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Abstract. Estimation of the quantile y + ko of an exponential distribution with
parameters (i, o) is considered under an arbitrary strictly convex loss function. For
Kk obeying a certain condition, the inadmissibility of the best affine equivariant pro-
cedure is established by exhibiting a better estimator. The LINEX loss is studied
in detail. For quadratic loss, sufficient conditions are given for a scale equivariant
estimator to dominate the best affine equivariant one and, when « exceeds a lower
bound specified below, a new minimax estimator is identified.
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1. Introduction

Let X3, Xo,...,Xn, n > 2, be a random sample from a two-parameter exponential
distribution E(u,0) with density given by o~ 'exp{—0o~*(z — u)} or 0 according as
z > por < u. The location parameter p and the scale parameter o are unknown with
—00 < p < oo and o > 0. The problem of interest is to estimate the linear function
6 = p+ Ko, where k > 0 is a given constant, from a decision theoretic point of view.
When £ = —Inp, 0 < p < 1, 0 is the 100(1 — p)-th quantile of E(u,0). Quantile
estimation, particularly for the exponential distribution, is of importance in reliability
and life testing studies.

The best affine equivariant (b.a.e.) estimator of § under the quadratic loss (d —
8)*/0% is 6 = X + (k — 1/n)S/n, where X = X1y (the minimum of X;’s) and S =
> 1(Xi — X(1y). Rukhin and Strawderman (1982) and Rukhin and Zidek (1985) es-
tablished the inadmissibility of éo when x > 1+ 1/n or K < 1/n by deriving better
estimators. Subsequently, Rukhin (1986) showed that, for 1/n < k < 1+ 1/n, & is
admissible. Elfessi (1997) considered estimation of 6 based on a doubly censored sample.

The quadratic loss is a symmetric loss penalizing evenly overestimation and under-
estimation in the sense that limg oo (d — 0)%/0? = limy,_oo(d — 0)2/02 = oo at the
same rate. There are, however, many situations where overestimation is a more serious
error than underestimation and therefore it should be penalized more, or vice versa, cf.
Varian (1975), Zellner (1986), and Kuo and Dey (1990). In those situations, use of the
quadratic loss may be inappropriate.

In Section 2, estimation of ¢ is considered under a loss of the form L((d — 6)/c),
where L(t) is an arbitrary strictly convex function on (—00,00). In Theorem 2.1, under
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a sufficient condition on &, an estimator which has smaller risk than the b.a.e. estimator
of 6 is presented. This condition corresponds to “large” values of k and generalizes the
condition k > 1 + 1/n for the quadratic loss. For this loss, the theorem reproduces
one of Rukhin’s and Zidek’s ((1985), Corollary 1) estimators. The construction of the
improved estimator is based on Stein’s (1964) idea which was later formalized by Brewster
and Zidek (1974). The improved estimator admits a plausible interpretation: gains in
estimating § = p + ko by this estimator are due to better estimating the component
ko under the loss L ((d — ko)/0), see Remark 2.1. Rukhin and Strawderman (1982)
and Rukhin and Zidek (1985) gave analogous interpretations for their estimators when
k>14+1/n. :

In particular, Theorem 2.1 is applied to the LINEX loss L(t) = ¢% — at — 1,a # 0,
and the corresponding range of “large” values of x is found as a function of a. This
asymmetric loss was introduced by Varian (1975) and has ever since attracted the interest
of many researchers, e.g., Zellner (1986), Kuo and Dey (1990), Parsian (1990), Sadooghi-
Alvandi (1990), Basu and Ebrahimi (1991), and Huang (1995). Note that overestimation
is more or less penalized than underestimation according to the sign of a. A consequence
of Theorem 2.1 is that if « > 1+1/n and either a < 0 or 0 < a < a; for some a; depending
on k then the b.a.e. estimator of 8 is inadmissible. For this loss “small” values of k are
also treated and estimators dominating the b.a.e. estimator of  are given in Theorems
2.2 and 2.3. The way of proof of these theorems suggests that convexity alone is not
enough and additional conditions are needed to construct improved estimators for  when
k is “small” for a general loss (see Remark 2.5).

Theorem 2.1 can be extended to m > 2 independent populations E(u,0),...,
E(itm,0) for the problem of estimation of a linear function of the parameters. For
the same problem Madi and Leonard (1996) constructed generalized Bayes estimators
under the quadratic loss. Estimation of this function was also addressed by Madi and
Tsui (1990) and of the location parameters by Elfessi and Pal (1991).

In Section 3, we use the quadratic loss (d—8)2/0?. For x > 1, adopting Kubokawa’s
(1994) unified approach, we give sufficient conditions on the function ¢ for a scale equi-
variant estimator of the form § = X + ¢(W)S, W = X/S, to dominate 8. Since &y is
known to be minimax, so is §. Then when x« > 1 + 1/n we identify two such ¢’s: one
produces the Stein-type estimator of Theorem 2.1, while the other yields a new minimax
estimator which does not belong to Rukhin’s (1986) class of minimax estimators. This
new estimator has a very simple form and is different from &y on the set W > 0 (thus
different from 8¢ with probability one when u > 0). It is demonstrated that it can also
be constructed using the techniques of Brown (1968) and Brewster and Zidek (1974). In
addition, when W > 0 this estimator coincides with the generalized Bayes estimator of
§ with respect to the prior 7(y,0) =1/0, p >0, 0 > 0.

Section 4 is an appendix containing some technical results needed in Section 3.

2. Estimation under a general loss

In this section we consider the problem of estimating 6 under the loss L{(d — p —
ko) /o), where L(t) is a strictly convex function on (—o0,00) with minimum attained at
t = 0. We also assume that L(t) is differentiable, integrals involving L(t) are finite and
interchange of integral and derivative is permissible.

The affine equivariant estimators of # have the form X + aS. The risk of such an
estimator, R(a), does not depend on (u,o) and is strictly convex function of a, since
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L(t) is strictly convex. To avoid uninteresting situations, we require that R(a) is not
monotone. (The same property will be implicitly assumed later on for some other strictly
convex functions representing risk functions.) Then R(a) is uniquely minimized at a = aq
satisfying
(2.1) EO{LI(X + agS — K,)S} =0
and
6 =X + agS

is the best affine equivariantbprocedure. Here and in the sequel, “Ey” will denote expec-

tation under 4 =0 and o = 1.
Following Stein (1964), for improving upon §; we study scale equivariant estimators

of the form
(2.2) §=y(W)S,

where W = X/S and v is a measurable function. For k satisfying (2.5), Theorem 2.1
establishes the inadmissibility of 6; by deriving a Stein (1964)-type estimator of the
form (2.2), which has smaller risk than 6.

THEOREM 2.1. SetY =Y " | X; and let by be the unique solution to the equation
(2.3) Eo{L'(bY — )Y} =0.
Then the estimator

(2.4) 6= {X + min{ag, bo(1 + nW)}S, W >0

X + apS, W <0

is better than &, provided
(2.5) Eo{L'(X +bpS — )S} < 0.

PRrROOF. The risk of § in (2.2) depends on (u, o) through /o so that one can take
o =1 and write

(2.6) R(8;1) = BulEAL@w)S — p— ) | W = w}.

For w > 0 we study the conditional expectation g(c; u) = E,{L(cS — p— k) | W = w}.
Then g(c; u) is a strictly convex function of ¢ minimized at ¢ = c(u) satisfying

(2.7) E{L'(c(n)S —p—£&)S |W =w}=0.
We will establish that
(2.8) e(p) <e(0) for p<0.
Observe first that for any p the conditional density of S given W = w > 0 (when o = 1)
is
(2.9) F(sip) oc s”lem (™o 5 > max(0, p/w).

Consider p < 0. Since g(c; 0) is strictly convex and minimized at ¢(0), (2.8) will hold if
we show that ¢'(c(u);0) <0 or

(2.10) Eo{L'(c(u)S — k)S | W =w} < 0.
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Since L'(t) is increasing and the conditional density of S | W = w does not depend on
u<0,

Eo{L'(c(1)S — )8 | W = w} < BolL'(c(u)S — i — k) | W = w}
= Bu{L(e()S — p - )S | W =w} =0,

i.e., (2.10) holds.
We proceed to show that

(2.11) ce(p) <w+c¢(0) for up>0.

Let u > 0. Notice first that ¢(u) < w + xw/p, since otherwise with probability one,
c(u)S — p — & > 0, by (2.9), and consequently E, {L'(c(u)S — p—&)S | W =w} >0 as
L'(t) is positive on (0,00). The last inequality contradicts (2.7). Analogously to (2.8),
(2.11) will hold if

(2.12) Eo{L'((c(p) —w)S —k)S | W =w} < 0.

The left-hand side of (2.12) is equal to

e}

u/w
/0 L'((c(p) — w)s — k)sf(s;0)ds + / L'((e(n) — w)s — K)sf(s;0)ds = I1 + L.

wfw

For s < p/w, using c(u) < w+ kw/p, we have (c(u) —w)s —k < 0 and thus [y <0
as L/(t) is negative on (—00,0). Also, for s > u/w, (c(p) — w)s —k < c(p)s — p — &, so
that the monotonicity of L’(t) implies

oo
I, < (positive constant) x / L'(c{u)s — p— K)sf(s;pu)ds =0,
w/w

by (2.7). Thus (2.12) holds.
We will need to express ¢(0) as a function of w. It follows from (2.7) and (2.9) that

/oo L'(c(0)s — k)s"e~(1tmWsds =0 or /oo L' ((c(0)/(1 4+ nw))y — k) y"e Ydy = 0.
0 0

Comparing with (2.3), we get ¢(0) = bo(1+nw). Moreover, (2.5) along with (2.1) ensure
that
(2.13) bo < ag

Define now ‘ ( N
__ J w+ min{ag, bo(1 +nw)}, w>0
w(w)_{w—}—ao, w < 0.

Then because of (2.8), (2.11), and (2.13), on a set of positive probability we have c(u) <
P(w) < w + ag for all p and hence, by strict convexity,

B {LW()S - p— k) | W = w} < E{L((w+a0)$ — - ») | W = w}.
From (2.6) the conclusion is that ¥(W)S, i.e. § in (2.4), has smaller risk than 6;.
Remark 2.1. With Y as in Theorem 2.1, the estimator 6 in (2.4) can be written

5= 82 = X + by, 0<'W<(a0/bo—l)/n
"] 61 = X + apgS, otherwise.
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By (2.3) boY is the best scale equivariant estimator of ko under the loss L((d — ko) /o)
when p = 0. We see that § is a “testimator” choosing between &, or 8; depending
on whether or not the likelihood ratio test for Hy : p = 0 with acceptance region
0 < W < (ao/bo — 1)/n accepts Hy. Hence, the gain in estimating 6 = y + ko by 6 is
achieved by better estimating the component xo.

As an illustration of Theorem 2.1 we present two examples showing that the condi-
tion in (2.5) gives rise to “large” values of &.

Ezample 2.1. Let L(t) = t*. Then ag = (k — 1/n)/n, by = x/(n + 1), and (2.5)
gives K > 1+ 1/n. Here the improved estimator § coincides with that in Rukhin and
Zidek ((1985), Corollary 1, m =1, a; = 1).

Ezample 2.2. Let L(t) = e* — at — 1, a # 0. Estimation of i and/or ¢ under this
loss has been studied by Parsian et al. (1993), Parsian and Sanjari Farsipour (1993), and
Parsian and Sanjari Farsipour (1997) Estimation of 8, however, has not been considered

—~ar/n

in the literature. In this case aq = {1 m)l—/;}(a <n), bp = (1/a)(1 — e~/ (n+1))

and (2.5) gives K > —({n+ 1)/a)In(1 — a/n). As a function of a < 0, ("H) In(1 - £)
increases from 0 to 1+ 1/n while for 0 < a < n it increases from 1 -+ 1/n to oo.
Consequently for any given k > 0 the b.a.e. estimator of = y+ ko, 61, is dominated by
8in (2.4) under L(t) if a < a1, where a; is the solution to the equation — (ntl) In(1-24) =
k. For instance in the case of the mean § = p + o it was found numerically that a; is
increasing in n ranging from —2.201(n = 3) to —2.013(n = 50). Note, in contrast, that
the b.a.e. estimator of y + o is admissible under the quadratic loss (Rukhin (1986)).
Finally, as @ | 0 or a T 0O the range of values of x approaches (1 + 1/n,00) which
is the range of “large” «’s corresponding to quadratic loss. This seems reasonable as
L(t) =~ a?t%/2 for a = 0. :

As mentioned in Section 1, under the quadratic loss Rukhin and Strawderman (1982)
and Rukhin and Zidek (1985) also derived improved estimators of 8 for small values of
K, namely 0 < £ < 1/n. In the case of the LINEX loss (with given a) we can prove the
following results for small ’s. First we treat the case where the parameter a is negative
and then the case of positive a.

’ THEOREM 2.2. Let L(t) = e*—at—1. Then, for negative a such that a > —n(n+1)
and (1 + )"l —5)—1>0,if

1 a n a
< —_—— —_— — — —_——
(2.14) 0< k< aln(l n) aln(l—}—n(n 1)),

the estimator

ax{W+ao,7}—+—2W}S, W<t
(2.15) 5 n+1 n

X+0,QS, WZ——];
n

is better than 6;.
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PROOF. As in the proof of Theorem 2.1 we need to study the conditional expecta-
tion E, {L(cS—p—k) | W = w}. For w < 0 and p < 0 the conditional density of S given
W = w (when o = 1) is f(s; ) oc s? e~ (1¥mW)s (0 < 5 < p/w. For any & > 0 let c(u, &)
be the minimizer of the strictly convex function g(c; 4, &) = E,{L(cS—p—k) | W = w}.
(The different notation for the same quantities as in Theorem 2.1 is used here to stress
‘the dependency on «.) The monotonicity of L'(t) and nonnegativity of x imply

0 = E{L'(c(tt;5)S — p—k)S | W =w}
< By {L(c(p, 6)S — p)S | W = w} = ¢'{c(p, k); 1, 0).

Thus

(2.16) e(p, &) > c(p,0).

In addition, ¢'(0;¢,0) = L'(—p)E,(S | W = w) > 0 and therefore c(u,0) < 0. We
will now establish a lower bound for ¢(x,0) (and hence for ¢(p,k)). To this end, set
d = c(p,0)/w > 0 and note that c(u,0) satisfies fo“/w L'(c(u,0)s — p)she~(+nwisgds —
or

1
(2.17) / L' (pdy — pyte” Armolw/wygy, — g,
0

Apart from a normalizing constant, the left-hand side of (2.17) is the expectation of a
decreasing function with respect to the density h(y; u) oc yme~(IHmwlB/wly o < ¢ < 1.
For w < —1/n, h(y;p)/h(y;0) is increasing. Appealing to Lehmann ((1986), p. 85),
we get fol L' (udy — p)y™dy > 0. So far we have not used the specific form of the loss.
Since L'(t) = a(e® — 1) < a*t we further obtain that fol (dy — 1)y"dy < 0, so that
d<(n+2)/(n+1),or

n+2
2.1 ,0) > ——w.
(2.18) (1 0) > sw
Now, the condition about a ensures that x in (2.14) is well defined. In addition, since

—ax/n

here ag = %(1 — (T_‘?_—W), (2.14) means that ag < —n—(nl+—1). Consequently, from (2.16)

and (2.18), c(u, k) > (n+2)/(n + 1)w > w+ag on the set (n+1)ap < w < —1/n, which
by strict convexity implies

E {L{((n+2)/(n+1))wS —p—&) | W =w} < E,{L((w+ ag)S — p— k) | W = w}.

It follows that for u < 0, § in (2.15) has smaller risk than 6;. For u > 0, § = §, with
probability one and the proof is complete.

Remark 2.2. The condition on a in Theorem 2.2 is satisfied at least when —1 <
a < 0. Indeed, since (1 + z)" > 1+ nz, —1 < z < 0, we have

( a )n a a a ala+1)
O T (R [ - = )

n(n + 1) n n+1 n n(n+ 1)
Further, it can be shown that this condition holds iff a(n) < a < 0, where a(n) is the
unique root of (1 + ﬁ;ﬁ)"(l — 2) — 1 in the interval (—n(n + 1),0). By numerical
computation we have found a(n) to be decreasing in n ranging from —1.57(n = 3) to

—1.92(n = 50). Note also that as a T 0 the range of values of « in (2.14) increases to
0<kKk< m which is the range of “small” «’s given in Rukhin and Zidek ((1985),

Corollary 2, m = 1, a; = 1) for the quadratic loss.
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n+1

THEOREM 2.3. Let L(t) = e — at — 1. Then, for positive a such that a < on

and (1+m)n(l— %) —-1<0,if

1 a n a
2.1 < — 1—=)—=In{1
(2.19) 0sk< aln( n) an(+n(n+1)—a(n+2)>’
the estimator

. n+2 1
(2.20) 6= <W+a0’ +1W) 5 W< “n-((n+2)/(n+1))a
X + apS, otherwise

18 better than 61.

Proor. As in the proof of Theorem 2.2, for w < 0 and p < 0, we need to bound
c(u, 0) from below. We will again show that c(u, 0) > "ﬁw for some negative w-values
to be specified. It suffices to establish ¢’(((n +2)/(n + 1))w;x,0) < 0 or

1
/ L(((n+2)/(n+ 1)y — p) ye~ O+ /gy < o,
0

Since L/ (t) = a(e® — 1) < a%te®, this inequality will hold provided that

1

(2.21) / ((n+2)/(n + 1)y — 1)y"elor+D/(riDw=(4nwliu/w)y gy ~ g,
0

For a < "i;n and w < (e +2§ (=T the coefficient of y in the exponential is

positive. Therefore, by an application of Lehmann ((1986), p. 85) the left-hand side of

(2.21) is larger than a positive constant times fol (n+2)/(n+1))y—1) y*dy = 0.
Thus (2.21) holds. The rest of the proof as in Theorem 2.2.

Remark 2.3. One can show that the function

Fla) = (1+n(n+1)ia(n+2))n(l—%) -1

is decreasing in (0,n/(n + 2)) and increasing in (n/(n + 2), (n + 1)n/(n + 2) with F(0) =
-0 and F((n+1)n/(n+2)) = oo. Thus the condition on a is satisfied for 0 < a <
" n/(n+2) < a(n), where a(n) is the root of F(a) in (0, (n + 1)n/(n + 2)). By numerical
computation we have found that a(n) is increasing in n ranging from 1.03(n = 3) to
1.90(n = 50). Analogously to Remark 2.2, as a | 0 the limiting range of values of « in
(219)is0< k< n(n+1)

Remark 2.4. For x = 0, Theorems 2.2 and 2.3 give improved estimators of u. We
note here that an improved estimator for o under the LINEX loss is given in Parsian
and Sanjari Farsipour ((1993), p. 2893). Also, when o is known, Parsian et al. (1993)
proved the minimaxity of the best location equivariant estimator of u for the same loss.

Remark 2.5. The two main steps in the proofs of Theorems 2.2 and 2.3 were
establishing the inequality ¢(u, k) > ¢(u,0) in (2.16) and then deriving an appropriate
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lower bound for ¢(p,0). It is important to stress that this inequality holds regardless
of the specific functional form of the loss L(t). This suggests that in order to construct
improved estimators of 6 for “small” k’s and a general loss a lower bound for ¢(u,0)
should be sought. On the other hand, the form of L(t) was crucial in bounding ¢(,0)
from below in Theorems 2.2 and 2.3. In the case of the quadratic loss L(t) = t2, one can
follow the proof of Theorem 2.2 up to the point fo "(pdy — p) y™dy > 0 and substitute
L'(t) = 2t to get fo (dy — 1)y™dy < 0, or c(p,0) > nizw Then as in Theorem 2.2, one
reproduces Rukhin and Zidek’s ((1985), Corollary 2, m = 1, a; = 1, v = 1) improved
estimator.

In the remainder of this section we extend Theorem 2.1 to m > 2 exponential
populations F(u;,0),i = 1,...,m. Assume that independent random samples of sizes
ni,i = 1,...,m, are available, denote by X, and S; the corresponding X and S, and
set now S = S0 S, Wi = X;/8, n = Y_" n;. Further, consider the problem of
estimating 6 = 221 a;u; + ko, for given constants a; > 0 and k > 0, under a strictly
convex loss L((d — 6)/c). The b.a.e. estimator is

m
= ZaiXi + CloS,

i=1

where ag satisfies Eo{L'(} i~ a;X;+aoS —«)S} = 0. Then for a; and « obeying (2.22),
the following result gives an estimator with smaller risk than é;.

THEOREM 2.4. Let Y have Gamma G(n,1) distribution and by be the solution to

the equation
Eo{Ll(boy - K,)Y} =0.

Then the estimator

ZaiXi-}—min{aO,bo (l'l-ZTLiWi)}S, W;>0 Vi=1,...,m

§=14 =l i=1
Z a; X; + agS, otherwise

i=1

is better than 6, provided that

(2.22) Ey {L/ (in: a; X; + bgS — Iﬁ)) S} < 0.

i=1

The proof of the theorem is analogous to that of Theorem 2.1 and is omitted. In
the case of the quadratic loss, (2.22) yields x > ZEL 3™, = and the estimator 6 is
also given in Rukhin and Zldek ((1985), Corollary 1) For the LINEX loss, (2.22) gives
>S5 In(l -, a<min{%:i=1,...,m}.

3. Estimation under quadratic loss

In this section we deal with the estimation of § under the quadratic loss (d — p —
ko)?/o? in the one population case. Employing Kubokawa’s (1994) approach we study



754 CONSTANTINOS PETROPOULOS AND STAVROS KOUROUKLIS

the dominance of a scale equivariant estimator of the form

(3.1) 5— {X +¢(W)S, W >0

o, W <o

where ¢ is an absolutely continuous function, over the b.a.e. estimator 6 = X + (k —
1/n)S/n. As before, we assume that the risk of § is finite, interchange of integral and
derivative is permissible, and take o = 1 when we evaluate risk functions below.

THEOREM 3.1. For x > 1 assume that the following conditions hold:
(a) ¢(w) is nondecreasing and lim,,_,o $(w) = (k — 1/n)/n.
(b) d(w) > do(w)Vw > 0,
where
1\ 1 1 w

(3.2) Polw) = (“ - ;) n (”" —1- 5) [t nw) i =1

Then the estimator § in (3.1) has risk nowhere larger than that of 6.

ProOOF. Let g(v) = UL—_1—2—)—!U”‘26‘”, v > 0, h(u;pp) = ne ™8 H(z;pu) =
Jo B(u; p)I(u > p)du, F(z;p) = [ uh(u; p)I(u > p)du, z > 0. Then, using Kubokawa’s
(1994) definite integral approach, by the condition (a), the risk difference RD =
R(bo; 1) — R(6; 1) can be written as

) mo=2 [ ¢ {ow [~ g+ [ ug) R ma
—(n+k) /Ooo vg(v) H (wv; u)dv} dw.

Since ¢(w) is nondecreasing, RD will be nonnegative if

(u+ &) f3° vg(v)H (wu; p)dv — [ vg(v) F(wu; p)dv
Jo~ v29(v) H (wv; p)dv

(34) é(w)= = ¢(w; w)Vw > 0.

For u < 0 it is easily seen that ¢(w;0) > ¢(w; ). For 4 > 0 and k > 1 it follows from
Lemma 4.4 that ¢(w;0) > ¢(w; p). Finally, RD > 0 if ¢(w) > ¢(w;0). Carrying out the

~computations it is seen that ¢(w;0) is just ¢o(w) in (3.2), and thus the proof is complete
by the condition (b).

From Theorem 3.1 and for K > 1+ 1/n we obtain the following two improved
estimators. The Stein-type estimator in (2.4) for quadratic loss, i.e.,

5= {X—l—min{ag,M}S, W >0
= n+1

X+a()S, WS())

ap = (k—1/n)/n, satisfies the conditions (a) and (b) of Theorem 3.1. Indeed, for ¢(w)
min{ag, £(1 + nw)/(n + 1)} the first of them clearly holds. For x > 1+ 1/n and w
B = (0, 2z(1 — (n+1)/nk)), we have ¢p(w) = s(1 +nw)/(n +1). Now, with ¢g(w)

hm
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min{L, L} g(W)S is the Stein (1964)-type estimator of o (cf. Zidek (1973)) and

¢(w) = kpg{w) for w € B. Also, with

J5” vg(v)H (wv; 0)dv

Ylw) = Jo” v2g(v) H (wv; 0)dv’

?

¥(W)S is the Brewster and Zidek (1974)-type estimator of o (cf. Brewster (1974)). It
is well known that ¥g(w) > ¥(w) (cf. Kubokawa (1994)). It follows that for w € B,
d(w) > wp(w) > ¢o(w) (see (34)). For w ¢ B, ¢(w) = ap > ¢o(w) as shown in
Theorem 3.2. Thus condition (b) is satisfied.

THEOREM 3.2. For k > 1+ 1/n the estimator

X +(W)S, W>0
6BZ_{507 WSOI

where ¢o(w) is given in (3.2), has risk nowhere larger than that of 6.

PrOOF. For k > 1+ 1/n it is clear that ¢o(w) is increasing and lim,, o ¢o(w) =
(k — 1/n)/n. Hence Theorem 3.1 applies.

The estimator 6pz is a Brewster and Zidek (1974)-type estimator as the following
argument demonstrates. For w > 0 and a constant ¢ consider the Brown (1968)-type

estimator of 6
5, = X+cS, 0<W<uw
X + agS, otherwise.

The risk of 6. is minimized at ¢ = ¢(w;u) given in (3.4). Because of the properties
of ¢(w;u) and ¢(w;0) stated above the choice ¢ = ¢(w;0) = ¢o(w) produces an im-
proved estimator 6. which in turn yields 6pz by the standard limiting argument of
Brewster and Zidek (1974). By this method of proof and analogously to Corollary 2.1
in Brewster (1974), the condition (a) can be relaxed to ¢(w) < (k — 1/n)/n, w > 0, in
the place of limy,— 0 ¢(w) = (k — 1/n)/n.

Rukhin (1986) has obtained a class of minimax procedures for §. Theorem 3.1
describes another one, a member of which is 6pz. We next show that épz cannot be
produced through Rukhin’s (1986) sufficient conditions for minimaxity. Note first that

—1

when W > 0, 67 is of the form (2.2) in Rukhin (1986) with f(z) = 4% (ET=a o

z > 0, where a = £ — 1/n. The first of the conditions requires that f(2)(1+271)P = &1

2a
(1;—1;;:-%;“_7;—1 be nondecreasing for some p > 0. By differentiation the sign of the

derivative is the sign of g(2) = (n — p + n2){(1 + 2)**! — 2»*1} — (n+ D)z(1 + 2){(1 +
z)® — 2™}. This is a polynomial of degree n with coefficient of 2™ (n + 1)(n/2 — p).
Therefore for g(z) > 0 Yz > 0 to hold we must have p < n/2. In general, for any

= 0,1,...,n the coefficient of 2™ is nonnegative if p < n — —=5. Consequently,

( )>0 1ff p < n/2. With f = &=l L+ the second of the conditions in Rukhin (1986)

is that af < (a — 1)min[l,p(n +2p + 1)(n + p)~'(n + p + 1)7|/(n + 1) which is not
satisfied for 0 < p < n/2.
The next theorem reveals an interesting Bayesian property of épz.
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THEOREM 3.3. For W >0, épz coincides with the generalized Bayes estimator of
6 with respect to the prior w(p,0) =1/, £ >0, 0 > 0.

ProoF. The posterior density of (i, 0) given S = s, X =z > 0, is

1
71,0 | 5,7) & —z exp{—(s+nw)/o +np/o}, O0<up<z, 0>0

The generalized Bayes estimator of § under the quadratic loss (d — p — ko)?/0? is given
by
1
E—% + kB~
d= ag i a )
b

where the expectations are taken under 7(u,o | s,z). By direct computations, it is easy
to verify that d = 6pz.

Some comments about the magnitude of improvement of §gz over &, are now in
order. At the origin (u = 0) épz and 6o have the same risk. This is evident from (3.3) and
the expression of ¢o(w) in (3.4) (and it is a common feature of Brewster and Zidek (1974)-
type procedures, see, e.g., Kubokawa ((1994), p. 294) for the case of estimating a scale
parameter). The percentage risk reduction of § 5z was computed numerically for selected
values of the quantile p = e™* and the sample size n, along with that of §gs — Rukhin’s
and Strawderman’s (1982) estimator. These numerical results (which are available upon
request) indicate that in general for u > 0, §rg exhibits larger maximal risk reduction,
whereas 6pz offers larger improvement for wide ranges of parameter values. For p < 0
the two estimators appear to have similar perfomance.
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Appendix

We first prove some technical results needed to establish that ¢(w;u) in (3.4) is
decreasing in p > 0. Then, the proof of this property is given in Lemma A 4.

LEMMA Al. Forz=mn,....,2n—1,n>1, and 0 < a < B we have that

ADD,— T (n—1~l)(k—l)ﬂa

ktl=c (n—k)l(n — D!

22n—1—z
2n—1-21)!

B ot >0 (0<E,l<n).

PrOOF. Denote by E, the sum in (A.1) and set £ = n + 5. Then
ayﬂ yﬁy

e -1 n—y-2 — n—y-1
The term in the brackets is nonnegative while the other term is larger than %ﬁ—)}-a

n—y—1 _ 22°717® a1 14z
(O(+Oé) T (2n—-1-z} a ’
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LEMMA A2. Forz=1,...,n—-1,n>2, and 0 < a < § we have that

n!

Fo = k‘:‘(n—m+k)!(n—k)!

l1+z 1+
+{(n—1—x Z(n—l—arﬂ—k)'(n k)}a+ > 0.

PRrOOF. Denote by G, the first sum in (A.2) and set y = (z — 1)/2 or z/2 — 1
according as z is odd or even. Combining equidistant terms from the middle we can

write G as

(A.2) (n—1- k)(;é — 2k)pite—kok

v Y
— Zekﬂl-{-m—kakz + Z dkﬁl-l—kak(ﬁw—Zk . am—2k)

k=0 k=0
where dy, = "'((Ziiﬁc;ﬂ]zzb(f;ﬁk) and e = m(x —2k)2. Denote the second sum

by H, and notice that H; > 0. Then F, in (A.2) becomes

z l1+z
F$>Hw+a1+{ Ze’“ Z(n—1—$+k)|(n k) +(n(—1—)$)!}:Hm’

since the quantity in the brackets can be shown to be zero. Hence (A.2) holds.

LEMMA A3. ForO<a<pfBandn>2let

n

A= {Z(n )& B* Z n—1ga® =Y (n)p6 i(n)kak} )
k=0 k=0

k=0
n—1 —_ n
B= Z -1) kﬂ Z wa® —af! Z(n — 1)ka’“ Z(n)kak
k=0 =0 k=0 k=0
n n—1 n—1 n
C =) MY (n—1ra® = (n— 1)) (n)iah.
k=0 k=0 k=0 k=0

Then, C >0 and A+ B+nC > 0.

PrROOF. We have

n

n n J !
C=>2 ""(” mik—DBtat=>_> = "'""1)' (-)(Fei~Fa?) >0

1
kOlO ]“_0 I(n — Jj)!

since 0 < a < B. Now, collecting the coefficients of ffat k, 1 = 0,...,n, 87! | =

1,...,n,B8 %t l=n+1,...,2n we obtain
D:A+B+n0=§n:zn: =D 1 1)k -
(n— k'(n—l)
k=0 I=0
* l(n—l =l nl(n - 1)! nln—1)! 5., 4 o
2—;{ kzo(n—k)!(n—l+k)! Z (2n l)'2 g :
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Next, we split D into two parts: one includes the terms 8*a! and B~la!*® with
k+l=2zand z = 1,...,n — 1 and the other one includes the same terms but for
z=n,...,2n—1. Then D is written as D = Y7} (n—1)!8F, + 3.2  nl(n—1)1D, > 0,
by Lemmas A.1 and A.2.

LEMMA Ad4. For k > 1 the function ¢(w;p) in (3.4) is decreasing in p > 0 for
each w > 0.

PROOF. Write

(b+ k) f:})w vg(v)H (wv; p)dv — f:}’w vg(v) F(wv; p)dv
Sy V29(0) H (wv; ) dv '

P(w; p) =

differentiate with respect to p, and substitute g(v), H(wwv;u), and F(wv;u). After
lengthy but direct calculations the derivative will be negative if

o0

n(p + K)e ™ /

e Ydu /00 ,U'n,—-le—(l—i-nw)'ud,v
wlw ulw

OO o
> (nk — 1)6“"“/ v“_le_”dv/ vhe”(Hrwv g,
u/w uiw

o0 o0
+ne / ve Vdy / wye~(Itnw)v g,
u/w r/w

oo oo
+/ vn—le—-(1+nw)vd,v/ ,Une——(l—}—n'w)vd,u.
u/w ufw

Making the change of variable v = £y, using the identity [ y"e ¥/7dy = e~ > heo
(n)kY* and setting 87! = p/w, o' = np+p/wsothat 0 < o < Band np =a~1 g1,
the above inequality equivalently becomes nxC + A + B > 0, which holds because of
Lemma A.3 and the assumption x > 1.
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