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Abstract. Consider a regression model in which the responses are subject to ran-
dom right censoring. In this model, Beran studied the nonparametric estimation of
the conditional cumulative hazard function and the corresponding cumulative distri-
bution function. The main idea is to use smoothing in the covariates. Here we study
asymptotic properties of the corresponding hazard function estimator obtained by
convolution smoothing of Beran’s cumulative hazard estimator. We establish asymp-
totic expressions for the bias and the variance of the estimator, which together with
an asymptotic representation lead to a weak convergence result. Also, the uniform
strong consistency of the estimator is obtained.
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1. Introduction

Consider a regression model in which the response is subject to random right cen-
soring. This paper concerns the kernel estimation of the conditional hazard function of
the response given a value of the covariate.

We first introduce some notations. At fixed design points z; < --- < z, we have
nonnegative responses Y1,...,Y, such as survival or failure times. For simplicity, we
assume that the support of the covariates is the interval [0, 1]. These design points rep-
resent e.g. the dose of a drug (in case of a medical study) or some environmental condition
of a machine (like temperature, humidity, ...) for an industrial study. The responses Y;
(i =1,...,n) are independent random variables and the distribution function of Y; at z;
will be denoted by Fy,(t) = P(Y; <t). As often occurs in medical or industrial studies,
the responses are subject to random right censoring, i.e. the observed random variables at
design point z; are T; and &; (i = 1,...,n), where T; = min(Y;,C;), 6; = I(Y; < C;) and
Ci,...,C, are nonnegative independent censoring variables with distribution functions
Gy, (t) = P(C; < t). We assume that Y; and C; are independent for each i. Hence, the
distribution function H, (t) = P(T; < t) satisfies 1 — Hy, (t) = (1= F5,(£))(1— G, (t)). At
a given fixed design value z € [0,1], we write Fy, G5, Hy for the distribution function of
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respectively the response Y, at z, the censoring variable Cy at z and T, = min(Y,, C;).
Also we write §; = I(Y; < Cy).

Assume that F3(t) has a density f;(¢) and denote the cumulative hazard function by
A;(t) and the hazard function as A;(t). This paper concerns nonparametric estimation of
the hazard function A;(t) by kernel smoothing of an appropriate nonparametric estimator
fot A;(t). This problem has been extensively studied in the literature. In the simplest
case of i.i.d. observations (and no censoring) we refer to Watson and Leadbetter (1964a,
1964b), Rice and Rosenblatt (1976), Singpurwalla and Wong (1983). In the presence
of right random censoring, the problem has been studied by Tanner and Wong (1983),
Ramlau-Hansen (1983), Yandell (1983), McNichols and Padgett (1985), Diehl and Stute
(1988), Lo et al. (1989), Miiller and Wang (1990).

In the present case of regression with randomly censored survival data, it was Beran
(1981) who first studied the estimation of the cumulative hazard function A;(t) (and the
corresponding cumulative distribution function) without any parametric assumptions.
It is an alternative to the classical Cox (1972) regression model and the main idea is
the use of smoothing over the covariate space. Beran proved consistency and Dabrowska,
(1987, 1989) studied the asymptotic properties of the distribution and quantile function
estimators. Further results, including bootstrap approximations were obtained in Van
Keilegom and Veraverbeke (1996, 19974, 19975, 1998).

We introduce the notation

HE(t) = P(Ty < t,6, = 1) = /tu — Ga(s=))dF,(s)
0

for the subdistribution function of the uncensored observations. The cumulative hazard
function A, can then be rewritten as

(1.1) Ao(t) =/0 ngﬂ%_((?f)'

The idea of Beran (1981) is to replace H, and H} by empirical quantities. We will use
here kernel estimators with Gasser-Miiller type weights w,;(x; h,). They are defined as

1 R z—2z )
wni(IE,hn)—m s ;L—;K (7:) dz z—l,...,n

1 T—z
enlx; hp) = —K dz.
) = [ 5k (52)
Here 7o = 0, K is a known probability density function (kernel) and {h.} is a sequence
of positive constants (bandwidth), tending to 0 as n — oo. Replacing now H, and HY
in (1.1) by the following kernel type estimators

Hwh(t) = Zwm’(x; hn)I(Tz < t)

i=1
n

Uu(t) = wni(w; ho)I(T; < £,6; = 1)
i=1

leads to the following Nelson-Aalen type estimator for A, (t):
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Our estimator for A;(t) is now based on a further kernel smoothing of Agn(t). We
therefore use a second kernel K and a second bandwidth sequence {b,}, also tending
to 0 as n — oco. The estimator for A;(t) is then defined as

(1.2) Achb(t) = Z},;/KO (tb_ns> dAgn(s)

_ 1 zn:Ko (t — T(i)> 6(5)Wn(s) (T; n)
b 1= 32521 Wn(s) (@5 ha)

Here T(;y < --- < T(y) are the ordered T1,...,T, and the §;y and wy,;)(z; hy) are the
corresponding 6; and wp;(x; hy). Note that if we take the weights wp;(z; hy,) all equal
to n™1, then the estimator becomes the kernel-smoothed Nelson estimator for censored
data

1 — t—-T(i) 5(1)
EZK"( b )n—i+1

i=1

which was studied in Tanner and Wong (1983) and the references given above. Also, if
there is no censoring (T; = ¥;,6; = 1), we obtain the well known hazard rate estimator
for complete data.

The estimator (1.2) has been studied by McKeague and Utikal (1990), who used
counting processes to prove the asymptotic normality of Agzpp(f). Li and Doss (1995)
considered a local polynomial estimator for A;(t) (instead of a local constant one) and
obtained the asymptotic normality of their estimator. The results of both papers, how-
ever, are not shown for the bandwidths h,, and b, of optimal rate. The results for the
optimal bandwidths are established in Li (1997) for both type of estimators.

Nielsen and Linton (1995) considered an alternative kernel estimator for the hazard
Az(t). It is easily seen, however, that this estimator has the same limiting normal
distribution as our estimator Agx(t) (compare Theorem 4.1 below with their Theorem
1). Differences might be expected in the higher order terms of e.g. asymptotic expressions
of the mean squared error. It should also be noted that the Nielsen-Linton estimator
allows multidimensional and time dependent covariates, while our Agpp(t) restricts to
one covariate, independent of time. On the other hand, note that the present paper
does not require the smoothing over time to be done with the same bandwidth as for
smoothing over the covariate space. Also note that if we take h, = b,, the conditions
on the bandwidth required for our asymptotic normality result (Theorem 4.1) reduce
to nh2t® — oo (for some § > 0) and nhS — C > 0, while the corresponding result in
Nielsen and Linton (1995) is slightly weaker in that § = 0 in their case. Nielsen and
Linton obtained uniform weak consistency, while we prove below weak convergence for
the properly normalized process.

In this paper, we first establish an a.s. asymptotic representation for Azps(t) (Section
2) and calculate the asymptotic bias and covariance (see Section 3), which enables us in
Section 4 to obtain the asymptotic normality of Azps(t) under very general conditions on
the bandwidths h, and b, including the bandwidths of optimal rate. Next, in Section
5, we prove the weak convergence of the process (nhnb, )2 (Agns(t) — Az(t)). The strong
uniform consistency of Agpy(t) (with rate of convergence) will be derived in Section 6.
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2. Almost sure asymptotic representation

The study of the asymptotic properties of the proposed estimator Azps(t) will be
facilitated by proving first an a.s. asymptotic representation.

We first introduce some further notations and conditions. For the design points
:c1', , T, we denote A,, = minj<;<n(®; — Ti—1) and A, = max1<z<n(acz zi—1). Fur-
ther let Koo = supyer K (), IIK[3 = Sl KP(w)du, pf = [70 uK(u)du, p§ =
ffooo u?K (u)du and similarly for Ky. We will constantly use the following assumptions
on the design and on the kernels K and Kjy:

(C1) z, —»1,A, =0(n"1), A, — A, =o(n™).
(C2) (i) K is a probability density function with finite support {—L, L] for some
L > 0, uff = 0, and K is Lipschitz of order 1. (ii) Kj is a continuous probability

density function of bounded variation and with finite support [—Lg, Lo for some Lo > 0,

Ko __
By =

Note that ¢, (z; hy,) = 1 for n sufficiently large (depending on z) since z, — 1 and
K has finite support. This makes that in all proofs of asymptotic results, we will take
cn(z; hy) = 1. For any (sub)distribution function L, we denote Ty, for the right endpoint
of its support, i.e. Ty, = inf{t : L(t) = L(oc0)}. Hence, Ty, = min(Tr,,T¢,)-

In the formulation of our results, we will need typical types of smoothness con-
ditions on functions like H,(t) and HY¥(t). We formulate them here for a general
(sub)distribution function L,(t),0< z <1,t€ IR, and for a fixed T > 0 :

(C3) Lu(t) = £ L,(t) exists and is continuous in (z,t) € [0,1] x [0, T}.

(C4) LL(t) = ath (t) exists and is continuous in (z,t) € [0, 1] x [0,T].
(C5) L(t) = :2 L(t) exists and is continuous in (z,t) € [0,1] x [0, T].
(C6) Li(t) = 25 Ly (t) exists and is continuous in (z,t) € [0,1] x [0,T].
(C7) L.(t) = aizat L,(t) exists and is continuous in (z,t) € [0,1] x [0,T].
(C8) L (t) = B%%L (t) exists and is continuous in (z,t) € [0,1] x [0,T].

(C9) L7 (t) = gtsL (t) exists and is continuous in (z,t) € [0,1] x [0,T].
In order to formulate the asymptotic representation for Azpy(t) we define

@1 Bawl®) = / Aa(t — byw)dEKo(u) — Ao(t)

t—bnu EHxh(s) Hy(s) ..
() e

it d(EHRY, (s) ~ Hy(s))
+/0 - }dK (u)

Ho(5)
hia(2,6) = 51— / [G0—b.0(2 6) — Egs—b.0(2 8)] dKo(u)

[P I(z<8) = Hy(s) ;.0 I(z<t,6 =1)— H%(t)
oelet) = || S O+ T

P I(z < 8,6 =1)— H%(s)
- T g )
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Since
(2.2 dano(t) = Ao(t) = 5 [ Aan(t — u)do(a) ~ Aa(t)
_ 51; / A (t = bute) — Ag(t — bu)] dKo(w)
+51~ / Ag(t = byu)dKo () — Mg (t),

a possible way to obtain an asymptotic representation for Agzps(t) — Az(t), is to replace
Az (t—bpu)— Az (t—bnu) in the above expression by a representation. Such a representa-
tion is implicitly contained in the proof of Theorem 1 in Van Keilegom and Veraverbeke
(1997b). However, the theorem is only valid for bandwidth sequences h, satisfying
nhS /logn = O(1), not including the bandwidth of optimal rate, which is h, = Kn~1/6
(see next section). It can be shown that this condition can be omitted, leading however
to a representation with a remainder term of the order O(h3) and this order will turn
out to be too slow. For these reasons, we establish in the next theorem a representation
directly for b [[Agn(t — bpu) — Ag(t — bpu)|dKo(u).

THEOREM 2.1. Assume (C1), (C2), H,(t) satisfies (C5)-(C8) and HX(t) satisfies
(C5)~(C7) in [0,T] with T < Ty,, hn — 0, by — 0, (nh,)"tlogn — 0. Then, for
t<Tw,,

(23) )\mhb(t) - /\z (t) = Z Wni (.’E; hn)htm(Tiy 61) -+ ﬂxhb(t) + ra:h,b(t)

i=1
and for T < Ty,
sup |rzpe(t)]
0<t<T
= O((nhnbn) ' logn + (b1/2 4+ h2b7 1) (nhy,) =12 (log n) /2 + REbZY)  as.

as n — o0.

Proor. First note that
t dHz,(s)

Agn(t) — 1= Hon(s) = O((nh,)™!) as.

sup
0<t<T

Hence, using (2.2), it suffices to consider

1 t=bav JHY (s) =bau gHY(s)
(24) Z/ [/0 1- H};h(s) - /o 1 — Hy(s)
1 bt Hon(s) — Ha(s) | HY, (t — byu) — HE(t — bpu)
&/ U (-E6)7 O T TR G b

dK 0 (u)

b H(5) — HE (o)

+ Rpo(z,t — bpu) + Rps(x,t — bpu) | dKo(u)
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where

_ t (Hxh(s) — HZ(S))2 u
R0 = [ R ) )

Roalo) = [ |1~ T A6 — HES)
Foste) = [ [Ty — ey A0 ) — B

For R,1(z,t) we have

1
(2.5) — sup
bn o<i<T

. Enoi‘t‘i) | Han(t) = Ha(8)[*(1 = Hon(T)) ™ (1 - Hy(T)) 2

/ R (, ¢ — bu)dKo(w)

From Lemma A1(b) and A3(a) in Van Keilegom and Veraverbeke (19975) it follows that
sup; |Hgzh(t) — Hy(t)] = O((nhy) ~/?(logn)/2 4+ h2) a.s. Hence, (2.5) is O((nhnb,) "' log
n+hib.1) a.s. Next, partition [0, T] into O(b;; ') subintervals [t;, {;41] of length b,,. Then,

i/an(x’t — bpu)dKo(u)
- [0 (522) o - T ) - O

t—s 1 1 1 1
b, /K" ( by, > [1 " Hyn(s) 1—EHga(s) 11— Hap(t) t1o EH(t;)
-d(Hgp(s) — Hz(s))

+51;[1—f;mh(t) 1—EHmh ]/K"(

= an1(z,t) + ana(z, t),

) HY (5) — HY(5))

where t; <t < t;41. Then, if Ko(tb_—ns) # 0, it follows that |t; — s| < Kb,,. We start with
a1 (z,t):
lona (z,1)]
" 1 1 1 1
< ——1 * _— -
S Ko S T T 1= BHw®) 1= Hun(s) | 1= EHon(s)
x {H, (t + Loby) — Hyp(t — Loby) + Hy (t + Lobp) — Hp(t — Loby,)}
_ Hop(t) — EHgpp(t)  Hgn(s) — EHgn(s) 1
< 1 * ~
< Kb, {sup (= EHA())? (1= EHon(5))° + O((nhy,)™ " logn)
x{sup*|Hz, (t) — Hz (t) — Hgn(s) + H (s)|
+2(Hz (t + Loby) — Hy (t — Lobr))}
|Hyp(t) — EHgp(t) — Hpn(s) + EHgp(s)|
(1 — Hy(t))?
+0(bn(nhy) "2 (logn)/?)
= O(bY?(nhy)~Y?(logn)'/? + (nh,) ! logn)

< Ksup”® + O((nhy)~* logn)
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a.s., using Proposition A5 in Van Keilegom and Veraverbeke (1997b), where sup* de-
notes the supremum over all (s,t) satisfying |t — s| < Kb,, and where the second inequal-
ity follows from the fact that sup, |Hzn(t) — EHyn(t)] = O((nh,)~2/?(logn)/?) a.s.
(see Proposition A3(a) in Van Keilegom and Veraverbeke (1997b)). Next, we consider

(7%} ((L‘, t):

ana(z,t)
= by (Hon(ts) — EHen(t:)){(1 — Hz(t:)) 72 + o(1)}

. / (H%, (t = vb) — H (¢ — vb,))dKo(v)
= O((nhnbn) "t logn + h2b,  (nh,,) "/ 2(logn)/?)

a.s., uniformly over all ¢. For R,3(z,t) we have:

bi / Ros(z,t — byu)dKo(u)

- [ [~ T ) - B2@aKaw

1 t=bru EH,p,(s) — Hy(s) u N
o [ e e ey ) — HE(5)dKo(w)
1 u “ EHp(t — byu) — Hy(t — byu)
" b, /{( st = bott) = Hy (¢ = bau)) (1- EH;(t — bou))(1 — Hy(t — bpu))

t=bnu Y. EHgp(s) — Hy(s)
—/0 (Hzn(s) — Hz(s)) 55 [(1 — EHp(s))(1 - Hm(s))] dS}dKo(u)
= O(h2b; " (nhy)~?(logn)'/? + RAb;Y)

a.s., since
(2.6) SHEH() — Ho(0) = L ha(0)h2 + o(h2) + O(n™1).

The proof of the latter is analogous to that of EHp(t) — Ho(t) = 2k H, (t)h2 +o(h2) +
O(n™") (see Lemma A1(b) in Van Keilegom and Veraverbeke (19975)). Finally, note that
the main term in (2.4) equals

1 n
E—Zwm'(cc; hn)/gt—bnu,m(Tiﬁéi)dKo(u)
2 n :
= ani(x; hn)hio(T5, 6;)

=1
L[] [ BHs) ~H(s)
+bn/{/0 Y AG)E dH}(s)

i EHY, (s) — Hy(s))

This finishes the proof.
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3. Asymptotic expressions for bias and covariance

The bias term Bzn5(t) in the presentation of Theorem 2.1 consists of two parts (see

(2.1)):
(3.1) Banb(t) = BUh(t) + By (8).

For the first part we can write
B30 = [ Aalt = br Ko(wdu = Ao(t) = FENLOUE® + o(t2)

provided K is a bounded density with uf" = 0and ), is twice continuously differentiable
at t. For the second part in (3.1), it follows from (2.6) that

/ Ko(u) { E H”“"((f - ’;;:()t = Zmlf)t); b (4~ )

(EHp,(s) — HZ(s))'|s=t—bnu
hl—H(t—bu) }d“

:(jz)b (t)

+

= 2#2 h2/K0 u)q&w(t— nu)dU+o(h2)+O( _1)

= 5,@ Kh2 ¢ (t) + o(h2) + O(n™Y),

where ) )
_ Hy(t)hy(1) hy(t)
=)= T w7 " 1= B0

The conclusion is that the bias is given by
1
(3.2) Benb(t) = 525 ()12 £op2 4 ¢>x( g B2 + o(b2) + o(RZ) + O(n™1).

We now deal with the covariance of the approximating sum in Theorem 2.1:
| Cov (Z wni(flf'; hn)hsm (T‘z: 572)7 Z Wni (.’,U; hn)htm(Tb 5z)>
i=1 i=1

1 n
= 7 L i) [ €0v(0mbrlTs1 6,61t (Ts ) B ) )

v4(s— t)/bn 9
Zwm(:l: hn) // u)_COV(gs bnu, =(Ti, 61), gt—bnv,z(Tiyéi))
ni 1

o
Zwm 2 hn) / / Kofu) o C0v(gs—s,2 T4, 6), e, (T 60)
v4(5—t)/bn
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Some straightforward calculations show that

Cov(gs_ bru, a:(T'L75) Jt—b,v,z sz‘S)

[T Ho(y) - zy) dHY(2) "
- 1 - H@)? /(1—H() 4H (v)

t~bnv 1 y ng(z) u u
o) (y)f (1~ m G W)~ Ha)
t—bnv 5=bnu H (Z) H:z;l(z) u u
o[ 4 (2)dH (v)

— Ha(z ))
t—brv 1 s—bau d(H”(z) ( )) u
A=) I-HE) R
min(s—bpu,t—bn,v) dH:’lEA (y)
n / _Hay)
0 (1- H@))?
_ [_ /*’ H(l(—)HZ; ))(2 W) g5 ) + /" UHE W) - gf@»}
| Hey) — Hau(©) hv d(Hy (y) — H(y))
[ TR e R - L) }

from which —6%Cov(gs_bnu,w(Ti,(51'),gt_bnvix(f1},6i)) can be easily obtained. Next, we
apply Lemma Al in Van Keilegom and Veraverbeke (1997a), which states that for any
function 7 : [0,1] x [0, T]> — R for which (-, s,¢) : [0,1] — IR (s,t € [0,T)) is Lipschitz
with Lipschitz constant uniformly bounded on [0, T]? and for which v(z, -, -) : [0, T]? — R
is bounded, it holds that

I K113

Zwm 23 ha)y (@i, 8, ) — 2, 5,1)| = o(nha) ™).

sup
0<s,tLT

It follows that

Zwm(w hn) 00v(gs btz (Tir 61), Gt —bw o (T, 57)

~b,, “"5;'”2 (1 _hu(s(s ﬁn:) )) + O((nhn)——lbn) (S —bu<t— bn'U)

{ o((nhy,)"tby,) (s = bpu >t — byv)

and hence

(3.3) Cov (Zn: Wni(Z; hn) sz (T3, 6i) zn:wm-(a:; hn)hm(Ti,éi)>

i=1

i=1
/ / oty Ko(u) (1 — (S — du dKo(v) + o((nhnbn) ™)

nh b, bn ))
_ K13 —t h“(t ) _1
" nhgby /K (w)K; ( > (1— Hg(t - b ))de + o((nhnby) ™)

- n’fi"}f /K (W)E, ( nt) dul_/\:ﬁc)(t) + o((nhnbn) ),
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since Ag(£) = AE(t)/(1 — Ha(t)).

Remark 3.1. It follows that the approximate mean squared error of the estimator
Azhp(t) is of the form — h 5-+(C2 h2 +C3b2)? for some constants Cy, Ca, C3. Minimization
gives that the optimal choice is

v

B = by = Cn~ /8
for some constant C > 0.
4. Asymptotic normality

The representation in Theorem 2.1 entails the asymptotic normality result for
(nhnbp) Y2 (Aghs () — Az (t))-

THEOREM 4.1. Assume (C1), (C2), H,(t) satisfies (C5)—(C8) and HY(t) satisfies
(C5)~(C9) in [0,T) withT < Ty, (nhnby,) t(logn)? — 0, b2 logn — 0, hib,; ! logn — 0,
nhdb-t — 0, nh,bd — Ci > 0, nhdb, — C3 > 0. Then, fort < T, asn — oo,

(Rhnbn) 2 ans(t) — Ao (t)) — N(b5(t); s2(2)),
where
b;,;(t) — 1/2)\”(t) Ky + 1/2¢x( )
HOR ||K||§\|K0“§1—:-\§I_(Tt:’(t—)~

In particular, if hn = by, = Cn~18 (C > 0), then by(t) = JC3(N!(B)us® + do (t)uk).
(Note that one or both terms of by(t) can be zero, depending on whether 01 and Cy equal
zero or not.)

Proor. Thestated conditions on the bandwidths h,, and b, ensure that (nh,b,)!/?
times the remainder term in the representation of Theorem 2.1 tends to zero. Let

i = (nhnbn) 1/2Zwm(x h)his (T, 65)

=1

denote the main term in the representation of (nhy,bn)'/2(Azns(t) — Az (t)). We have that
E(Z,;) = 0. Also, by (3.3),

n k(3
> E(Z%;) = nhyby Var (Z Wi (T; ) heo (T, 51-))
=1

i=1
Ao (t)
_ 2 2__ "z
Moreover,
ZE|Zm{3 < K (nhnby) VzZE = O((nhypbn)"1/2).

=1
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Hence, the Liapunov ratio equals

n . 3 '
ST ot ) o),

The expression for b, (t) follows from (3.2).

Remark 4.1. Li (1997) proved the above asymptotic normality result for the special
case where h, = b, = Cn~1/% (C > 0) and for a random design. There is, however, a
minor mistake in the expression of the mean of the limiting process: formula (2.16) in
Theorem 2 (and also formula (2.8) in Theorem 1) should be divided by two.

5. Weak convergence

In this section we establish the weak convergence of the hazard function estimator.
In order to obtain the tightness of the process (nhnbn)'/2(Aghs(-) — Az(+)), the argument
needs to be of the form b,t (¢t € [0,7], T arbitrary). This is a typical feature for
processes of nonparametric density, hazard or regression function estimators and can
also be found in e.g. Rosenblatt (1971) and Van Keilegom and Veraverbeke (2001). In
the latter paper, the conditional density and hazard function are estimated under the
heteroscedastic model Y = m(X) + o(X)e, where ¢ is independent of X and m and ¢
are smooth but unknown functions. The rate of convergence of the proposed estimators
is faster than in the present, completely nonparametric context (see the above paper for
details).

THEOREM 5.1.  Assume (Cl1), (C2), Hy(t) satisfies (C5)—(C8) and HY(t) satisfies
(C5)—(C9) in [0,T] withT < Ty, (nh bn) " (logn)? — 0, b2 logn — 0, kb logn — 0,
nhib;! — 0, nhybd — C1 > 0, nh2b, — Cy > 0. Then, the process

. B 1/2
(nhypby)/? (%) (Aznb(brt) — Az (bnt))

(z € [0,1] fized, t € [0, T], T>0 arbitrary), converges weakly to a Gaussian process
Z5(t) with mean function

1
B(Z:(t)) = 51Xk + S0V g ()
and covariance function

Cov(Za(s), Zo (1)) = || K2 / Ko()Ko(v + 5 — t)dv.

ProOF. For showing the weak convergence of the main term in the representation
(see Theorem 2.1), use will be made of Theorem 2.11.9 in van der Vaart and Wellner
(1996). We start by showing the convergence of the finite dimensional distributions. By
the Cramér-Wold device, we need to show the convergence of any linear combination

of the functions (nh,b )1/2(1—1\1-{——%#)1/2(/\95%(17 ti) = Ag(Bnt;)) (0 < ty,...,tx < T

arbitrary, k arbitrary). The proof parallels completely that of Theorem 4.1, which deals
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with the case k = 1, and will therefore be omitted. For the calculation of the bias and
the covariance we refer to Section 3. It remains to verify the three displayed conditions in
Theorem 2.11.9 in van der Vaart and Wellner (1996). The first one is obviously satisfied,
since the function gy (2,6) is bounded. We will next show that

6n
/ \/log Nyy(e, F, Lg)de — 0,
0

for every 6, | 0, where N[} is the bracketing number and

/
F = {(nhnb )1/2 (__)\_I—(Ib_(;))_Q)l ’ (Aahb(bnt) — Ap(bnt));0 <t < T} .

Partition [0, 7] into O(¢ ™) subintervals [t;,t;4+1] of length at most Ke for some K > 0. '
We will show that

t; <t t'<tjs1

hz)
(51)  nhabe Z L { sup |Wni(t)—Wni(t')]2} <
where
Whi(t) = /[gb,,(t—u),x(ﬂ'ﬁi) — Egy,. (t—u),« (T3, 8:)|dKo(u).

This does not only imply the third condition in van der Vaart and Wellner (1996), but
also the second, since the partitions are independent of n. Since the function g, 1 (2, 6)
consists of three terms, also W,;(t) can be decomposed into three terms. The most
difficult term to deal with is the second one, which equals Z,;(t) — E[Z,:(t)], where

Zni(t) = / ! (Tfi}ﬁb;(?_&u; Y drco ().

We will prove that (5.1) is satisfied if W,,;(¢) is replaced by Z,;(t) (the derivation for
E|[Z,;(t)] follows immediately by integration by parts). Consider

Znit) — Zpi(t')
_ I(TZSbn(t—u),&=1)—I(T,§bn(t’——u),6z=1)
—/ 1”Hw(bn(t‘u))

ng(u)

’ _ 1 !
+/I(Tz < bn(t - u):éz - 1) 1— Hx(bn(t _ u)) - 1 — Hm(bn(tl — ’UJ))}

We concentrate on the first term, which equals
t—T; / bn 1

=T fbn, 1= Hy(bn(t —u)) ‘
P S

1(51 = 1) dKO( )

1- H:c(Tz) 1- Hz(Ti + bn(t - t’))

B t—~T;/bn KO(U)
+b (8 = 1) /t 1o, (1= Hy(bn(t = u)))?

= ani1 (@, t, V') + anin(z, t,t').

hy(bn(t — u))du
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The term ani2(z,t,t') is bounded by Keb,, and hence
n
nhpb ! Z w2, (7 h)E sup  |omia(z, 8, t) |2 < Ke2b,,.

i=1 t; <t <t

' For apii(z,t,t') it suffices to consider
o (-50) -5 (v 5)
bn
T; T
t— 2 - It
Ko ( bn) Ko (t bn)

T(bp(tjzr — Lo) < T < bu(t; + Lo))}

2

-1
b,"E  sup
t; St,t'stj+1

153

2

-1
=b,"F sup
b <t <t

< Ke&2.
This finishes the proof.

6. Uniform strong consistency result with rate of convergence

THEOREM 6.1.  Assume (C1), (C2), H,(t) satisfies (C3), (C5) and (C6) and H(t)
satisfies (C3), (C5), (C8) and (C9) in [0,T] with T < Ty, hn — 0, by, — 0, nh, — .
Then, as n — o0,

sup |Aghs(t) = Az(t)] = O((Rhabs) "Y2(logn)/? + h2 +b2)  a.s.
0<t<T
Proor. Write

Aomb () = Aa(t) = g— / [Aah(t — butt) — Ag(t — buu)] dKo(w)
2;1; / Aot — bau)dKo(u) — Aa(t).

The second term equals A h)b(t) (defined in Section 3) and hence this term is O(b2)
uniformly in t. The first term can be written as

1 T dHY,(s) t=bat GHY(s)
E/ {,/0 r__—x};(T_) —L l—:m] dKo(u)
t—bru i _) Hz(s)
// (1- :h(s N — Hg;(s))d =h(8)dKo(u)
t—bnu d(HY (s) — H%(s))
b, // F 5 o)

= an1(2,t) + ana(z, t).
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We start with o (z,):

|an1(m t)l
t—s Hyp(s—) — Hy(s) v (g
=51/ K"( b ) T~ Ho (s )1~ Hy(s)) en (o)

= g;oilslg |Hyn(s—) — Hy(s)[{Hgp (t + Loby) — Hyy (t — Loby)}

N

gb— sup |Hyn(s—) — Hz(s)]
n 0<s<

{2,500 1H20(0) - HE()|+ H2(e + Loby) - HE(e ~ Lobn) |
0<t<
= O((nhn)~ 1/2(10g )2 + (nhyby) ' logn
+h2 + hZb7 ! (nh,) "V 2 (logn)/2 + hEb1)
a.s., since supgc,cr [Hon(t) — Ho(t)] = O((nhy)~Y/2(logn)!/? + h2) a.s. by Lemmas

Al(b) and A3(a) in Van Keilegom and Veraverbeke (1997b) and since supy<;< |Han(t) —
Hop(t-)| = O((nh,)~1) a.s. The term ay,o(z,t) equals

Hz,(t — bnu) — HZ (E — byu)
by / * 1— Hy(t — nu) Ho(u)

=bu B, (5) — H(s)
-/l (1— ) Ha(8)dKo(w)

= Qlpo1 (x, t) -+ Gpon (.’L’, t).

Using integation by parts we can write

O11'1,22(3!"7 t) = /KO (u) H;Lh((tl_—b;;:c)(t - bnu))z

= O((nhy) " Y2(logn)/2 + B2)  as.

—Hz (= bt bow)du

Since Ky is of bounded variation, there exist increasing functions Ky and K> defined on
[—Lo, Lo|, such that Ko = K; — K. Hence,

HY (8 — bpu) — HE(t — bpu)
/ . Ho(t = bou) Ky ()

HY, (£ — bpu) — HY(t — byu)
/ h T ng(u)i.

sup |an21(z,t)] < — sup
0<t<T bn, 0<t<T

+— sup
bn o<t<T

We consider the first term :

o[BIk

- 51; / (Hg(t = bpu) — Hy (t — bou))

‘ [1 - Hx(lt —bpu) 11— _rlfx(t)] dK1(u)

+iﬁ1ﬂ5 / (H2 (¢ = bat) — HY(t — buu))dK (w).
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Clearly, the first term above is O((nh,)~*/2(log n)!/? + h2) a.s. Divide [0, T into subin-
tervals [tj,t;11] (j = 1,...,0(a;1)) of length Ka,, where an = c(nhnb,)~/*(log n)l/2.
Then, the second term of (6.1) multiplied with 1 — H;(T') is bounded by

(6.2) o max | [ (H2(t; = bu) = Bt~ b)) (4)

+b_1,: mex l/(EH;‘h(tj — bpu) — Hy(t; — bpu))dK:(u)

_}_l max /(Hg(tj—{—l — bnu) — H;f(t] - bnu))dKl(u)

bn J

The last term of the above sum is O((nh,b,)~1/?(logn)'/?) upon integration by parts.
The second term is O(h2 + n~!) by using integration by parts and equation (2.6). On
the first term we apply Bernstein’s inequality (see e.g. Serfling (1980)). We start with
calculating the variance of b, ! [(HY, (t; — bnu) — EHY, (t; — byu))dKi(u), which equals

n
512— Zwii(m; hay) // Cov(I(T; < tj — bpu, 6; = 1), I(T; < tj — by, 6; = 1))
n =1

dKy(u)dK1(v)

_ b% S w2, (23 hn) HE (t; — byw) (1 — HE (t; — byu))dK (u)dKy (v)

=1 —Lo
K
<
nh, by

for some K > 0, after applying integration by parts. Hence, Bernstein’s inequality
together with Borel-Cantelli shows that the first term of (6.2) is O((rhnbn)~1/2(logn)!/?)

a.8.
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