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Abstract. Let Xi,...,Xn(n > p) be a random sample from multivariate normal
distribution Nyp(u,X), where 4 € R? and X is a positive definite matrix, both p and
3 being unknown. We consider the problem of estimating the precision matrix X1,
In this paper it is shown that for the entropy loss, the best lower-triangular affine
equivariant minimax estimator of £~ is inadmissible and an improved estimator is
explicitly constructed. Note that our improved estimator is obtained from the class
of lower-triangular scale equivariant estimators.
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1. iIntroduction

Let Xi,...,X, be the independent observations from a multivariate normal dis-
tribution Np(u,Y) where both the mean vector 4 € RP and the covariance matrix
¥ > 0 are unknown. It is well known that (X,S) is a complete sufficient statistic
for # = (u, %) and X is independent of S, where X = n~1 3" X, ~ N,(u,%/n) and
S=3" (X — X)(X; — X)T ~ Wp(n — 1,X) denote the sample mean vector and the
sample dispersion matrix, respectively, and T" denotes the transpose of a matrix or vec-
tor. For estimating the generalized variance |X|, the generalized precision |X|~! and the
covariance matrix ¥, many people have obtained important results such as Kubokawa
(1989), Pal (1988), Sinha and Ghosh (1987), Sugiura (1988), Sun (1998), Takemura
(1984), Wang (1984), etc. Here we are interested in estimating the precision matrix 1.

Under the squared loss L (X7, £71) = tr(X 71X~ 1,)? where I, denotes the identity
matrix of order p, Haff (1979) showed that, under the affine transformation group .A:

(X,5) — (AX + B,ASAT); (1,%) — (Ap+ B, AnAT)

with A arbitrary p X p nonsingular matrix and B arbitrary p x 1 Vector, the best affine
equivariant estimator (BAEE) is

. —p—4\(n—p—
21—1:(71 Yy n)_(g P 1)5—1.
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He also proved that the BAEE 21—1 is inadmissible and gave the following Haff-type
improved estimator,

c1_(n-p-9-p-1)
2 - n—2

[S~1 + vt(v)I]

where v = (trS)~! and t(v) is an absolutely continuous function such that 0 < t(v) <
2(p — 1)/(n — p) and #/(v) < 0. Consider the following lower—triangular affine transfor-
mation group C:

(1.1) (X,8) = (AX + B,ASAT); (4,%) — (Ap+ B, AT AT)

where A is a p x p lower-triangular matrix and B is a px 1 vector. It can be easily shown
that an equivariant estimator of ! under the group C has the form (K7)~'AK ~! where
K is a lower-triangular matrix with positive diagonal elements such that K K7 = S and
A is an arbitrary diagonal matrix whose elements do not depend on §. Olkin and
Selliah (1977) and Sharma and Krishnamoorthy (1983) have derived the best lower-
triangular equivariant estimator (BLEE) of Y71 for the case p = 2. For general p, the
BLEE of 71 is very complicated. Krishnamoorthy and Gupta (1989) gave the related
expressions for determining the diagonal elements of A. Because the lower—triangular
affine transformation group C is the subgroup of the affine transformation group A, the
BLEE of ¥7! is an improved estimator of the BAEE. In addition, since the lower—
triangular affine transformation group C is solvable, from Kiefer (1957), the BLEE of
¥~ is minimax. The admissibility of the BLEE of £ ~! with respect to the squared loss
L; is an interesting problem in statistical decision theory. Zhou and Sun (1999) proved
that it is inadmissible for p = 2.
In this paper we consider the entropy loss

(1.2) Lo(E~ L™ = tr(2718) — log [2718] — p.

Sinha and Ghosh (1987) showed that under the entropy loss Lg, the BAEE of ¥~ is
33! = (n—p—2)S~! and they proved that the following Stein truncated type estimator

g1 _ [(n-p-1)(S+nXXT)}, if nXTS'X < (n-p-2)~!
4 (n—p-2)S71, otherwise

improves on the BAEE i:g !, Here we assume n > p + 2 throughout this paper. As
pointed out by Krishnamoorthy and Gupta (1989), no Haff-type improved estimator of
¥7! is available. Sharma and Krishnamoorthy (1983) have derived the BLEE of ¥~1
for the case p = 2. For general p, the BLEE of %71 is also derived by Krishnamoorthy
and Gupta (1989), that is, 351 = (K7) ! A2K ! where K is as described above (after
(1.1)) and Ag = diag(dp1, - .-, Opp) With

n—i-2)(n—-1i-1)
(n—2) ’

(1.3) 5117;: ’i=1,2,...,p.
Similarly, The BLEE %3 improves on the BAEE %3 and is also minimax.

The main purpose of this paper is to discuss the admissibility of the BLEFE f]g ! with
respect to the entropy loss Lo and find an improved estimator. In the next section, an
improved estimator of BLEE 25— ! is constructed from the class of equivariant estimators
with respect to the lower—-triangular scale transformation group D below, which proves
the inadmissibility of the BLEE ¥ ! with respect to the entropy loss Ls.
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2. Main result

Let X = vnX = " | Xi/y/n. Then X ~ Np(v/n, X) and X is also independent
of . Let

n
(2.1) vvT = ZXiX,T

where V' is a lower-triangular matrix with positive diagonal elements. Then VVT = §+
XXT and V-1K is also lower—tnangula.r with positive diagonal elements. Moreover, it is
easy to show that V1K - (VIK)T = T — (V-1X)(V-1X)T. Suppose V-1K = (yz])pxp
and V™IX =Y = (y1,...,%p)T. Then we have

( Yij = 0 (Z < j)

Y11 =+/1—y?

Yi1 =Y (i>1)

Vi—vy?

(2.2) 4 [ s .2 Zk 1yk o

Yis =
1- k—l yk
X

L " \/1 - ZJ =1 yk\/l - Z::l Yi

(i>7>1).

Let

_ _ _ . 1 1
(hij)pxp =V Ig. (Ag)~t- (v 1K)T = (yij)pxp diag (——, . —> (yij)gxp.
6121 5pp

Then from (2.2), we can easily obtain

( 1 -y
hyp = ,
11 5?1
hy =22 (3> 1)
Op1
2
Y1
hi: = 42 + .-
S PRTGRey
L y1:2—1
23 6p,z—1(1_—y]2__'”_y?—2)(l—y%_”'_yz2—l
2.3 3 1—y2— ... — g2
+ y12 yz2 , (’L>1)
Spi(l—yi—--- Yi—1
yi
h + -
9V e —1))
N Z/;,Q'—l
i1l =y = =i o)1~y - —y2 )
1
(t>7>1)
pi(1 =y = —yiy)

and
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~1

24)  Bl= )T (ETVTAETY) VT = (VYT - (b)Y

=V (dig) oy VT

where = stands for definition. From (2.3), it follows that
(2.5) (dij)oxp =Dy if Y =(0,...,0)7.

Let (wij)pxp = (yij);;p7 then (di;)pxp = (wij);::rx;; - diag(bp1, - - -, pp)  (Wij)pxp. Similar
t0 (Yij)pxp> (Wij)pxp is also lower triangular. Obviously,

Wiy = yi?
(Wuv)1<uwsio1 = Yuv)1euv<iot
(wﬂ, ces 7wi,i—1) = —Wi; - (yila e ;yi,i—l) : (wuu)lgu,vgi—l-

From (2.2), it follows that
1= v

V 1- Z;czl yl%

Using inductive method, it can be shown that w;; has the form of y;y;9(¥%,...,32).
Thus d;;’s have the following form: d;; = gi;(¥3,..., 2) for i = 1,...,p and d;; =
Consider the lower-triangular scale transformation group D:

Wi =

(X,8) — (AX,ASAT);, (4, %) — (Au, ALAT)

where A is a p X p lower—triangular matrix, which is obviously a subgroup of the lower—
triangular affine transformation group C defined in (1.1). Similarly to Wang (1984)
for estimating the covariance matrix ¥, we consider the estimator of the form %~! =
(V"HT.D(Y)-V~! where D(Y) is an arbitrary px p positive definite matrix with diagonal
elements d;;(Y') of the form fi(y,...,12),i=1,...,p, and off-diagonal elements d;;(Y’)
of the form yy; fi; (W}, ..., %2), ¢ # j. It can be easily shown that the estimator of this
form is an equivariant estimator of ¥~! under the group D. Obviously, the class Cy of
equivariant estimators of ¥ ! under the lower—triangular scale transformation group D
is larger than the class C; of equivariant estimators of ¥~! under the lower—triangular
affine transformation group C because D is a subgroup of C. So the BLEE 25‘ Lis in C.
In the following we will find an improved estimator of the BLEE 333! in the class C.
Let & = GGT, where G is a lower-triangular matrix with positive diagonal elements.
Since we only consider the estimators within the class C3, we can assume S ~ Wp(n —
1,1,) and X ~ Ny (B, I,) without loss of generality, where 8 = (B1,...,0,)T = v/nG 1.
The-joint probability density function of (3, X) is
4

sier-DeplJu(s)}  eo{-50X-p7(X-)

—_ 2 ?
p(S,X) = { 2(n—1)p/2;p(p—1)/4 [°., T (” . z) (2m)p/

if S is positive definite;

L0, otherwise.
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It is easy to show that the joint probability density function of (V,Y) is

: 1
c- H U;::—i exXp {-—E Z ’UZQJ} . exp{ﬂTVY}(l _ YTY)(n__p_Q)/z
if YTY <1 and V;>0 (1<i<0p);

0, otherwise

where ¢ = [2(n=2)p/27p(P+/4 TTP_ F(ﬂg_—z) exp{—167B8}!
From (2.6) we can see that given Y, all the v;;’s are independent.
Now we define the following new estimator of X7

(2.7) Sl=(vHT . DY) -v!

where V is defined by (2.1) and D1(Y’) is obtained from (d;;)pxp in (2.4) by only sub-
stituting its diagonal component dy; with d, a function of ¥?,.. .,yf,. We will choose
a suitable value for d such that D;(Y) is positive definite and 351 is better than the

BLEE flg ! with respect to the entropy loss Lo. Note that if d is a function of 47, ... ,yg
and D;(Y) is positive definite, then 25 ! is in the class Cs of equivariant estimators of
¥.~! under the lower-triangular scale transformation group D.

The loss of 5 = (V)T . Dy(Y) - V1!

Ly(d) = Ly(3g ", L) = (V) TDu(Y)V ) = log (V)T Di(Y)V 7 - p
tr[(V"HT(D1(Y) — dEn)V T +d - tr(VHTELVTY)
—log [Dy(Y)| +log [VVT| —p

=d. ;}.1%.; —log |D1 (V)| + tr[(V " H)T(D1(Y) = dE11)V ™) + log [VVT| — p

fl

where F11 = (eij)pxp denotes the p X p matrix with e;; = 1 and all other elements zero.

Hence the risk of 35 is

R(d)=R(5:1,6) = / Lo(d)p(V,Y)dVdY = YTY<1RY(d)dY

where

RY(d) = / Lo(d)p(V, Y)dV.

' Since p(V,Y) in (2.6) can also be written as

c.}:’-’[lv exp{__;_;l vn} 1:1 2 (ﬁi”"ﬁ%’)k { S B2y }

’L>J

2

I O A el
’L>]

if YTY <1 and v3>0 (1<i<p);
L0, otherwise,

and |D;(Y')| is an even function of y;, we have

(2:8) RY(d) = Bld- a(Y) ~ b(Y) log | D1(Y)[] + ¢(Y)
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where B is a positive-valued function of 57,...,82 and yi,...,92, ie,

B‘;B(ﬁ%,...,ﬁg;y%, . ,yp) > 0,
B el e
Z ﬁ(Ikal)), /o U?1+2k SeXP{*%Uu}dUu
_ Z (ﬁ(12ykl))'2k /0 pnk2h=2)/21 g {_%} _ édt
Ee

2
= a1 (Brv1ayr)? 1
bY) = kzﬂ)/moo V11 ”““—(%)! exp 2“11 dvpp

oo 2k 2%k
(ﬂ(12yk1))‘ F(nz )2(n+2k-—2)/2 >0

k=0

and c(Y") is independent of d. Here note that all odd power terms of y; vanish because
the next domain of integration, {(y1,.-.,¥p) : YT Y < 1}, is symmetric about the origin.
Let Q be a subset of RP such that each element Y satisfies the following conditions

dip <n—2
(2.9) Y'Y <1
and define t ven
_Jn-=2, 1 € {1,
(2.10) do = {du, otherwise.

Then we have the following main result:

THEOREM. Under the Aentropy loss Lo in (1.2), the BLEFE of the multivariate nor-
mal precision matriz $1, B = (K"Y)TA,K ™1, is inadmissible, where K is lower-
triangular with positive dwgonal elements such that K KT = S and Ay =
diag(6p1, - - - » 6pp) With 8i’s as in (1.3). Furthermore, 5% = (V" HTDy(Y)V~! im-
proves on BLEE 321, where D1(Y) is seen in (2.7) with d = do given by (2.10) and V
is defined by (2.1).

PRrOOF. It only needs to show R(351, 8) < R(351, 8) or R(dg) < R(dy;) for all B
and with strict inequality for some . Thus it suffices to prove

(2.11) RY (do) < R¥ (du1)

forall B R?, Y € {Y : YTY < 1}, and with strict inequality for some § and a subset
of {Y : YTY < 1} with positive Lebesgue measure.
Let a = (dp1, - . . ,dp-1,1)7. From (2.8), the derivative of RY (d) with respect to d is

vonr - 51y sy IO
(2.12) IR (d) —B{ ) - o) - 2 )i]
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and the derivative of |D;(Y')| with respect to d, |D1(Y)|" = |D;(Y)| is independent of
d, where D} (Y') is the (p — 1) X (p — 1) matrix obtained from D;(Y") by eliminating the
first column and the first row. Thus,
‘ d of | _|d-oF DY) 0

Di(Y) o Di(Y)
= [Di(Y)|- (d - "D} (Y)] a).

|ID1(Y)| =

Hence, from (2.12), it follows that

;L B b(Y)
{Ry(d)] =B [a(Y) d— aT[DI(Y)]_IOl]
(B1y1)? n+2k—2\ _ 06— n+ 2k — 2
BZ ] ( 2 >2( e [1 e aT[D:(Y)}—la] |

Therefore, a sufficient condition for [RY (d)] <0is 0 < d— T [D3(Y)] la < n—2.

For any Y ¢ Q, from the definition of dg, we have dy = dq; , and hence RY (dp) =
RY(dy;). Forany Y € Q, dp = n — 2. It is obvious that di; — oTDi(Y)]ra > 0
because the matrix (d;;)pxp is positive definite. Thus it follows that [RY (d)]’ < 0 for
d € [di1,n — 2], hence RY (do) = RY(n —2) < RY(dy1). Also, it is easy to show that
Dy(Y) is positive definite when d = dj as in (2.10). In addition, from (2.5) and (2.9),
Y = (0,...,0)T is an inner point of Q because dy; = 6,1 =n — 3 when Y = (0,...,0)T,

“and this can assure that the Lebesgue measure of 2 is greater than zero; thus we can
easily show that (2.11) holds strictly for some S € RP and a subset of {Y : Y'Y < 1}
with positive Lebesgue measure, which completes the proof. [

Since i:g ! is minimax, our improved estimator ig s also minimax.

To confirm the theoretical results in this paper, we carried out some Monte Carlo
studies and present some of the simulation results below. First we note that because
25—1 is BLEE, its risk is constant. For Xg ! as mentioned above, it is in the class Cy
of equivariant estimators of ©~! under the lower—triangular scale transformation group
D with respect to the entropy loss Lo. Hence without loss of generality we can assume
X1,...,X, to be a random sample from a multivariate normal distribution Np(u, )
where u = (u1,.-.,4p)7 € RP. In the following tables, simulated entropy risks of ‘25” 1

and i)g 1 are provided for p = 2, n = 5,10, and selected values of u = (uy, )7 .

Table 1. Simulated risks for p = 2, n = 5.

Risk of £51: 1.6131
Risk ofE L.

H2

u1 -1 -0.5 0 0.5 1
—1 1.6039 1.6017 1.6005 1.6013 1.6036
0.5 1.5860 1.5822 1.5807 1.5823 1.5859
0 15801 1.5776 1.5775 15784 1.5805
0.5 1.5855 1.5819 1.5805 1.5818 1.5851
1 1.6016 1.5988 1.5973 1.5086 1.6013
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Table 2. Simulated risks for p = 2, n = 10.

Risk of £ 1: 0.4254
Risk of 35 %
122]

: 1 -1 —-0.5 0 0.5 1
—1  0.4253 0.4252 0.4251 0.4252 0.4253
—0.5 0.4239 0.4234 0.4231 0.4234 0.4239
0 04214 04212 04211 04212 0.4216
0.5  0.4241 0.4236 0.4233 0.4236 0.4242
1 04253 04252 0.4252 0.4252 0.4253

TFrom Tables 1-2, we can see that 26_ ! provides substantial improvement over ﬁ)g !
in terms of the risk under the entropy loss for u close to the origin, but the improvement
diminishes as p moves away from the origin.

Remark. The estimator 35! can also be improved based on the idea of averag-
ing existing estimators introduced by Stein (1956). Takemura (1984) extends this idea
to averaging over orthogonal transformations and establishes an orthogonally invariant
estimator which improves the BLEE of the covariance matrix ¥. This approach is ap-
plicable to 25' 1 as well. We do not elaborate much further on this approach here as it is
well known to the researchers of this field.
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