al. The sequence Zg,Z1,---,Zn --- is ergodic with respect to any probability dis-
tribution Pp.

A2. For each 0 € ©, there exists a vector-function ¥(8) = ¥(zo, z1;60) of dimension
k such that

Ag(n,h) =1In
i=1

/ F (03 0)[F /2 (w1 | 2030+ h) — FY/2(21 | 2030) — K'(8) P (zo, 1)
= o(hf?), h—0

(here and throughout u? = p x u denotes the product-measure of p with itself on the

product o-algebra X x X).
A3. For each 0 € O, the Fisher information matrix

1(6) = / £(z0; 8) (@0, 71; 0) (20, 13 0)ds> (20, 21)

is positive definite.
A4. For any 0 € ©, f(z;0,) — f(z,0) in y-measure as 8, — 6, n — oo.
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Assumption A2 is essentially the quadratic mean differentiability of the square root
of the transition density, and is a slight generalization of the regularity condition com-
monly used for independent observations (see, for example, Ibragimov and Has'minskif
(1981)).

3. Uniform asymptotic expansion of the likelihood ratio

Let ;(0) be defined as ¥(x;_1,%:;0)/+/ f(zi | zi-1;0) if the denominator is positive,
and as oo, otherwise, ¢ =1,2,..., and let Ag(#) = 222“:1 wi(0).

THEOREM 1. For any sequence hy, — h, n — 0o and for any € > 0,

o Y k. _
(3.1) nan;o Py (1?]?‘%1; Ao(k, hn//T) — _\/_ﬁh Arx(9) + %h I(0)h| > 5) =0.

* The proof of Theorem 1 follows that of Theorem 4.1 in Roussas (1972) using “uni-
form” generalizations of corresponding lemmas in Roussas (1972) (see Lemmas 1, 4, 5,
6).

Let h,, n = 1,2,... be a sequence of vectors, h, — h, n — oo. Let us denote by
On=0+h,/n,n=12,.... Let

flzs | xi—l;en)] 12
flzi | 2i-1;0) ’

if the denominator is positive, and 7;(8y, 8) = oo, otherwise, i = 1,2,.. ..

>5> = 0.

im0) = |

LeEMMA 1. For anye > 0 and any h, — h € R¥,

k k
Z(m(b’m 6) — 1)? — ;Eo(h’qol(ﬂ))2
=1

lim Py | max
n—o00 1<k<n

Proor. By Condition A2 for any i =1,2,...,
Eg(v/n(ri(6,,0) — 1) — h'p;(6))? — 0,

as n — oo. Therefore,
(32) n(r1(85,0) — 1)* — (W'p1(6))?,

asn — 00, in the first mean with respect to the measure Py by Vitali’s theorem (Theorem
2.1 A in Roussas (1972)). Let € > 0 be fixed. Then

Py | max
1<k<n

n (3

i=1

k k
> (ri(6n,6) — 1) — %Z(hx@i(e))? > 5)
i=1 i=1

(ri(6n,0) — 1)% — —};(h’cpi(ﬁ))Zl > E>

< 2 Byln(ra(6.,0) ~ 1% — (W2 (6))?] — 0,
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as n — 00, as a consequence of (3.2). To prove Lemma 1, it remains to show that

(3.3) — max
n 1<k<n

Z(h'soz(f)) — kEg(h'pi(0))?

as m — 00, in probability Py.
This is a consequence of the following simple lemma.

LeEMMA 2. If the sequence {S,} of real numbers is such that %Sn — 0, as n — oo,

then )
ESn_Elrélk?gc ISkl"‘)O n — 00.

PROOF. Let € be any positive number. Let us choose the number m so that
1
sup —|Sk| < e.
k>m k

Then for n > m, we have

1 1 1
S8 =2 S Lis <= S Z18 < =
—5n n  hax |Sk| + max Sk o ax |Sk |+ maxX o ISkI mg}cag |Sk] +¢,

hence, for any € > 0, limsup,,_, ., %S,*L < &, which implies the statement of Lemma 2.
To prove (3.3), it remains to apply Lemma 2 to the sequence S, = > -, & with
& = (Wi(8))? — Eg(Wpi(6))?, for which 1S, — 0 with probability 1 by the ergodic
theorem (Logve (1960), Chapter 9, §33).
LEMMA 3. For any h € R®, Ey(h'y1(0))? = 1n'I(6)h.

PRrROOF. It is sufficient to show that for any 4, j € {1,2,...,k},

(3.4) o () (6) = / £ (03 68 (0% (8)dps (o, 1)

(superscript i denotes the number of the coordinate a® of the vector a = (a!,a?,...,a*)).
‘To do this, let us show that on the set A = {(x¢,21) : f(z1 | z0;8) = 0}, ¥ (x0,1;0) =

0 almost everywhere with respect to the measure P{ x p on X x X. Let e(h) =
(0,0,...,0,h,0,...,0)', where the i-th coordinate is non-zero. By Condition A2,

2
/A (%fl/z(ml | £o; 0 +e(h)) — W(xo,a:l;ﬂ)) dPg x p(zo, 1) — 0,

as h — 0, which implies that on the set A,
1 .
(3.5) Ef1/2(331 | 20; 6 + e(h)) — ¥* (20, 1;0)

in the measure P{ x p as h — 0.
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Supposing that there exists a subset B C A of a positive P{ X u-measure, where,
say, ¥¢(zo,z1;0) > 0, we easily get to a contradiction to (3.5) observing that in such a
case, for any (z9,z1) € B,

i : 1
P (zo,21;6) = x__}(l)f%<0 Efl/z(:vl | £9; 0 + e(h)) < 0.

In the same way, it is proved that the set {(zo,z1) : ¥*(20,21;6) < 0} N A has PY x u-
measure 0.
Hence, 1*(zo, T0;0) = 0 on A P x p-almost everywhere, which proves (3.4).

LEMMA 4. Let 7(0,,0) = Eg{ri(0,,0) | 2;_1},i=1,2,.... Then for anye > 0,
> e) =0.

Proor. From the ergodic theorem and Lemma 2, it follows that

lim P, ( max 7 (0r,0) — 1) + kEo(h 1(8))2/2n

n—oo

1
(3.6) lim — max
n—oo N 1<k<n

k
Z[‘7(9{("l'<Pz‘(9))2 | Aii1} — kEg(W 1(0))2| —

in probability Py, as n — oo. In addition, for any fixed € > 0,

k
2 B0 0) = 0P} — B {(i(6)? | 2)]

(3.7) Py (121132(
} > 5>

e

n (5o

< éEaln(n(HmG) —1)% = (h'p:1(8))% = 0,

(Tz(grue) - 1)2 - _(h,(pl(g))2

as n — 0o, where the last convergence is due to (3.2).
Combining (3.6) and (3.7), we get

Fs (1<k<

as n — oo. To prove Lemma 4, it remains to show that

ZEo{(n(G 0) = 1)* | %1} ~ kEo(h'p1(6))?/n

>6> — 0,

k

> (Eo{(ri(6n0))* | %1} —1)| — 0

i=1
- )

(3.8) 1r_<n£%cn

in Py-probability, as n — oo.
Let € > 0 be any number. Then

k

Z(EB{(TZ(OmO))z | A1} —1)

1<k<n

(3.9) Py ( max
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< Py (Z |(Bo{(ri(0n, 0))* | Aima} ~1)| > €>

i=1
< ZEo|Ep{(ri(62,6))” | 20} ~ 1
n

= —E,
€

/ F(@1 | 203 0n)du(ar) — 1
{f(z1]x0;6)7#0}

n
= —E0/ f(z1 | o3 0n)du(z1),
f(z1]|z0;6)=0}

&

where the second inequality follows from Chebyshev’s inequality.
From Condition A2, it follows, in particular, that for the set A = {(zg,z1) : f(z1 |
zo;6) = 0},

2
/A (fl/z(a:l | o; 0n) — %h%p(e)) dPY x p(z0,1) = 0 (%) oo

As was shown in the proof of Lemma 3, 9(f) = 0 on A PJ x p-almost everywhere, so

n / F(@r | 20:00)dPY x p(zo,71) = o(1), 1 — o0,
A

so the right-hand side of (3.9) tends to 0, as n — oo, which proves (3.8), and hence the
lemma.
LEMMA 5. For anye >0,
) 0

k

;[mwmm—l) Tt - Z(n (0n,0) -

lim Py ( max

n—o0 1<k<n

Proor. Put
1
Y; = (1i(0n,0) — 1) — ﬁh’goi(e) — (7:(60n,0) — 1), 1i=1,2,....

~ We have then

(3.10) Eo{Y; | 1} = —%Eg{h’zpi(e) | 2% 1}.

Let us show that the right-hand side of (3.10) is equal to 0 Py-almost everywhere.
To this end, note first that

(3.11) Ep|v/n(r7(0n,6) — 1) — 2h'¢1(6)] — 0,

as n — oo. Convergence (3.11) is proven in the same way as Lemma 5.4 in Roussas
(1972), with the change that in our case Egr?(,,6) < 1. Further, by (3.11),

(3.12) VEa{(r}(0s,0) — 1) | %o} — 2E¢{h'p1(6) | Ao},



UNIFORM ASYMPTOTIC EXPANSION OF LIKELIHOOD RATIO 805

as n — 00, in the first mean with respect to Ps. On the other hand, P§-almost sure

(313)  Eo{(r3(6n,8) — 1) | 2o} = /{f( oy [ 20 b R,

As shown above (see (3.9) and below), the integral on the right-hand side of (3.13),
multiplied by n, tends to zero in the first mean with respect to Py, as n — 00. Because the
left-hand side of (3.12) is, by virtue of (3.13), the same integral, multiplied by /7, it tends
to 0 as well. Hence from (3.12), it follows that Pg-almost sure, Eg{h';(8) | o} = 0,
and, by (3.10), Eg{Y; | 2i_1} = 0 Ps-almost sure for any i = 1,2, .... Consequently, the
sequence of sums S, =Y | ¥;, 4 =1,2... is a martingale with respect to the system of
o-algebras {2n,n =0,1,2,...} and probability Py. Thus, the sequence S2n=1,2,...
is a submartingale. By Doob’s inequality ( Loéve (1960), §29.3), for any & > 0,

_ 25 .2 ¢ 25 g2 _ o —2 2
(3.14) Py (113@n|5k] > 5) P (121,?%(?15,9 >e ) < e “EgS; =ne *EpYy .

The right-hand side of (3.14) does not exceed
(3.15) e 2Ep[(r1(0n,0) — 1)v/n — K'p1(8) — (71 (6n, 6) — 1)v/n]?
< 2672 [Ep[(r1(6n, 6) ~ 1)V — R'01(6)) + Eol(1 (65, 6) — 1)v/n]?] .

The first term on the right-hand side of (3.15) tends to zero, as n — 0o, by Condition
A2, and the second term, by Jenssen’s inequality, does not exceed the first one, because
Py-almost sure,

(71(6n,0) = 1)v/n = Ep{(r1(0n,0) ~ 1)v/no — h'1(6) | o}
LEMMA 6. For anye >0,

k k
Ag(k Ba /) =2 (1i(0n,0) — 1)+ > (146, 0) — 1)2
=1 =1

lim Py ( max
T~ 0O 1<k<n

>€> =0,

ProoOF. By Lemma 5.2 in Roussas (1972), for any £ > 0, the probability of the
event A, = {maxi<k<n |rk(fn,0) — 1| > €}, for n large enough, does not exceed &:
Py(An) <e. Forlnz=(z—1)—(z—1)2+c(z 1), where |c| < 3 as 5 <z <3 then

> 25)

k k
(3.16) Py (121,% Bo(k, hn/ V) =2 ) (ri(62,0) = 1) + D (ri(6a,6) = 1)?

k
, BT
< Pp(An) + Py (élggng [re(6n,0) — 1]° > 5/3>

1<k

<e+ Py ( ma§n|rk(0n,9) —1] i[ri(Gn,()) —1?> 5/3) .

i=1

Because, by Lemma 1, the sums )., [r;(0n,60) — 1] are bounded in probability and
maxi<k<n [Tk (n,0) — 1| — 0, as n — oo, in Ps-probability, then the second term on
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the right-hand side of (3.16) tends to 0, as n — oco. Because ¢ is arbitrarily small, this
proves the Lemma.

ProoOF OF THEOREM 1. First, from Lemmas 6 and 1, it follows that

(3.17) DX Ag(k, hn/v/m) — 22 7:(0n,0) — 1) + Eg(h 01(6))% — 0,
i=1
as n — 00, in Py-probability . From Lemmas 4 and 5, it follows that
n
7
(318)  max ;(n(em th #1(6) + - Eo(We1(0)?| = 0,
as n — 00, in Py-probability. From (3.17) and (3.18), we get
(3.19) max Ag(k, b //70) — Zh’ (6) 42 Eg(h ©1(8))?| — 0.

As ZZk h'i(0) = h'Ag(8), and, by Lemma 3, Eg(h'p1())? = ;h'I(6)h, then expres-
sion (3. 19) is equivalent to the statement of Theorem 1.

It is natural to investigate asymptotic behaviour of the likelihood ratio under the
alternative hypothesis that zg,xy,...,z, follow the distribution Pg . The following
Theorem establishes this behaviour.

THEOREM 2. For any sequence hy, — h, as n — oo, and for any e > 0,

(3.20) hm Py, (max

Ao(k, hn/\/_) — Th'Ak(()) + ﬁh’[(@)h‘ > E) = 0.

PRrOOF. Denote by L(£ | P) the distribution law of the random variable £ on some
space with probability P.
By Theorem 1, the sequences

(ot | B9} wnd {1 (o 80(0) - K10 | ) |

‘have the same weak limit. Because Fp{h’p;(0) | %;—1} = 0 (see the proof of Lemma

5) and Ep(h'@;(0))> = RI(0)h/4 (Lemma 3), the sequence h'A, = 237 hp;(6),
n=1,2,..., is a martingale. By the central limiting theorem for martingales (Roussas
(1972), Theorem 2.2)

1 n
L (%h’An(a) l P9> — N(O, 0'2), n — oo,

where 02 = h'I(0)h and N(m,o?) is the normal distribution with mean m and variance
0?2, and the arrow denotes weak convergence of distributions. Then

£(Ao(n, /) | P) — N (—éa%a?) . nooo,
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where, denoting the limiting distribution by £, we have [ e®dL(z) = 1. From Theorem

6 in Roussas (1972}, it follows from this that sequences { Py} and {F5 } are contiguous,

and hence (3.20) is a consequence of Theorem 1 and the definition of contiguity in
Roussas (1972).

4. Functional limit theorem for likelihood ratio

In this section, we consider random functions, naturally connected with the likeli-
hood ratio, and weak convergence of their distributions. First, let us introduce some nota-
tion. Let D0, 1] be Skorokhod’s space with the Skorokhod’s metric p(z,y), z,y € D[0,1].
For a random element ¢ € D[0, 1] on a space with a measure P, let us denote by L (¢ | P)
its distibution on the o-algebra of Borelian subsets D[0, 1].

Let

85t hn/v/n) = Ag([nt], hn/V/R),  0<E<T,

(here [a] denotes the integer part of the number a).

THEOREM 3. Under the conditions of Theorem 1, and as n — oo,

(4.1) Lp(8gn( hn/vn) | Pg) = Lp(K'w — v),
(4.2) L85l hn/vn) | F.) — Lp(h'w +v),

where w = w(h) is the k-dimensional Wiener process with Ew(t) = 0 and covariance
matriz Ew' (t)w(t) = t1(0), v = v(t) = th'I(8)h/2.

PROOF. Let us denote by A% (t) = T ng(0), n=1,2,.... By virtue of Theorem
4.1 in Billingsley (1968), it follows from Theorems 1 and 2 that the limiting distributions
of the processes Ay, (t;hn/+/n) and h'A}(t) — [tn]h'I(0)h/2n, 0 < t < 1 are the same.
Because the sequence of the function v, (t) = [tn]h’'I(8)h/2n obviously converges to v(t)
uniformly, as » — oo, it remains to prove the convergence

(4.3) Lp(W AL | PF) — Lp(h'w),
(4.4) LD(h'A:; l Pé:) — LD(h"w + 2’0),
as 1 — 00 .

v Convergence of finite-dimensional distributions, corresponding to (4.3) and (4.4)
follows from Theorems 4.2 and 4.6 in Roussas (1972), respectively. Let us prove tightness
of corresponding distributions families in D[0, 1].

Because, as shown above, the sequence {h'A, ()}, n=1,2,..., forms a martingale
with respect to (2, P3'), then tightness (and hence, convergence) of the sequence of the
distributions Lp(h'A;, | P§*) follows from Theorem 23.1 Billingsley (1968). Tightness of
Lp(K' A} | Pg) follows from that of Lp(h'Ay) | Pj) because of contiguity of Py and
Py

n

5. Asymptotic expansion of the likelihood ratic based on random number of observations

In this section, we show how the results of Sections 1-3 easily imply those of Akritas
and Roussas (1979); as suggested by the authors, the auxiliary condition A5 in Akritas
and Roussas (1979) turned out to be unnecessary.
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THEOREM 4. Let the conditions of Theorem 1 be fulfilled, and let v,, n=1,2,...,
be a sequence of Markov moments with respect to the system of o-algebras U,, n =
0,1,2,..., such that v,/n — 1 in Py-probability. Then, as n — oo,

1 1
(5.1) Ag(Un, hn /1) — ﬁhlAun 0) — —ih’I(G)h,
both in Py-probability and in Py, -probability, whereas
1 1
. L —=hA, (0)] Py — 02 52
52) (T8 @)1 73) =N (~30%0%),
1, 1
. —_R'A, pn L2 2
63) o (= ®)1 5, ) ~ 1 (302,07,

where o2 = W' I(6)h.

ProoF. Let 6 > 0 be any number. By the condition v,/n — 1 in Py-probability,
it follows that lim,_, o, Py(vy, > 2n) = 0. Hence,

limsup Py (

n—o0

Ao(Vn, hn//70) — %h'aun 0) + g%h'l(e)h‘ > 5)

< nllngo I:Pg(l/n > 2n) + Py (1%1%)5" IAG‘(k, hn/\/ﬁ)

- 9]

\/ﬁh,Ak(g) + E%h'l(ﬁ)h
according to Theorem 1. As v, /n — 1 in Pp-probability, this implies convergence (5.1)
in Pp-probability.

Convergence in Py, -probability follows from Theorem 2 in a similar way. To show
that limp—,c0 Pg, (vn > 2n) = 0, the contiguity of P§ and P} is used.

Because, by virtue of Theorem 3, convergence (5.2) holds with n instead of v, (5.2)
will be established, if we show that for any € > 0,

. 1 ' / _
(5.4) nli,r%o Py (% | A, (8) — K AL0) |> e:> =0.
Let us estimate the probability in (5.4). Let 6 > 0 be fixed. Then

T 1
(5.5) limsup Py (7_7;|h'A,,n 6) — K AL(6)] > 5) < lim Py(lvn/n — 1] > 6)

1
+limsup Py | —= su h'AR(6) — B A,(0)] >
oo © (\/ﬁna—a)gkgn(u&)l £(6) @)l 6)
1
<2limsup Py | — sup |h'Ag(6)] >
msup Py («/ﬁgkgnal k(0)] 6)
=2 lim Py ( sup |A'A;(E)] > €> = 2P( sup |hw(t)| > 5> .
n—00 0<t<6 0<t<s

The last equality follows from Theorem 3 here and Theorem 5.1 in Billingsley (1968),
because the functional w on D[0, 1], defined for any z € D[0,1] as w(z) = supge;<; [2(t)],
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is obviously continuous on the set C|[0, 1] of continuous functions on {0, 1], to which almost
all paths of the limiting process h'w belong. Letting § on the right-hand side of (5.5)
tend to zero, we get (5.4), and hence (5.2). The statement (5.3) of Theorem 4 is proven
analogously.
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