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Abstract. In this paper, the problems of estimating the covariance matrix in a
Wishart distribution (refer as one-sample problem) and the scale matrix in a multi-
variate F distribution (which arise naturally from a two-sample setting) are consid-
ered. A new class of estimators which shrink the eigenvalues towards their harmonic
mean is proposed. It is shown that the new estimator dominates the best linear
estimator under two scale invariant loss functions.
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1. Introduction and summary

Suppose that a random m x m positive definite matrix S has a nonsingular Wishart
distribution with unknown covariance matrix X and n degrees of freedom, ie., S ~
Win(n,Z). There has been considerable research in estimating the covariance matrix %
using a decision-theoretic approach. It is shown that substantial improvement (reduction
in risks) over the usual unbiased estimator of ¥ can be obtained, essentially by focusing
attention on the problem of estimating the eigenvalues of ¥ by functions of all the
eigenvalues of £. In particular, Stein (1975) considered the class of orthogonally invariant
estimators of ¥ of the form

(1.1) Y= H®Q)H

where S = HQH' with H the matrix of normalized eigenvectors (HH' = H'H = I,),
Q = diag(ly,...,lm) is the diagonal matrix of eigenvalues of S with l; > -+ > I, > 0
and ®(Q) = diag(¢1(Q),- - ., dm(Q)), ¢:i(Q) = 0 is a real valued function, i =1,...,m.
Works along this direction can be found in Haff (1980), Dey and Srinivasan (1985), Lin
and Perlman (1985) and Dey (1988). Excellent reviews on this topic can be found in
Muirhead (1987) and Pal (1993). However, all the proposed estimators will shrink the
eigenvalues towards the origin. In practice, it is more useful and reasonable to shrink
the eigenvalues toward some central values.

In this paper, we consider the problem of estimating ¥ using two scale-invariant
loss functions

(1.2) Li(%,8) = tr(E27Y) = In [£B7Y - m,
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and
(1.3) Ly(Z, %) = tr(E8! = I,,,)2.

Haff (1980) shows that for ¢; = 1/n and ca = 1/(n4+m+1), ¢1.5 and ¢S has the smallest
risk among all the scalar multiples of S under L; and L, loss function respectively. We
© refer these estimators as the best linear estimators thereafter. We proposed a new
estimator of the form

. m
(1.4) Y(a) =acS+ (1~ a)cﬁ_——l—Im

where 0 < o < 1. ¢ is a constant appropriately chosen for the two loss functions (1.2)
and (1.3), i.e., ¢; for Ly loss function and ¢ for L loss function. We prove that ¢;.9
and ¢S are inadmissible and is dominated by 3(a) in (1.4) for some values of . Note
that for & = 1, 3(a) corresponds to the linear estimator cS. 3(c) is in the class of
orthogonally invariant estimators defined in (1.1) with eigenvalues

(1.5) $:(L) = acl; + (1 — a)d,
=cdi—-(1-a)ll; =) (= I,...,m)

where [ = m/tr S~! is the harmonic mean of ly,...,ln, the eigenvalues of S.

This estimator is motivated by the fact that the sample eigenvalues of S usually
tend to be much more dispersed than the population eigenvalues of % (see Muirhead
(1987)), i.e., I; tends to over—estimate the largest population eigenvalue while I, tends
to under—estimate the smallest population eigenvalue. Intuitively, ¢S can be improved
by shrinking the sample eigenvalues towards some central value. From equation (1.5),
it is easy to see that ¢;(L) is obtained by shrinking cl;, the eigenvalues of ¢S, towards
their harmonic mean ¢l ._The amount of shrinkage depends on the parameter o and the
distance between !; and [. « is the shrinkage parameter ranging from 0 to 1 representing
various degrees of shrinkage. Note also that %(a) in (1.4) preserves the order of the
sample eigenvalues ;. This class of order-preserving othogonally invariant estimator is
well studied by Sheena and Takemura (1992) as it form a complete class. '

This idea of shrinking the eigenvalues towards certain central value is not new. It
has been used in Friedman (1989) and Leung and Chan (1998) where the arithmetic
_mean, instead of the harmonic mean, was adopted as the central value. In Friedman
(1989), he used this shrinkage in discriminant analysis, and coined the name ‘regularized
discriminant analysis’. In Leung and Chan (1998), they considered the same estimation
problem using the squared error loss function. However, this squared error loss function
is not scale invariant. We would like to develop similar dominance results for the Ly and
L, loss functions. If we shrink the eigenvalues towards their sample mean as in Leung and
Chan (1998), it is extremely difficult to obtain dominance results. If we use the harmonic
mean as the central value, we are able to obtain dominance results as in Sections 2 and
3. Another possible way is to shrink the eigenvalues towards their geometric mean, but
this possibility will not be explored in the paper and leave for further study.

Another closely related problem is the estimation of the scale matrix A in a mul-
tivariate F° distribution. This problem has been considered by various authors, namely,
Muirhead and Verathaworn (1985), Leung and Muirhead (1988), Dey (1989), Gupta and
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Krishnamoorthy (1990), Konno (1991) and Leung (1992). This problem arises natu-
rally from a two-sample setting (see Muirhead and Verathaworn (1985) and Leung and
Muirhead (1988)).

Suppose that a random m xm positive definite matrix I has a multivariate F' distri-
bution with degrees of freedom n; and ny and scale matrix A, ie., F ~ Fp(ng,ng; A).
We consider the two invariant loss functions (1.2) and (1.3) (with ¥ replaced by A).
Muirhead and Verathaworn (1985) show that c3F', where

(1.6) c3 = (’I’LQ —m — 1)/?7,1,

is the best among all scalar multiple of F' under the L; loss function when ny > m + 1.
Later on, Leung and Muirhead (1988) show that c4F', where

(n2 —m)(ng—m—3)
(ng —m—1)(n1 +m+1)+mng +2’

(1.7) Cq4 =

is the best among all scalar multiples of F' under the L loss function when ny > m +
3. Using a similar approach as in the Wishart situation, we propose a new class of
orthogonally invariant estimators of the form

(1.8) Ala) = acF + (1 a)cE—F—_—lIm
where 0 < a < 1.

The present paper is organized as follows: In Section 2, we considered the problem
of estimating the covariance matrix ¥ in a Wishart distribution (one-sample problem)
and the scale matrix A in a multivariate F' distribution (two—sample problem) under the
L loss function. We proved that the best linear estimator ¢1S (and c3F') is inadmissible
and is dominated by (c) in (1.4) (and A(a) in (1.8)) for some suitable chosen values of
a. Similarly in Section 3, we considered the same estimation problem using the La loss
function. Finally, a simulation study is carried out to study the performance of these
new estimators in Section 4.

In Sections 2 and 3, some expectations involved in the risk calculations are very
complicated and cannot be expressed in closed forms. However, in order to prove the
dominance results, only upper and lower bounds for these expectations are needed. These
bounds are formulated as the following lemma and will be used in Sections 2 and 3.

LEMMA 1. Assumé that m > 1, ny > m+ 1 and no > m+ 1. Let F ~
Fin(n1,m9;A).
—2 _ _
() B[] < e plets),
. tr(AT2F (n142)(ne—2)—2(m—-1) AL
(i) E| rtErF—l )] <] nlng)—g—l)(nz—ﬁ) ]E[?;F—IL
(i) mem=l < Blfer] < B2

Lemma 1 can be proved by the multivariate F' identity (see Muirhead and
Verathaworn (1985) and Konno (1988)). The proof of this lemma together with the
multivariate F identities are given in the Appendix.
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2. Improved estimation of ¥ and A under L; loss function

First we consider the problem of estimating the scale matrix A in a multivariate F
distribution. Estimation of X in a Wishart distribution can be considered as a limiting
case of the former problem and will be considered later. Let A ~ W,,(n;,A) and
independent of B ~ Wy, (nz,I). Then the random m x m positive definite matrix
F = AY2B~1Al/2 has a multivariate F distribution with degrees of freedom n; and
ng and scale matrix A, i.e., F' ~ F,(ny,n2; A). Muirhead and Verathaworn (1985) show
that c3F, where c3 is given in (1.6), is the best linear estimator of A. The main result
in this section is to provide a sufficient condition on o such that c3F is dominated by
A(c) defined in (1.8).

THEOREM 2.1. Assume thatm > 1,n; >m+1 and ns > m + 1. Applying the
loss function (1.2),

m

(21) Al (O{) = aC3F + (1 - Oé)Cg‘E;PT_—l

I

dominates the best linear estimator csF' provided that

—g+/¢% + 8g(m — 1)(m, +ng —m—1)
4(m— 1)(’1’1,1 +np —m — 1)

(2.2) <a<l,

where ¢ = mny(ng — 2).

PROOF. For the loss function in (1.2), it is straightforward to show that the risk
difference between c3F' and A;(a) is

G1(A) = E[L1(A, c3F)] - E[L1(A, Ay (a))]
rA-1
= (1 —a)m{l —c3F [%}}—%—E [ln

+mina.

mr |

Using the upper bound in (iii) of Lemma 1 and In|I + A| > tr A — (1/2) tr A? for any

Ppositive definite matrix A (see Konno (1991), p. 160), we have

G1(A) > (I —a)m(m—1)(n; +ne —m —1) +mlné+ (1-a)m
nl(ng —2) o
(1—a)?*m? _ [ tr(F-2)
e

Note that Ina > —(1 — o) /o and tr(F~2)/(tr F~1)2 < 1,

CONN PN P L

mp(m - 1)('”/1 + 1o —m — 1)a2 + g — Q],
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where g = mn; (ng — 2). Note that the term in the square bracket in (2.3) is a quadratic
function in o with the coefficient of a? being positive. The condition (2.2) in Theorem
9.1 ensures that the lower bound for G;(A) in (2.3) is non—negative and the proof is
completed.

Remark 1. Intuitively speaking, we would like to find a value of « that maximizes
the risk difference G1(A). However, this a generally depends on the unknown matrix
A. Instead, we suggest using an ‘optimal’ value of o that maximizes the lower bound in
(2.3). It is easy to show that such optimal value is the real root of the cubic equation
a3+ ra —r = 0, where

mni(ng — 2)

(24) = (m—~1)(ng +no—m-—1)

Cartan’s solution of this cubic equation (see Merritt (1962), p. 49) is

3l 7 r2 3 sl T r2  p3
(2.5) Q] = 2+ (Z+27>+ 5— (Z"—{—é? .

Remark 2. An anonymous referee pointed out that the result in Theorem 2.1 can
be generalized easily by considering a new class of estimators

(2.6) An(a) = acsF + (1 — a)ez¥g(9) I

where 9 = m/tr F~!, and g(9) is a bounded positive real valued function of ¢ such that
0<ky <g(®@) <k < 0, for some constants 0 < k; < kp. With this Ay (@) and similar
calculation, one can write the risk difference

Gn(A) = E[Li(A,csF)] — E[L1(A, An(a))]
> &#{[l—cgkl (%)]a +(k1—1)a—1—2— k2}

The expression in the curly bracket is a quadratic function in a. Therefore, one can es-
tablish a similar sufficient condition on « such that G (A) > 0. However, this condition
is rather messy and depends on k; and k. When k; = kg = 1, Ap (o) reduces to A (a)
and Gy (A) reduces to G1(A).

Now we turn to the problem of estimating ¥ in a Wishart distribution.

THEOREM 2.2. Assume that m > 1 and n > m + 1. Applying the loss function

(1.2),

m

(2.7) Si(a) =ae S+ (1 - a)clm

Im
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dominates the best linear estimator ¢1S (where ¢; = 1/n) provided that

—nm + /n?m? + 8nm(m — 1)

<a<l
4(m - 1) sas<

(2.8)

PROOF. Note that in the two-sample situation, F = AY2B~141/2 where A ~
Win(n1,A) and independent of B ~ W, (ng,I). B can be considered as the sum of
squares and cross product matrix of n, independently and identically distributed m x 1
standard normal random vectors. By the strong law of large numbers, n; !B converges
to I, or noF converges to A almost surely, as ny tends to infinity. This becomes the
problem of estimating the covariance matrix ¥ in a Wishart distribution. Furthermore,
ngF' is uniformly integrable so exchange between lim,,_,«, and expectation is possible.
Therefore, the sufficient condition (2.8) in Theorem 2.2 can be obtained by letting no —
oo in the sufficient condition (2.2) in Theorem 2.1 (with n; replaced by n) and the proof
is completed.

Remark 3. It is possible to prove Theorem 2.2 by computing the risk difference
directly as in Theorem 2.1. However, it is easier to prove the result by letting ny — oo.
This technique has also been used in Leung and Chan (1998). The ‘optimal’ value for
a (maximizes the risk difference between ¢;.S and $(a)) in this one-sample situation is
the same as in equation (2.5) except that r = mn/(m — 1). Again this is obtained by
letting ny — oo and n; is replaced by n in (2.4).

3. Improved estimation of ¥ and A under L loss function

Similar to Section 2, we first consider the problem of estimating A in a multivariate
F’ distribution. The corresponding result for estimating ¥ in a Wishart distribution can
be obtained by letting ny — co. Leung and Muirhead (1988) show that cyF, where ¢4
is given in (1.7), is the best linear estimator of A. The main result in this section is to
provide a sufficient condition on « such that ¢, F is dominated by A(a) defined in (1.8).

THEOREM 3.1. Assume that m > 3,

(3.1) ny = m+3+12/(m - 3),
‘ VIt (m +5) — ta(m + 2)]2 = 8(t; — t5)[261(m + 1) — mity)]
(3.2) ng > Y11 2t
t1(m + 5) — ta(m +2)
+ 2t — t2) )

where ty = (n1 —m — 1)(m + m+1), t2 = (ng —m + 1)(ny +2) and

m(m +1)(n; — m+ 3) — 4(m — 1)
(m—1)(n1 —m+2)

(33) (D) Z

Applying the loss function (1.3),
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R m
(3.4) Ag(a) = acgF + (1 — a)c‘iﬁj[m

dominates the best linear estimator c4aF' provided that by /a; < o < 1 where

*

2¢c4(ng — m+ 1)[(n1 + 2)(ng2 — 2) — 2(m — 1)]

(35) S a=k (s —2)(ria — &) (s —m — 1) :
(3.6) b1 Zk——Q(’I’Ll ——m—l)/’l’lg, )
b ny meg(ny —m+1)(ny —m+3)
ne—m—1 (ng — 2)(ne — 4)

PROOF. For the loss function in (1.3), it is straightforward to show that the risk
difference between c4F' and Ag(0) is

G2(A) = E[La(A, caF)] — E[L2(A, Ag(a))]

= (e L B - 2 an [
~(1-)E [%;] - 2acll [t_r%‘_f_f‘l} } '

Using Corollary 2.4 in Konno (1988), it can be shown that E[tr(A~1F)2] = mn; /[ca(ne—
m - 1)]. Applying the upper bounds (i) and (ii) in Lemma 1,

(1 +a)n; — 2ny tr A1

> (1 — =

(3.7) Ga(A) > (1 oz)m04{ — +2F iy
(1 —a)meq(m — m+3)E tr AL
9o —4 tr -1

 2c40](ny + 2)(ng — 2) — 2(m —1)] {trA‘l] }
(n2 —m —1)(ng — 4) tr -1 ]

Note that there are three expectation terms in (3.7). The coefficient of the first expec-
tation is positive while the last two are negative. Therefore we apply the lower bound
of (iii) in Lemma 1 to the first expectation and the upper bound of (iii) to the last two
expectation terms and simplify,

(3.8) G2(A) > (1 — a)ymeq(aio — by),

where a; and b, are given in (3.5) and (3.6). A sufficient condition for Ga(A) > 0 is
bi/a; < a < 1. Conditions (3.1) and (3.2) are needed to ensure b; /a; < 1. Condition
(3.3) is to ensure a; > 0 and the proof is completed.

Remark 4. 1t is easy to see that the ‘optimal’ value for o that maximizes the
lower bound in (3.7) is ag = (a1 + b1)/(2a1) where a; and b; is given in (3.5) and (3.6)
respectively.
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Table 1. Minimum integer value of ny satisfy conditions (3.3) and (3.4).

ni m=4 m=5 m=6 m=T7 m=8 m=9 m=10 m=20

20 1128 94 53 40 33 30 28 32
30 241 84 53 40 34 30 27 27
40 228 93 61 46 38 33 30 26
50 242 106 69 53 44 38 34 27
60 264 119 79 60 49 42 38 28
70 289 133 88 67 55 47 42 30
80 316 147 98 74 61 52 46 31
90 244 162 108 82 67 57 50 32
100 372 177 118 89 73 62 54 34

Remark 5. The conditions (3.2) and (3.3) in Theorem 3.1 seem rather restrictive.
Table 1 gives the minimum integer value of ny that satisfy (3.2) and (3.3) for various
combinations of m and n;. From Table 1, the condition on n, becomes less and less
restrictive when m increase.

For the problem of estimating ¥ in a Wishart distribution, similar results can be
obtained from Theorem 3.1 by letting ny — co and replace n; by n.

THEOREM 3.2. Assume that m > 3 and n > m + 3 + 12/(m — 3). Applying the
loss function (1.3),

. m
(3.9) Yo(a) = acaS + (1 — a)e poy I,

dominates the best linear estimator co.S (where ¢y = 1/(n-+m-+1)) provided that by /as <
a < 1 where

(3.10) az = [m(n—m+3) —2(n+2)lca(n—m+1) +n,
(3.11) by =mea(n—m+3)(n—m+1)—n+2m+ 2.

PROOF. The proof is similar to the proof of Theorem 2.2. As ny tends to infinity,
nz F* converges to a Wishart matrix with n; degrees of freedom and scale matrix A. This
is same as the setting in Theorem 3.2 with n replace n; and ¥ replace A. The results in
Theorem 3.2 can be obtained from Theorem 3.1 by letting ny — 0o in (3.8). Note that

lim c401 = c2a0  and Hm ¢4by = cobs
na—00 ng—00

where a1, by are defined in (3.5) and (3.6), and ay, by are defined in (3.10) and (3.11)
respectively. Therefore the risk difference between ¢3S and 35 () is

(3.12) G3(2) Z (1 - a)mcz(aga - bz)

A sufficient condition for G3(¥) > 0is by/az < a < 1. Note that by /ay < 1 iff (n+2)(n—
m+1) < (n—m—1)(n+m+ 1), which is equivalent to n(m — 3) > m2 + 3. Therefore
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Table 2. PRIAL of £1(a) over ¢; S using L1 loss.

% n=5 n=10 mn=25

diag(1,1,1)  9.633  7.296  3.765

diag(4,2,1) 9.293 6.799 3.468
) diag(25,1,1) 8.917 6.207 3.292

Table 3. PRIAL of £2(a) over 28 using Lo loss.

3 n=20 n=25 n=250
diag(1,1,1,1) 0.110 0.450 0.651
diag(8,4,2,1) 0.105 0.422 0.599
diag(25,1,1,1) 0.106 0.430 0.632

the conditions m > 3 and n > m + 3 + 12/(m — 3) are needed to ensure by/as < 1 as
stated in (3.1). The conditions (3.2) and (3.3) are satisfied as ny — oo.

Remark 6. An ‘optimal’ value of a that maximizes the lower bound of G3(Z) in
(3.12) is

ag = (a2 + b2)/(2a2)
_Imn-m+3) -n-2ln-m++(m+1)(n—m—1)
T mn-m+3)-2n—4(n-m+1)+nn-—m-1)

Note also that as < 1 iff by < aa. Hence the conditions n > m + 3 + 12/(m — 3) and
m > 3 in Theorem 3.2 ensure that ag < 1.

4. Simulation study

For estimating the covariance matrix ¥ in the Wishart distribution, a Monte Carlo
simulation study was carried out to compare the risks of $1(a) and ¢, 8 using L; loss
with the ‘optimal’ value of a suggested in Remark 3. For m = 3 and n = 5,10,25, a
sample of 1000 Wishart W3 (n, ) matrices were generated for three different choices of
Y. Then these 1000 matrices were used to construct ¢;S and 3 () and the average
losses (with respect to L) were obtained. Table 2 summarizes the percentage reduction
in average loss (PRIAL) for $1(a) compared to ¢; S, i.e., it is the estimate of

E[L(Z, 15) — L1 (5,51 (a))]
E[Ll(z?cls)] .

Similarly we also compare the risks of ﬁz(a) and ¢y S using Lo loss with the ‘optimal’
value of o suggested in remark 6. Due to the conditions stated in Theorem 3.2, we
choose m = 4 and n = 20,25, 50 in this simulation. Table 3 shows the PRIAL for ¥(a)
compared to ¢S using Lo loss.

For estimating A in a multivariate F' distribution, we generate 1000 random matrices
of A’s and B’s from W,,(n1, A) and Wy, (no, I) respectively for three different choices of
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Table 4. PRIAL of A;(c) over caF using L; loss.

A nyp=ne=5 ni=ng=10 mn3=ng=25
diag(1,1,1) 7.508 9.662 6.364
diag(4,2,1) 7.392 - 9.203 5.937
diag(25,1,1) 7.253 8.678 5.620

Table 5. PRIAL of Az(a) over c4 F using Lo loss.

A ny=n2=40 ni=ng=45 n;=ny=>50
diag(1,1,1,1,1,1,1,1) 3.293 3.225 3.127
diag(128, 64, 32,16, 8,4,2,1) 3.101 3.015 2.882
diag(25,1,1,1,1,1,1,1) 3.270 3.209 3.111

A. They are then transformed into F = A/2B~'A'/2, For simplicity, we restrict n; =
n2 in our simulation study. For the L; loss, we choose m = 3 and n; = ny = 5,10, 25.
Table 4 summarizes the PRIAL for A;(«) compared to c3F with the ‘optimal’ value of
o suggested in Remark 1. For the L, loss, we choose m = 8 since ny = ny can assume
reasonable values that satisfy the conditions in (3.3) and (3.4) as seen from Table 1.
Therefore, we choose m = 8 and n; = ny = 40,45,50 in this study. The PRIAL for
A, (a) compared to c4F’ with the “optimal” value of « suggested in Remark 4.

From Tables 2-5, all the PRIALSs are positive and confirm the dominance results.
Our proposed estimators represent a reasonably improvement over the corresponding
best linear estimators except for estimating ¥ in a Wishart distribution using the Lo

loss.
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Appendix

Suppose that a random m x m positive definite matrix F = (f;;) has a multivari-
~ate F' distribution with degrees of freedom 7; and ny and scale matrix A, denoted by
Fon(n1,n2; A). That is, F has the probability density function

I'n(n/2) _ e 1
m A n1/2F(n1 m 1)/2[+A lF n/2
where n = n; +ng, 7y > m+1, ng > m+1 and () is the multivariate Gamma
function. Let V(F,A) be a matrix whose elements are function of F and A and Viry =
TV + (1 —r) diag(V). Note that tr(A()B(1/r)) = tr(AB) for any m x m matrices A and
B. We define

9

(A1) D=(dy)= 501+ )55
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as a matrix of differential operators where 6;; is the Kronecker delta. DV is the formal
matrix product of D and V. Let h({F) be a real-valued function of F' and 0h(F)/OF
is an m X m matrix whose (z, j)-th element is 0h(F)/0f;;. We simply write V(F, A) as
V and h(F') as h for brevity. Under fairly general regularity conditions, we have the F
identity:

1

(A.2) Elhte(A + F)~'V] = %E[h tr(DV)] + %E [tr (g%v(l /2)”

—m-1
™ T’L” Ehte(F~V)].

This F identity is an extension of the Wishart identity (Haff (1979)) to the multivariate
F distribution. The regularity conditions are to ensure the function hV satisfies the
conditions of the Stokes’ theorem and are given in Konno (1988).

Proor oF LEmMMA 1. (i) Take h(F) =1/(tr F71)?2 and V = (A + F)A~? in the
F identity (A.2). Note that tr DV = [(m + 1)/2]tr A=2 and 8h/0F = 2F(;)2/(trF‘1)3
(see Haff (1979)). Therefore,

B [ tr(A~2) } _mg [ tr(A™2) ] 45 [trF—2(A+F)A—2]

(trF-1)2|  n= |[(tr F1)2 (tr F—1)3
ni—m-—1_[tr(F1A-T)
- E[ (e F1)2 ]

Using tr[F~2(A + F)A=2] < (tr F~Y)[tr(F (A + F)A~2)] and simplify,

)22 )

It is same as equation (A.1) in Konno (1991). Using

(A.3) tr(FTAY) < (br F1)(tr A7),

the result (i) follows immediately.

(i) Take h(F) = 1/(tr F7') and V = (A + F)A™*F in (A.2). 8h/OF = Fj;
(tr F~1)? (see Haff (1979)) and using Lemma (2.2) in Konno (1988), it can be shown
that tr DV = [(m + 1)/2](tr A7) + (m + 1) tr(A2F).

tr(A—2F)] n tr A1 2 tr(A1F1)
(44 E[ tr -1 ] C mpg—m-— " [UF_I ng —m - 1E[ (tr F=1)2 ]
2 tr A2
eedosd

Applying (A.3) in the second term and (i) in the last term of the right hand side of
(A.4), the result (ii) follows after simplification.
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(ili) Take h(F) = 1/(tr F1) and V= (A + F)A~1 in (A.2). Note that tr DV =
[(m+1)/2](tr A™!) and Oh/OF = Fp 2/(tr F~1)? (see Haff (1979)).

(A.5) E [f; ?:i] - = _TZ —+ n%E [(_é%‘%?]
o [

Note that the last two terms of (A.5) are nonnegative, the lower bound in (iii) follows. For
the upper bound in (iii), we apply (A.3) to the last term of (A.5) and tr F~2/(tr F~1)2 <
1 to the second term of (A.5), which completes the proof.
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