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Abstract. Recovery of the unknown parameter in an abstract inverse estimation
model can be based on regularizing the inverse of the operator defining the model.
Such regularized-inverse type estimators are constructed with the help of a version of
the spectral theorem due to Halmos, after suitable preconditioning. A lower bound
to the minimax risk is obtained exploiting the van Trees inequality. The proposed
estimators are shown to be asymptotically optimal in the sense that their risk con-
verges to zero, as the sample size tends to infinity, at the same rate as this lower
bound. The general theory is applied to deconvolution on locally compact Abelian
groups, including both indirect density and indirect regression function estimation.
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1. Introduction and preliminaries

In this paper we consider the general abstract inverse estimation or indirect curve
estimation model and, as an important special subclass, noisy convolution models on
locally compact Abelian groups. Such groups contain R¢, (0,00)%, Z4, and T? (T is the
complex unit circle) for any finite dimension d as special cases. One may add groups
like Z mod k to this list, but that would not exhaust the family of groups that can
be constructed from the above. An interesting example is Q, (p is an arbitrary prime
number), the group of p-adic numbers. This nontrivial group is not discrete, not compact,
and has nothing to do with R? 74 T¢ or Z mod k. Although our methods remain
valid for Z mod k and more exotic groups like Q,, they are not of sufficient practical
importance to be included in our discusssion.

In the general case a random sample X1, ..., X, of independent copies of a random
element X is given which is directly related to an element p of a separable Hilbert space
L. For convolutions this will be specified below. The element p is the image of an
unknown element @ in a given subset © of a separable Hilbert space H under a known
linear, bounded, and injective operator K : H — L, i.e.

(1.1) p=K0, 0c€O©CH
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The problem is to recover 6§ (also called the input, input signal, or input function) from
the data related to p (also called the output, output signal, or output function), and to
assess the quality of such an estimator.

A very important category of inverse problems is given by the deconvolutions men-
tioned above. In that case we have H = L. = L?(ug), the Hilbert space of all functions
on a locally compact Abelian group G that are square integrable with respect to the
Haar measure yg, and the operator K = K, is the convolution with a kernel w that is
assumed to satisfy

(1.2) w e Ll(uq;) n LQ(/,L(;,).
Writing the group G additively with group operation @ and reciprocal © we arrive at
the model
13 2@ = [ w@endwus)
= (w®0)(z) = (K,0)(z), z€G, 0€06C L’ ug)

The assumption that w is also square integrable with respect to ug is to ensure the
existence of the mean integrated square error (MISE) of our estimators.

In the theory of integral equations preconditioning is an important concept. It will
be applied here in the sense that (1.1) will be replaced with the equivalent equation

(1.4) ¢g:=K'p=K*K0=:Rf, 0€c0O,

where K* is the adjoint of K. In the case of convolutions K} is convolution with
w*(z) := w(6z), z € G, and hence

(1.5) g=K.0=r®6, where r:=w'®w.

Preconditioning has the advantage that the operator R is somewhat simpler than K,
since it is strictly positive Hermitian. A further advantage is that ¢ is usually easier to
estimate from the data than p. This is because ¢ is a smoothed version of p which allows
an unbiased and y/n-consistent estimator. Here follow two basic examples.

Ezample 1.1. Suppose that Z and E are independent random variables in G, where
E has known density w with respect to ug and the density 6 of Z with respect to this
‘measure is unknown. We observe n independent copies of

(1.6) X:=Z@®E,

where X has density p = w®0. Clearly an unbiased and \/n-consistent estimator of
g =w*®p is given by

31*—-‘

i reG.

For the unbiasedness just observe that Bw*(e © X) = w* ®p = r®#6 = ¢ in the no-
tation of (1.5). Since Ellw*(e© X)||> = E [ |w*(z© X)[*dug(z) = [ |w* ()2 duc(y) =

7)) i(z) = % S wt(z e Xy) = Zw(Xk 6 1)
. k=1
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lw]|2 < oo thanks to assumption (1.2), it follows that E||4||> < oo . Jointly with the
unbiasedness this entails

(18)  P{Val§—qll 2 C} < zEld—dl’
' (/}2 / Var(w*(z © X))dug(z) < (” ”) 0, as C — oo,

which settles the y/n-consistency.

Ezample 1.2. Let us now assume that Z is a random variable in G with density
f1 with respect to ug, and that E is a real valued random variable, independent of Z,
with density f» with respect to Lebesgue measure that has mean 0 and finite variance
o2. We observe n independent copies of

(1.9) X:=(,2), Y:=wed)(Z)+E=pZ)+E.
The joint density of Y and Z is given by
(1.10) fy,2) = faly— (w®0)(2)) f1(2), yeR, z€G.

An unbiased estimator of ¢ = w* ® p is now given by

(1.11) Zfl(Zk “(£© Zy) = qu(x z€G.

To see this note that E(Y/fi(Z))w*(e© Z) = EE((Y/f1(Z )) (er) | Z) = E(w*(eo
Z)/Bfl(Z))E(Y | 2) = Bw*(e© Z)(w®0)(2)/ /1(2) = [gw*(s © 2)(w®0)(2)dpc(z) =
r®d=aq.

Angin we have E||g||? < oo, but now we need the condition.

(1.12) m = ess ;gqf} fi(z) > 0.

Of course this condition can only be satisfied if G has finite Haar measure (like, e.g.,

the torus 'll‘d) If this condition is not fulfilled the procedure has to be slightly modified

where the unbiasedness of ¢ has to be sacrificed. Since all functions are real and E has
2 we have

zero mean and variance o=,
2
]]f @v "4 - [Egmveen

(w®0)%(Z) +2E(w®0)(Z2) + E? . ,
/EE( 70 {w*(e 0 2)}?
/E {(w®0)%(Z) + E?}{w*(e © Z)}? e

£(2)
(w®6)2(Z) + E?

@)
< 2{ [wo0Pdue + B2 Ll = 2017 + 07wl

2

(1.13) dug

Z) d/LG

=F

[0 2))duc
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This yields at once the \/n-consistency as in (1.8). This model is a random design indirect
regression model. Extensions to the case where f; is unknown and has to be estimated
from the data, or the design is deterministic are possible but will not be considered here.

Further examples can be found in Koo (1993). Practical examples include for in-

stance

e curve estimation for directional data (Mardia and Jupp (2000));

e recovering the initial heat distribution from the present state (Margenau and
Murphy (1956), Mair and Ruymgaart (1995));

e recovering the input function of a dynamical system (Gilliam et al. (1988),
Chauveau et al. (1994), Dey et al. (1998));

e errors in variables models (Carroll and Hall (1988), Zhang (1990), Fan (1991));

e image restoration models (Hall (1990), Donoho (1994)).

We will now briefly review the general construction of estimators of regularized-
inverse (RI) type. According to Halmos’ (1963) version of the spectral theorem there
exists a o-finite measure space (S,S,v), a unitary operator U : H — L?(v), and a
function p € L*°(v) which is strictly positive v-a.e., such that

(1.14) R=U"tM,U,

employing the notation M, for the operator acting on L?(v) as multiplication with p.
The exact inverse of R is unitarily equivalent with division by p. More specifically, this
means that § = R™1q = U~1(1/p)Uq, see (1.4). In general R~! is unbounded, so that
the estimator § of ¢ may not be in the range of the inverse and, if it is, R~!4 may not
be close to R~1q. Therefore a regularized version of the inverse will be used. Let us
consider the functions )

(1.15) 0a(t) == Zl{a,oo)(t), t>0,
for o > 0. A family of regularized inverses is now given by
(1.16) R;l = 04(R) := U_1M5a(p)U, a>0.

Note that R;' : H — H is bounded for each & > 0, and that |R;'Rf — f|| — 0, as
a | 0, for each f € H.
The RI-estimators, proposed here, are defined as

(1.17) B := RZ14, for suitable a > 0.

What “suitable” means will be discussed in Sections 2 and 3. For convolution models the
construction can be made explicit as we will see below in Section 3. The regularization
scheme (1.15) employed throughout this paper is called spectral cut-off regularization
(Kress (1989)). Another well-known possibility is Tikhonov type regularization based
on the family of functions ¢ — 1/(a+1), t > 0, @ > 0 (Tikhonov and Arsenin (1977),
Vapnik(1982)). In finite dimensional parametric regression the latter scheme yields ridge
regression as introduced by Hoerl and Kennard(1970a, 19705).

An important aspect of curve estimation relates to convergence rates of E||§, — 62,
the MISE. In a seminal paper Pinsker (1980) derived a lower bound which is asymptot-
ically attainable at the level of constants. An extension to adaptive estimation can be
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found in Efromovich and Pinsker (1984). Pinsker (1980) emphasizes a model of direct
estimation of an infinite dimensional parameter with Gaussian errors. Extensions to
certain indirect estimation models can be found in the literature. Such results, however,
often concern models with compact operators like in Johnstone and Silverman (1990),
where the compact Radon transform is emphasized. Also deconvolution on the circle
T can be found. This convolution is compact in contrast to most other convolutions.
Extension to the general bounded operators considered here doesn’t seem immediate.
In order to apply Pinsker’s (1980) result, moreover, many authors assume that a signal
is—directly or indirectly—given in the presence of Gaussian white noise. This assump-
tion is justified for curve estimation models that are asymptotically equivalent with
such a model like for univariate regression (Brown and Low (1996)) or univariate den-
sity estimation (Nussbaum (1996)). An alternative approach is provided by extensions
of Pinsker’s (1980) inequality to non-Gaussian errors; see, for instance, Golubev and
Nussbaum (1990). For an interesting review of the Pinsker bound and its ramifications
see Nussbaum (1996).

Here we first elaborate on a lower bound in van Rooij and Ruymgaart (1996) valid
for the general model (1.4), that was obtained in a quite different way by coordinatewise
application of the van Trees inequality (Gill and Levit (1995)). It turns out to be possible
to represent this lower bound as an integral with respect to the measure v on the spectral
domain S. Since an upper bound can also be represented as an integral with respect to
that measure, it is possible to arrive at a comparison between the two and to establish
optimality of the rate of convergence of the MISE of the estimators in (1.17), provided
that the regularization parameter @ = a, — 0, as n — 00, at a suitable rate. To the
best of our knowledge at the present level of generality this optimality result is new.
Both the upper and the lower bound are considered in Section 2. The results are applied
to deconvolution in Section 3, where we show in particular that in this case a crucial
condition for attainment of the optimal rate is fulfilled. Some specific examples are
considered in Section 4. The first of these is an instance where deconvolution is not
ill-posed.

It is a common problem in nonparametric curve estimation that such rates depend
on the presupposed smoothness of the input function. Bowman (1984) and Rudemo
(1982) proposed a cross-validation method for data-driven selection of the smoothness
parameter. This method was generalized to the general indirect curve estimation model
(1.4) in Dey et al. (1996) and applied to deconvolution on the real line with good results.
In Section 3 we also specify this cross-validation method for abstract convolutions. Other
methods to deal with adaptation and inhomogeneous smoothness of the function to be
estimated are based on wavelet-vaguelette decompositions (Donoho (1995)), and on the
linear functional strategy used for ill-posed inverse problems (Goldenshluger (1997)).

A great variety of practical examples is related to convolution. Such examples
as tomography (Johnstone and Silverman (1990)) or Wicksell’s problem (Groeneboom
and Jongbloed (1995), Nychka and Cox (1989)) are not directly related to convolution,
although they fit in the general framework (Caroll et al. (1991)). There are interesting
inverse estimation problems of deconvolution type on homogeneous spaces that are not
Abelian groups. The problem of deconvolution on the sphere has been proposed in van
Rooij and Ruymgaart (1991) and solved by Healy and Kim (1993, 1996), see also Healy
et al. (1998). The latter authors also provide an interesting application to geometric
quality assurance. Kim (1998) considers deconvolution on the special orthogonal group.
Another example is the Poincaré upper half plane. Although for this space Fourier
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theory seems available (Terras (1985)) specific technicalities will arise. Therefore this
example will not be considered here. For many other interesting statistical models in
non-Euclidean spaces see Diaconis (1988).

Also the question of proper dealing with prior knowledge about the presence or lack
of smoothness of the input signal will not be considered here. The first can be dealt with
by adopting methods from Mair and Ruymgaart (1995) and by embedding the model in a
Sobolev scale. If the input signal is known to be irregular, modifications will be required
to control the Gibbs phenomenon, and the MISE may no longer be suitable to assess
the quality of estimators. One might rather employ the Hausdorff-distance between the
closed graphs of estimator and estimand as suggested by Marron and Tsybakov (1995).
"This idea was carried out in Chandrawansa et al. (1999) in conjunction with Cesaro-
averaging. See also Neumann (1995) for indirect estimation of change points.

2. Asymptotic optimality for general abstract estimators

It has already been observed that it will in general be possible to estimate g in (1.4)
unbiasedly and /n-consistently. Such an estimator will be of the form § := n~? > i1 s
where the g are ii.d. random elements in H with g, depending on X} only, and we
assume they satisfy
(2.1) E||gl® < 00, Egx=q.

Examples of such estimators are given in (1.7) and (1.11).

The estimators § lead to the estimators 8, in (1. 17) of actual interest. In this sect1on
we will establish the asymptotic optimality of those estimators under the assumption that
there exists a constant 0 < C' < oo such that

(2.2) Var(U§)(s) < %p(s), SES,

where p is the function that represents the operator R in the spectral domain as reviewed
in Section 1. The assumption implies that preconditioning (see (1.4)) does not introduce
extra, undue, ill-posedness. It is typically fulfilled if preconditioning is carried out with
the adjoint operator, and in Section 4 conditions will be spemﬁed under which it is
satisfied for the estimators in (1.7) and (1.11).

It is clear that under this assumption

(2.3) Bl — o2 < & / Yavs / U6 dv,
{p=a} P {p<a}

see van Rooij and Ruymgaart ((1996), Theorem 2.1). Since € H it follows that U8 €
L?(v) and therefore, without assuming anything more about 8, we still can prove from
(2.3) the existence of a sequence a(n) | 0, as n — oo, such that the éa(n) are consistent
estimators of §. For a speed of convergence of the MISE we need to assume more about
6. In concrete cases usually smoothness assumptions are made. Such assumptions may
follow from the abstract setting by bounding |U§|. For £ € L?(v) let us consider the set

(2.4) O :={0ecH:|U <{}; weassume OyC O.

It should be noted that such submodels are designed to describe smoothness classes, but
may include irregular functions if £ has relatively heavy tails. The following result is
immediate from (2.3).
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THEOREM 2.1. For the submodel ©¢ satisfying (2.4) we have

C
(2.5) sup E||, — 0] < / —dl/ +/ v,
0€6¢ {p>a} P {p<a}

provided that (2.1) and (2.2) are fulfilled.

The construction and attainment of the lower bound require a number of further
specifications and assumptions. Let us take £ € L*®(v) N L?(v) real valued with £, >
ess sup £ and 4y > 0, strictly positive numbers ¢ > £; > ¢ > --- | 0, and sets
Sp == {s €8S : € < s) < lr_1}. We assume that there exist 0 < o < oo and
0 < v <P < oo such that

(2.6) b >alk—y, O<v<y:=v(Sp)<P<oo, keN.

Let us introduce the orthonormal system ¢y, := (v;)~1/21g, in L?(v) and note that
the ey, := U1y form an orthonormal system in H. Also observe that

2.7) To={0€H: U= trpk: te| < lpr/Ti}
k=1
= {QEH:HZZtkek stk ka\/ﬁ} C O,
k=1

where the inclusion is obvious from £ > ch_’_ﬂ lels, = > poy b/Vkpr. 1t is convenient
to identify 7o with Iy := [—01./T1,01/V1] X [—lay/V2,02\/V2) X -+ and 6 € Ty with
t = (t1,t2,...).

Next let us be more explicit about the random sample X4, ..., X, and assume that
the X take values in a o - finite measure space (X, X, 4) with common density f;, t € I,
with respect to u. For each t € Iy the /f; are supposed to be strongly differentiable in
L?(u) with respect to t, € [—Lk+/Vk, lk+/Vk|. The derivative will be denoted by 8v/f; /9t
Regarding the Fisher information we assume that

(2.8) sup 6V fe/0tk|? < pr, k€N,
clg

fér finite numbers pg such that
(2.9) S C{se€S:p(s) >bpx}, keN,

for some 0 < b < 0.

THEOREM 2.2. Let assumptions (2.4), (2.6), (2.8), and (2.9) be fulfilled. Then we
have

2
(2.10) inf sup E||T — 0|2 > 6 ),
Te€ gco,

where € 1is the class of all H - valued estimators T with finite MISE, and where A, B
€ (0,00) are constants.
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ProoOF. In van Rooij and Ruymgaart (1996) it has been shown that (2.4) and
(2.8) suffice to obtain

e2
2 E

for some 0 < ¢ < oo, by exploiting the van Trees inequality (see Gill and Levit (1995)).
It remains to relate the summation in (2.11) to the integral in (2.10). Now we use (2.6)
and (2.9) to obtain

— £ 1 1
2.12 —k > / TV
212 2 T > VZ s, (/8 T

IV

Z/ (c/a2€2) RS n/b)p

- Z/ (Dc/a?) + lxn/b)pZ2 v,

which equals the integral on the right in (2.10) with A = ¥c/a? and B = /b.

'To verify that the RI-estimators actually attain the minimax rate over O we need
a further assumption which relates £ to p. The function p is imposed on us, but we are
more or less free in the choice of £. In concrete cases £ should decay to zero in the tails
and our objective for £ can therefore be often realized by setting

(213) ¢ =¥(p),

for suitable ¥ : [0, 0c0) — [0, 00), which is assumed to be continuous and strictly increasing
with ¥(0) = 0.

THEOREM 2.3. Under assumptions (2.1), (2.2), (2.4), (2.6), (2.8), (2.9), and (2.13)
it is possible to choose o = a(n) > 0 in such a way that the MISE of the RI-estimators
Ha(n) in (1.17) converges to O at the minimaz rate, i.e. at the rate of the integral on the

right in (2.10), as n — oo.

ProOF. For n sufficiently large it is possible to choose @ = a(n) > 0 such that
a¥?(a) = A/Bn. For this o we then have

(2.14) [p%a] = [p\lﬂ(p)%%} :» [Bnp%%] ;

using (2.13). It follows that for each n (sufficiently large)

(2.15) / dv = / L dv
| s A+ Bnp2™ [ oy A/2+ Bnp

1
() ] Vet w
(/{PZC'} {0<p<a}> A/£2 + Bnp
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> / ! dv + / —-—L—du
~ Jipzay 2Bnp {o<p<a} 24/€

1 / 1 1 / .
= — —dv + — 24dy
2Bn Jiprar P 24 Jjp<ay

: 11 ) c / 1 / ) }
> =A== ){= Zdy + Cdv .
<2A 2BC {" {p2a} P {p<a}

It should be noted that the number (1/2A4)A(1/2BC) does not depend on n. (Combining
Theorem 2.1 and Theorem 2.2 we actually see that this number cannot be larger than
1.) Since, of course, the right hand side in (2.5) is at least as great as the lower bound
on the right in (2.10) (for any o > 0) the theorem follows.

|

3. Application to convolution models

The results will now be applied to abstract convolution and more in particular to
the indirect density and regression estimation models in Examples 1.1 and 1.2. We will
briefly review some basic facts of abstract harmonic analysis and refer to Hewitt and
Ross (1963) for further information. A character v of G is a mapping v : G — T :=
{z € C : |z| = 1} which is a continuous homomorphism, meaning that 7 is continuous
and v(z ® y) = v(z) - v{y) for z, y € G. These characters form an l.c. Abelian group
I" under pointwise multiplication. Haar measure on I' is denoted by ur, and LP(ur) is
defined in the usual way. (It should be noted that only in exceptional cases G and I' are
isomorphic: in fact G = R? is such a case.)

The unitary operator that reduces convolutions to multiplications is the Fourier
transform. The Fourier transform of w € L (ug) is the mapping w : I' — C defined by

(3.1) d(y) = /G w(z)y(@)dus(z), 7 eT.

It can be shown that a linear isometry Fg : L?(ug) — L?(ur) exists, called the Fourier-
Plancherel transform, such that

(3.2) Few =cgW, w € L'(ug) N L*(ug),

for a certain number ¢g. One can, moreover, show that Fg(w®6§) = @. Fgh, for
w € LY (ug) N L%(ug), so that by continuity

3.3 Ky =F:'MgFg, we LY(ug),
G

where Mg : L?(ur) — L?(ur) is the multiplication operator defined by Mgy := w-p,p €
L?(ur), and K,, is convolution with w (see (1.3)).

The l.c. Abelian group I' has its own character group that can be identified with
G. Hence there also exists a Fourier-Plancherel transform Fr : L?(ur) — L%(ug). This
transform is again an isometry and it can be shown that

(3.4) FrFg =S, or .7:(51 = SFr,

where S : L?(ug) — L?(ug) is the reflection operator (S6)(z) := 6(6z), z € G, with S?
obviously equal to the identity.
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Ezample 3.1. Let G =R with a ®b = a + b(a,b € R?) and Haar measure equal
to Lebesgue measure. Then the character corresponding to z € R? is the function
t — exp(é (z,t)),t € R%. We have indeed, that z + y corresponds to exp(i(z +y,e)) =
exp(i (x,®)) exp(i (y, o). It follows that T' is also R? with Lebesgue measure as an in-
variant measure, and

(35) (Fraw) () = (2m)~9/2 / @ y(p)ds,  teRY
R4
for w € LY(R?) N L2(R?). Of course Fr = Fg and it follows from applying (3.4) that

(3.6) (Fokeo)(z) = (2m) 42 / i@, e R
Rd

Ezample 3.2. Let G = (0,00)? with a® b = a-b(a,b € (0,00)¢, multiplication
coordinatewise), and Haar measure being determined by its density z — % = H?zlmj-_l ,
z € (0,00)¢, with respect to Lebesgue measure. In this case it turns out that I’ = R?
with Lebesgue measure as invariant measure. For w € L' (pg o0y2) N L? (K(0,00)2) We find

. d
3.7) (Fo,00)2w)(t) = (2m) ™42 ¢t 2o b0 108 0y ,z;'dz, teR%
(0,00) 000y i=1%;

Formula (3.4) yields in this case (¢ € L'(R%) N L2(R%))

. d
(38)  (Fgl, ) = @m)42 / e i g e (0,00)%,
k) Rd

Ezample 3.3. Next let us take G = Z¢ with m@®n = m + n(m,n € Z%) and
the counting measure as Haar measure. In this example I' = T¢ := {u € C% : |uy| =
-+» = |ug| = 1}, which can be identified with [0, 27)?% under addition mod 27 and with
Lebesgue measure as invariant measure. We now have (w € £ N £2)

(3.9) (Fraw)(®) = > w(n)e!™?, ¢ e [o,2m)%

nezd

For ¢ € L}([0,2m)%) N L?([0,27)?) application of (3.4) yields

(3.10) (Frko)(n) = / M pt)dt, ezl
[0,2m)d

Ezample 3.4. This example follows from the previous one since Z% and T¢ are
character group of one another. We have in particular

(3.11) (Fraw)(n) = f w()emdt, ezl
[0,2m)4d
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for w € L'([0,27)%) N L?([0,27)%), and for ¢ € £1 N £2

(3.12) (Frlo)®) = D p(n)e™™, 1 el0,2m)%

nezd

+  Two simple conditions will be imposed on w, viz.

(3.13) w#0onT, we LY (ug)N L?*(ug).
The first entails the injectivity of K,, and also

(3.14) F=w-w*=w?*>0 on T.

Because of (3.14) the operator R is strictly positive Hermitian. We observed already
that the second condition in (3.13) guarantees that the MISE of the estimators is well
defined, as will be seen below.

The inverse R~! is in general unbounded and therefore unsuitable for the construc-
tion of the estimators. In order to define a regularized version of this inverse we follow
the pattern described in (1.15) and (1.16). A family of regularized inverses is now given
by

(3.15) R = Fg'Ms, v Fs, >0,

where Mj_ (7 is multiplication by 6, (F) in L?(ur). Let us write || o || and || e ||r for the
norm in Lz(u@,) and L?(ur) respectively. Note that R;! : L?(ug) — L?*(pug) is bounded
for each a > 0, and that

(3.16) lillr% |R,'Rw ~ wlg =0, for each w € L(ug),

according to the dominated convergence theorem.
The RI-estimators of § are defined as

SIF—'

n

(3.17) By = RJYG, a>0, where Z
and where we assume that the §i are i.i.d. with mean g, so that § is an unbiased estimator
of g. Both in the case of indirect density and in the case of indirect regression function
estimation, to be considered below, such an estimator ¢ exists. Exploiting (3.15) the
expression for 6, can be given a more explicit form. In fact, it can be shown that the
sets {7 : 7#(7) > a}, @ > 0, are compact and that 6,(7) € Ll(/l.[‘) ﬂLz(up) see Carroll et
al. (1991). Using the obvious relation Fg'(64(F) - Fgd) = ca(Fg 'ba ('r)) ® 4, and (3.4)
we arrive at

(3.18) 0o =Da®§, >0,

where Aq(z) = creg Jp 6a(F(7))7(E)dur (7).
To construct the estimator of 8 we need the empirical character

(3.19) A7) = -71; > (Xk),

k=1
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to deal with the model of Example 1.1, and

n o In Y

in order to deal with the model of Example 1.2. Recall that we need
(3.21) w e LMug) N L3 (ug), |@] >0,

in order to insure existence of the MISE and injectivity respectively.

THEOREM 3.1. The RI-type indirect density estimator can be written as

R 11
(3.22) b = cgFg'! o) (MY a>0.

Proor. Just observe that

(3.23) Foi)) = corp 3 [ w0 & Xn(a)o(o

= cg— Zv Xk)/ “(¥)v(y)duc(y)

= c«;w*(v)v(v)-
Application of (3.15), where r is defined in (1.5), yields (3.22).

THEOREM 3.2. The RI-type indirect regression estimator can be expressed as

- 1
(3.24) O = C(;,fG E a,00) (Mx, a>0,

PRrOOF. A similar calculation yields here

(3.25) (Fed)(7) = cgw*(7)R(),

- which entails (3.24).

Let us now apply Theorem 2.3 to show that the risk of these estimators attains
the optimal rate. In the examples of Section 4, some optimal rates will be explicitly
determined. We choose the submodel to be of type (2.4), i.e.

(3.26) 8o := {0 € L?(ug) : |(Fet)(v)| < £(7),y €T}, L€ L (ur).

Results for hyperellipses like {6 € L?(ug) : || Fgbllr < ¢}, for some 0 < ¢ < o0, can be
obtained via hyperrectangles as in (3.26). For the lower bound we need @9 C ©. In
the indirect density estimation case this condition and (2.8) is harder to verify than in
the indirect regression case, because © has to remain restricted to nonnegative functions
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with integral 1. For convolution on the real line such a construction and verification has
been carried out in van Rooij and Ruymgaart (1996). We will also need that

(3.27) conditions (2.6), (2.9), (2.13) are fulfilled with
' H:Lz(ug), S=T, v=upr, p=F,

in order to suitably relate the decay of Fg8 to the decay of ¥ and the Fisher information.

THEOREM 3.3. In the indirect density estimation model let (2.8), (3.21), and (3.27)
be fulfilled, and suppose that ©y C ©. Then there exist o = a(n) > 0 such that the MISE
of the RI-estimators éa(n) in (3.22) converges to 0 at the minimaz rate over the submodel
Oy, a5 N — 0.

Proor. This follows at once from Theorem 2.3 provided that the crucial condition
(2.2) is fulfilled. To verify this condition first note that E|(Fgd)(v) — (Feq)()|? =
Var(Fgg)(y) = n~! Var(Fgg1) (7). It follows from (3.23) that we have

(3.28) Var(Fgdi)(v) < El(fiaél)(ﬂl?
< cglw*(VPEN(X1)P = &7 (),

because v maps into the complex unit circle.

In the regression case we usually have © = L%(ug), so that the condition ©y C ©
will be automatically satisfied. Rather than requiring (2.8) we may require that the
family of densities fo(e — 7), 7 € R, where f» is the density of the measurement errors,
satisfies

(3.29) { f2 is Lebesgue-absolutely-continuous with Radon-Nikodym

derivative f}, satistying 7y := ffooo[{fé(l')}Q/fz(ZE)]d.’B < 0.
We also need to extend condition (1.12) to

(3.30) 0 <m:=ess inf fi(z) <ess sup f1(z) =: M < 0.
zeG 2eG

THEOREM 3.4. In the indirect regression model let (3.21), (3.27), (3.29), and (3.30)
be fulfilled. Then there exist o = a(n) > 0 such that the MISE of the RI-estimators

N

bu(ny in (3.24) converges to O at the minimaz rate over the submodel ©g, as n — co.

Proor. First of all (3.27), (3.29), and (3.30) entail (2.8). Assumption (3.29)
implies that \/f2(e — 7) has a strong derivative in L?(R) at every 7, equal to

see Héjek & Sidék (1967). We see from (1.9) and (2.7) that for 6 € Oy (i.e. t € Iy) the
density of the bivariate X; equals fi(y,2) = fa(y — > pe; t(w®ex)(2)) f1(2), ¥ € R,
z € G. Assuming also pointwise convergence of Y oo, txw ®eg, by (3.31) the strong
partial derivatives of v/f; exist for every ¢t € Iy and are equal to

OV, o Bu-mE)
(332 (52) o= T2 o)) VG,

€ L*(R), T€R,
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where as before p = p; = ) oo te(w @ ex). It follows from (3.30) that

i

LI [ R, [ lwoe)@P s () dusz

4 —00 fZ(m)

< M 212”111@‘)%”«2;: u zlel?fwkl!%
(%) (%)

_ (424.)212 (s | 180 Pauen ) = om,

for some 0 < C < oo, where 7 is the average of 7 over the set Sy, C I'. Since the upper
bound in (3.33) is independent of the choice of ¢ € I, condition (2.8) is clearly satisfied
for numbers py, that relate to the function p = 7 representing the convolution operator
in the frequency domain.

It remains to verify condition (2.2). Exploiting (3.30) and (3.25) we now arrive at

(334) Var(Fein)(7) < B(Fad) ()
2 g (X)) - 2s 1
< it () E( 55) ~ SO0 (B0 1 2)
= &) [ 75 { A~ e0@a | A

. T(V){(m) Hw®9HG},

so that (2.2) is satisfied indeed.

(3.33)

Let us now return to the problem, already discussed in Section 1, that although in
principle Theorem 2.3 and its corollaries Theorem 3.3 and Theorem 3.4 determine the
rate at which a(n) should tend to 0, as n — oo, they don’t specify the choice of the
smoothing parameter for any given fixed sample size. To specialize the general method in
Dey et al. (1996) for data-driven smoothing parameter selection to abstract convolutions
as in Example 1.1 let us first introduce

- 1 .
(3.35) G = oy Z%,
k#3j
‘with g defined in (1.7). Thus we suggest to set the regularization parameter equal to

(3.36) & = arg an;% M, (a),
where the random function M, is given by
n
(3.37) My(a) = Z/ o { |Fedpl? - __(-FGq(]))(]:GQJ)} dur, a>0.
T‘ a

Note that the Fourier transforms needed for (3.37) are calculated in (3.23) or (3.25). In
Dey et al. (1996) this selection procedure has been employed for convolution on the real
line with satisfactory results.
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4, Some examples

The first example concerns an errors-in-variables model involving convolution on
Z2. Tt shows that deconvolution is not necessarily ill-posed and that the MISE may
still converge at the rate n~!. In the second example we deal with errors-in-variables
involving convolution on R?, where the rate of the MISE depends on the smoothness
class considered.

Ezample 4.1. Let us consider the model of Example 1.1 with G = Z? and den-
sity w(m, n) := ¥(m) - ¥(n), (m,n) € Z2, where 9 is the density of the Poisson (1)-
distribution, i.e.

1
(4.1) (k) :=e‘ly for k=0,1,..., and ¥(k)=0 for k=-1,-2,....

Then r{(m,n) = (Y* ®P)(m).(P* * P)(n), where ¢*(k) := ¢(—k), k € Z. It follows that
(4.2) (s, t) = e de2cossFeost) - (5 1) € [0,27)2.

Because apparently

4. in F(s,t)=e®>0

43) (5,0)€[0,2m)2 Het)=e ’

this deconvolution problem is not really ill-posed.
According to (1.7) the estimator of ¢ will now be

1 n
= ; (Xt = mp(Xz - )
_ L1y’ . 2
o (e ka1>m Xpa>n (X1 — m)(Xgo — n)l’ (m,n) € Z°.

It is clear from (4.3) that choosing 0 < o < 8 yields R;! = R™! and a zero bias
term. For such an « the RI-estimator equals

(4.5) f(m,n) =>_ > A(m—k,n—0)4(k,£), (m,n)e2?

keZ LeZ

where A is given by

2n 27
(4.6) A(m,n) / / L mitmstne) gog
7(s,1)

27
—e {/ e—ims—?cossds} {/ 6—int—2costdt} , (m,n) c Z2.
0 0

This estimator has E||§ — 8|2 = O(n™1), as n — oo, which rate is of course optimal.
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Ezample 4.2. Let us now consider a special case of Example 1.1 where more typical
rates arise. Suppose the bivariate density w is such that its Fourier transform satisfies
(4.7) lin(s,t)| ~ C(s* +2)7%,  as §*+t% — oo,
for some 0 < C' < 0o and @ > 5. From (1.7) we see that the estimator of ¢ is given by

X I
(4.8) g(z,y) = ;;w (2 — Xi1,y — Xna)

1 n
= EZ’LU(Xk] _-'I:,XkZ "Z/); (xay) ERZ’
k=1

which yields the RI-estimator
@9) daew)= [ [ Ado-uy-viwodd, (@) e, a>0,

where A, is given by

1 . 1
4.10 Aoz, y) = — // e~ @yt _—__dsdt, z,y) € R%.
(410) =g ] o (z3)
Let us next restrict 6 to the submodel
(4.11) {6 € ©c L*(R?) :]0(s,t)] < C(1 + 5% +13)77,(s,1) € R?},

where 0 < C' < co (we use C here as a generic constant) and v > 3. This is a common
way to describe smoothness of functions on IRZ, related to the Sobolev norm. According
to Theorem 2.1 the MISE of the estimator 8, satisfies

(4.12) E|6, — 9] < ¢ / / (8% + %)% dsdt
T JJ{(s24+12) =22 20}

1
+C // —————dsdt
((s2+12)-22<a} (8% +1%)%
O A o0
< —/ u4a+1du+0/ u " du,
n Jo A

where A := a~1/4%_ as we see from using polar coordinates.
Setting A = n%, § > 0, the two terms in the upper bound in (4.12) are of the same

order if § = 1/4(a + v), which yields
- (4.13) E|fa(ny — Ol = O(n~Gv=D/2064)) a5 n— o0,

when we choose a(n) ~ n~%/(@+¥)_ If the proper. conditions are fulfilled we may argue
along the lines of Theorem 2.3 or Theorem 3.3 that the rate in (4.13) is also optimal.
Let us just observe that (4.7) and (4.11) entail that (2.13) is fulfilled for

(4.14) T(p) =Cp"/?, p>0.

In conclusion let us briefly comment on (4.7). If we would choose w(z,y) =
o(z).0(y), (z,y) € R?, where ¢ denotes the standard normal density, we would have
(s, t)] = exp(—3(s? +?)), (s,t) € R®. This function has the desired radial symmetry,
but its decay is much faster than that considered in (4.7) and a much slower, logarithmic,
rate would result in (4.13).
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