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Abstract. In this paper a two-stage bootstrap method is proposed for nonparamet-
ric regression with right censored data. The method is applied to construct confidence
intervals and bands for a conditional survival function. Its asymptotic validity is es-
tablished using counting process techniques and martingale central limit theory. The
performance of the bootstrap method is investigated in a Monte Carlo study. An
illustration is given using a real data.
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1. Introduction and a review

In lifetime data analysis, nonparametrically estimated conditional survival curves
(such as the conditional Kaplan-Meier estimate) are useful for assessing the influence
of risk factors, predicting survival probabilities, and checking goodness-of-fit of vari-
ous survival regression models. However, it has not been an easy task to assess the
variability of the estimated conditional survival curves. Consider the right censored
survival regression data consisting of n i.i.d. triples (X1, 61,21),...,(Xn, 60, Z,), where
X; = min(T;,C;), 6 = I(T; < Cj), and T; > 0, C; > 0, and Z; represent the survival
time, the censoring time, and the covariate, respectively, for the i-th subject under study,
¢ =1,...,n. To ensure the identifiability of the model, we assume that for each i, 7}
and C; are conditionally independent given Z;. Let S(t | z) = P(T; > t | Z; = 2)
and A(t | z) =— fot S(ds | z)/S(s— | z) denote the conditional survival function and the
conditional cumulative hazard function of T; given Z; = z, respectively. We study the
problem of constructing nonparametric confidence bands and intervals for S(¢ | z) and
A(t | z) using the optimal rate conditional Kaplan-Meier estimate of Beran (1981). Such
confidence bands and intervals can be used to assess the variability of the estimated con-
ditional survival probabilities and provide a useful scale against which unusual features
of the estimated conditional survival curve may be evaluated.

Nonparametric estimation of the conditional survival function and its related func-
tions was initiated by Beran (1981) and has been further studied by Dabrowska (1987,
1989, 1992), Li (1997), Li and Doss (1995), McKeague and Utikal (1990), and others.
For the convenience of discussion, let us consider a simple version of Beran’s (1981) esti-
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mate Sy (t | z) of S(t | z) that is defined as the Kaplan-Meier estimate constructed using
only those observations whose covariate Z fall inside a neighborhood (z — hy, 2z + hy) of
2z, where h,, is called the bandwidth (the general definition of Beran’s estimate is given
in Section 2). Because only a portion of the data are used, the rate of convergence of
S’h (t| z) to S(t | z) is typically slower than the n=/2 rate for the ordinary Kaplan-Meier
estimate. The actual rate of convergence depends on how fast h, goes to 0 as well as
on the smoothness of §. A decrease in the bandwidth would reduce the bias but, on
the other hand, increase the variance of the estimate, and vice versa. Under certain
smoothness conditions, it has been shown that (cf. Dabrowska (1987) and Li (1997)) if
hy, is of order n=1/5, then Sy (¢ | z) converges to S(t | z) at an optimal rate. Moreover,

(1.1) (nha)Y2(Sh(t | 2) — S(t | 2)) S Ut | 2),

where for fixed z, U(t | ) is a continuous Gaussian martingale process with a nonzero
mean (see (2.6) and (2.7) below for explicit expressions of the mean and variance function
of U). In particular, the optimal rate of convergence for Su(t | 2) is (nhy)"1/2 =
O(n—2/%).

It, however, remains an open problem as to how to construct confidence bands
and intervals for S(t | 2) using the optimal rate weak convergence result (1.1). The
major hurdles are that U has an unknown nonzero mean and that the distribution of
sup, |[U(t | 2)| is intractable. One possible solution is to “undersmooth” the Beran
estimate: if nhY — 0, then the limiting process U will have a zero mean and a Hall-
Wellner (1980) type confidence band for S(¢ | z) can be constructed (cf. Li and Doss
(1995)). The drawback of this approach is that undersmoothing slows down the rate of
convergence, which is not desired.

The main purpose of this paper is to study a bootstrap method for censored non-
parametric regression and use it to construct confidence bands and intervals for S(t | )
from the optimal rate Beran estimate. The basic idea of bootstrap is to first resam-
ple from the observed data, then reconstruct the estimate of interest, say Beran’s es-
timate g;‘;(t | 2), from the resampled data, and finally approximate the distribution of
(nhp)2(Sp(t | 2) — S(t | 2)) by that of its bootstrap version which can be obtained via
computer simulation. An advantage of the bootstrap approach is that with an appro-
priately designed resampling method, the bootstrap will correctly account for the bias
of the estimated survival function Sh(t | 2). Therefore it does not require additional
bias estimation or the use of suboptimal rate estimate (undersmoothing) for construct-
ing confidence bands or intervals. It also automatically adapts to different variances
of the estimated survival function at different covariate locations. However, it is not
obvious what resampling scheme should be used for censored nonparametric regression
as discussed below.

The idea of bootstrap was first introduced by Efron (1979) for homogeneous i.i.d.
complete data setup in which the bootstrap is carried out by “resampling with replace-
ment” from the sample data. This approach has since become a powerful tool in many
statistical applications. See, for example, Efron and Tibshirani (1993) for the boot-
strap method and its applications. Bootstrap for right censored data with no covariate
was first studied by Efron (1981) who proposed two equivalent versions of bootstrap:
a “simple” version and an “obvious” version. The “simple” bootstrap of Efron (1981)
“resamples with replacement” from the observed pairs {(X;,6;),7 = 1,...,n}. The va-
lidity of this method was established by Akritas (1986) and Lo and Singh (1986). For
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the nonparametric right censored regression setup considered in this paper, it seemed
at first sight that a natural extension of Efron’s (1981) “simple” bootstrap would be to
resample with replacement from the observed triples {(X;,6;, Z;),i = 1,...,n}. This
resampling scheme, however, has a serious flaw that it fails to adequately take account
of the type of bias of the optimal rate Beran estimate Sj,. Consequently, it will not
give asymptotically correct results. This is very similar to the inappropriateness of the
“usual” bootstrap in nonparametric density estimation and in ordinary nonparametric
regression with complete data (cf. Hall (1992), Sections 4.4.2 and 4.5). Bootstrap in
nonparametric regression with no censoring has been investigated by Hall ((1992), Sec-
tion 4.5), Hirdle and Bowman (1988) and Hérdle and Marron (1991), among others. An
ordinary nonparametric regression model for an observed data set (T}, Z;), i = 1,...,n,
is Ty = m(Z;)+€i, 1 =,...,n, where m(z) = E(T | Z = 2) is the regression mean and the
errors ¢; are independent and identically distributed with zero mean. In this case, the
essential idea used in the aforementioned works is to resample from the estimated resid-
uals &; = T; —p(Z;), 1 < i < n where 1715(2) is a pilot nonparametric estimate (such as
the kernel estimate) of the conditional mean m(z). Some of the resampling techniques
for €} proposed in the literature include resampling from a set residuals determined by a
window function (cf. Hardle and Bowman (1988)) and resampling each residual from a
two-point distribution (wild bootstrapping) (cf. Hirdle and Marron (1991)). After resam-
pling, the bootstrap sample are formed as {(T}", Z;)}}; where T} = 1y(Z;) + €}, and g
is taken to be larger than h. Obviously, it is not easy to extend these methods to the
nonparametric censored regression setup because the estimated residual is not available
when the survival time T is censored.

In this article, we study a different resampling approach for the nonparametric
censored regression setup. The proposed resampling is carried out in two steps. In
the first stage, we resample with replacement from the set {Zi,...,Z,} to obtain the
bootstrap sample for the covariate {Z,..., Z*}. Then, in the second stage, we generate
a pair (X}, 6;) for each Z} using ideas similar to that of Efron (1981). Let us use a special
case to explain how it works. For each Z; (1 < ¢ < n), we obtain (X}, §7) by randomly
selecting a pair from A; = {(X},8;) : Z} —gn < Z; < Z}+gy}, the set of observations for
those cases whose covariate fall inside a neighborhood of Z}, where g,, > 0 determines the
size of the neighborhood. It can be shown (cf. Efron (1981)) that the resampling methods
used in the second stage is equivalent to generating T* ~ S (t | Z}), CF ~ Gy(t | Z7)
and letting X} = min{T},C}}, 6; = I(T} < Cy), where S,(t | Z¥) and Gyt | Z7)
are the Kaplan—Meier estimates of the survival distributions of T and C, respectively,
constructed from the data A;. It is interesting to mention that if g, = 0, then this
two-step procedure is equivalent to resampling with replacement from the set of triples
{(Xi,6:,Z;), i = 1,...n}. This provides an intuitive explanation why “resample with
replacement” from the sample triples would not be appropriate for bootstrapping the
estimated conditional survival function 3y, (t | z). In order to properly account for the
bias of Sy(t | 2), gn has to be larger than h,. Recall that k., is the bandwidth used in the
construction of Beran’s estimate whose distribution needs to be bootstrapped. Although
the technical reasons will be discussed in later sections, we point out that intuitively, a
larger g, enables one to catch more bias. The conditions imposed on g, will be given in
the next section. More discussion on this point can be found in Remarks 2.1 and 4.1.

Earlier, Van Keilegom and Veraverbeke (1997) studied bootstrap for censored non-
parametric regression under fixed design where one only needs to resample the survival
times from the conditional distribution. For random designs, one has to decide how to
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deal with the random covariate in the resampling process. Some discussion of the dif-
ference in bootstrapping fixed and random design linear regression models for complete
data can be found in Freedman (1981). In this paper we propose a two-step bootstrap
for random design that involves resampling the covariates in the first stage and the sur-
vival times in the second stage as discussed earlier. This does not resemble resampling
residuals as what has been done for nonparametric regression with complete data. To
the best of our knowledge, the two-step procedure is new in the literature even for com-
plete data. The additional phase of resampling of the covariates also introduces more
technical challenge for establishing the asymptotic validity of the bootstrap. Our jus-
tification of the two-stage bootstrap for random design is different from that of Van
Keilegom and Veraverbeke (1997) for fixed design. Our approach may also be adopted
to study bootstrap in nonparametric regression for other important incomplete survival
data such as left-truncated data and both left-truncated and right-censored data, which
are well known special cases of the counting process model. We finally note that boot-
strap methods have been studied for some semiparametric regression models such as the
Cox proportional hazards model; see, e.g., Hjort (1985) and Burr (1994), among others.

As mentioned earlier, a major use of bootstrap in this paper is to solve the problem
of bandwidth selection in censored regression. We will present some numerical results
on the performance of the proposed bootstrap method and illustrate its use through a
real data example. It is worth noting that Li and Doss (1995) proposed a different class
of estimators for the conditional survival function using local linear hazard smoothing.
Their estimators have less bias near the boundary of the covariate space than Beran’s
estimators. Although nontrivial modifications may be needed, bootstrapping the esti-
mators of Li and Doss (1995) could be studied along similar lines. Finally, we note that
random design is more common than fixed design in clinical trials and epidemiological
studies where the covariate is usually observational.

In Section 2, we give two equivalent resampling algorithms for bootstrapping the
optimal rate Beran estimate of the conditional survival function. The algorithms actually
use weighted resampling which include the local resampling discussed earlier as a special
case. We state conditions on g, under which the proposed method is asymptotically
valid. We describe how to construct confidence intervals and equal precision bands
using the proposed bootstrap method. We also discuss the use of bootstrap for data-
driven bandwidth selection in censored nonparametric regression. Further extensions
to pointwise and simultaneous confidence intervals for a quantile regression function at
different covariate points are also discussed. In Section 3, we illustrate our method on
a real data set and present numerical results about the performance of the proposed
bootstrap method for finite sample sizes. The proofs are collected in Section 4.

2. Main results

2.1 Notations and assumptions

Recall that A(t | z) and S(t | z) denote the conditional cumulative hazard function
and conditional survival function, respectively, of the survival time T given Z = 2. Let
G(t | 2z) = P(C; > t | Z; = z) denote the conditional survival function of the censoring
time C given Z = z. Assume that Z has a density f(z) and let ot | 2) = DA(t | 2)/0t
denote the conditional hazard function of T" given Z = z.

Let

N,;(t)ZI(XiSt,(S,;:l) and lfi(t):I(XiZt), izl,...,n.
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In addition, define

Hy(t|2) = E(Ni(t) | Zi = 2) = P(X: < ,6 = 1| Z = ),
(2.1) Hy(t|2) = E(Yi(t) | Zi = 2) = P(X; > t| Z; = 2),
Hi(t,2) = Hi(t | 2)f(2), k=1,2.

The following assumptions will come into play in what follows.

AssuMPTION A. Let w(-) be a density function vanishing outside [-1, 1].
(A1) [fuw(u)=0and [v?w(u)du < co.

(A.2) w(:) is of bounded variation.

(A.3) The derivative function w'(-) is of bounded variation.

Let 7 > 0 be a real number such that S(7 | 2)G(7 | 2) > 0, = [a,b] (~co < a < b<
o) be a fixed interval, and I5 = (a — 6,b+6) (6 > 0) be a 6-neighborhood of I. For any
real function f(t, 2) and any interval J, denote || f||7 = sup{|f(¢,2)|: 0 <t < T,z € J}.

AssuMPTION B.

(B.1) inf{Hy(T | 2) : z € Is} > 0 and 1nf{f(z) z € Is} > 0 for some 6 > 0.

(B.2) ||0"Hy/87"||7, < oo for i =0,1,2,3 and k = 1,2.

(B.3) Foreach s € [0, 7], a(s | 2) is twice differentiable with respect to z and satisfies

os [ w) = als | 2) + (s | 2)(w = 2) + o, (s | 2)(w = 2)% + (s, 2) (w — 2)

where there exists a constant K; > 0 independent of s and z such that a(s | 2), Z(s | 2),
azz (8] 2), and (s, 2) are all bounded by K; for all s € [0,7] and z € I. Here o, and

a,, denote the first and second order partial derivatives of o with respect to z.

2.2 The Beran estimate

For readers’ convenience, we review some results about the Beran-type estimates.
The Beran (1981) kernel estimates of the conditional cumulative hazard function A(t | 2)
and the conditional survival function S(t | 2) are defined by

o d- [FRERE. (1o

and Sy(t | z) = [l (1 = AAp(s | 2)), where AAy(s | 2) = An(s | 2) — Ap(s— | 2) and
for each i, Wp;(2) is a kernel weight function given by

with w(-) being a density function in R and h, > 0 is the bandwidth parameter. The
Beran estimates can be considered as weighted average estimates. For example, the jump
size AAp(t | 2) of Ap(t | 2) at time ¢ is a weighted average of the jumps of the N;’s at
time ¢ for those subjects who are at risk. It is easy to see that if Wy; = 1 for all i, then
Ay, and Sj, reduce to the ordinary Nelson-Aalen estimate and Kaplan-Meier estimate for
homogeneous data. If w(-) is taken to be the uniform density on (—1,1), then Aj is

z
), 1<i<mn,
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a local Nelson-Aalen estimator based on only those observations whose covariate Z fall
inside the neighborhood (z — hp, 2z + hy).

The bandwidth A, controls the tradeoff between the bias and variance of the esti-
mators: the smaller the h,,, the smaller the bias and the larger the variance. If S(t | z) is
twice differentiable with respect to z, then the optimal rate of convergence for Ap, and Sy,
is'of order n—2/5 with h,, tending to zero at rate n~'/® (cf. Dabrowska (1992), Theorem
1 and Li (1997), Corollary 1). In particular, if nh3 — ¢ > 0, then, under regularity
conditions

(2.4) Vil (An(-12) = A(-12)) S U | 2),
(2.5) Viha(Su(- 1 2) = S(- | 2)) & 8(- | 2)U( | 2),

in D[0, 7] for any 7 such that S(7 | 2)G(7 | z) > 0, where D|[0, 7] is the standard Skorohod
space on [0,7] and U(- | z) is a continuous Gaussian martingale with mean

(26) e 12) = Ve | [ [ [ a1 94

(s | 2)Hyu(s,2) .
++/c {/o (s, 2) ds {/u w(u)du]
and variance function

(2.7) 0—2(t|z)=U 2(uduH HZ _>) ]

2.3 Bootstrapping the Beran estimate

We first give two equivalent algorithms for bootstrapping the Beran estimate of the
conditional survival function. Then we state the main results that provide a theoretical
justification of the proposed bootstrap method.

The Simple Weighted Bootstrap. Generate Z7,...,Z i.i.d. from the empirical dis-
tribution of {Z1,...,Z,}. For each i, generate a pair (X * 6*) from the weighted empir-

iV

ical distribution ( o 1 ZF) of {(X1,61),...,(Xn,6n)}, where

(28) Fyuv|2) =) Wel(2)I(X: < u,6; <)

i=1
and Wy;(z) is defined by (2.3) with a bandwidth g,. Our bootstrap sample is formed as
{(X1,61,27), -, (X3, 65, Z3) }-

The obvious bootstrap. Let S,(t | z) and G,(t | z) be the Beran estimates of
S(t | z) and G(t | z), respectlvely, using the same weight function Wy;(z). Here we
force S o(t | ZF) and Gg(t | ZF) to 0 beyond the larger of the last jump points of the
two step functions to make both proper survival functions in order to sample the failure

and censoring times described below. Generate Z7,...,Z) ii.d. from the empirical
distribution of {Z1,...,Z,}. For each 4, generate T} from S,(t | Z}) and C} from
G, (t| ZF) independently, and define

(2.9) X =min(T;,C}), 6 =I(T; <C}).

Our bootstrap sample is {( X7, 67, 27),..., (X}, 6%, Z5)}.
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PROPOSITION 2.1. Suppose that there is no ties in the sample values Xy, ..., Xp.
The simple weighted bootstrap and the obvious bootstrap are equivalent. More precisely,
if (X3,87) are defined by (2.9), then the conditional distribution of (X},6F) given Z} is

Ey(-,- | Z3), where Ey(-,- | Z7) is defined by (2.8).

The equivalence of the two resampling algorithms is parallel to that of Efron’s
(1981) resampling methods for homogeneous data. We note that the obvious bootstrap
algorithm has a clear motivation on its own. On the other hand, the simple weighted
bootstrap algorithm is more convenient for computer implementation. In our simula-
tions with a uniform kernel function, the “simple” bootstrap was much faster than the
“obvious” version.

Let S’;(t | z) and fl;(t | z) be the Beran estimates of S(t | 2) and A(t | 2),
respectively, from the bootstrap sample using the bandwidth g,. We propose to estimate
the distributions of v/nh,(Ax(- | z) — A(- | 2)) and Vi (S (- | 2) — S(- | z)) by their
bootstrap counterparts v/nh, (A% (- | z) — Ay(- | 2)) and Viha (S5(- | 2) = Se(- | 2)),
respectively. The distributions of the bootstrap processes can then be approximated by
generating a large number of bootstrap samples.

In order to properly account for the bias, g, needs to be slightly larger than h,. In
the following theorem we give conditions under which the proposed bootstrap method
“works” .

THEOREM 1. Let z € (a,b) be firzed. Assume (A.1)-(A.3) and (B.1)-(B.3). If
hn =cn™Y% (0 < ¢ < 00) and g, satisfies the following conditions

t 3
(2.10) %ﬂ =0(1) for some 0<r <2, and [-loggy] (%’3) — 0,

n n

then, conditional on (X1,61,Z1),...,(Xn, 60, Zn),

(2.11) Viha (A5t 2) — Ag(t] 2)) S U(- | 2),
(2.12) Vha(85(t] 2) = 8,(t | 2)) % 5(- | 2)U(- | 2),

in D[0, 7] for almost all sample sequences (X1, 6y, Z1), (Xa, 62, Z3), ..., where the distri-
butions of the limiting processes U(- | z) and S(- | 2)U(- | z) are the same as the limiting
processes of \/nh,(An(- | 2) — A(- | 2)) and Vb (8u(- | 2) = 8(- | 2)) given in (2.4) and
(2.5), respectively.

Remark 2.1. 1f g, ~ n~P, then it is easy to see that (2.8) is satisfied if and only if
1—16 <pB< -é— Thus, g, should go to zero at a slower rate than h,. It would be of interest
to know what value of 3 should be recommended in practice. A general answer is beyond
the scope of this paper and a thorough investigation is needed in future research. We
observed that the value 8 = 0.11 has demonstrated satisfactory performance in term
of coverage probabilities in our limited simulation studies. It is interesting that this
value is very close to the theoretical value 8 = 1/9 obtained by Cao and Gonzilez-
Manteiga (1993) for uncensored regression data. We also observed in our simulations
that the coverage probability were not very sensitive to small changes of 3. One possible
explanation is that the ratio gn/hn ~ n-2°=# is not very sensitive to 8 (0.10 < 8 < 0.20)
when the sample size n is not extremely large." ‘
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2.4 Bootstrap confidence intervals and bands for S(t | z)

Confidence intervals for S(t | z) at a fixed time ¢ can be easily obtained by ap-
proximating the distribution of v/nhn (Sh(t | ) — S(t | 2)) by its bootstrap counterpart
VAFa($i(t] ) = S,(t] 2)).

Below we describe how to construct equal precision type confidence bands for the
conditional survival function S(t | 2).

Define

62(t | 2) = nhy /Zc (s,2)dAn(s | Zi),

where for 1 <i < n,
5(t,2) = W)Y, /mew>

Then, similar to (4.32) in Section 4, it can be shown that 62(¢ | z) converges almost
surely to o(t | z) uniformly in ¢ € [0, 7]. This, together with Theorem 1 and the strong
uniform consistency of S(t | z) (cf. Dabrowska (1989)), implies that

Vil (Si(t 1 2) = 84t 1 2) a4 U(]2)

Su(-12)6(- | 2) o(-]2)’
where the limiting distribution is the same as that of ~ mhin (S (t]2) = S(tlz)) Hence, we

Sr(-12)6(:|2)
have the following result.

THEOREM 2. Assume that the conditions of Theorem 1 hold. Let 0 < oo < 1 be a
fized constant. Choose vy, from the bootstrap distribution so that

(2.13) P Vihn|Si(t12) = 5ot 12| 1 (x5, 2)i=1,...,n b =1 —a.
[0 T] Su(t ] 2)o(t] 2)
Then

(2.14) P{S’h(t | 2) = Yn St 2)ot2) S(t]2) < Salt]2) +Tm Sn(t | 2)6(t | 2)

nhny, - - vnhy,

forall te€ [O,T]} —1-«

It is not hard to show that if Sy (¢ | 2)6(t | z) in (2.11) is replaced by its bootstrapped
version, then the conclusion in (2.12) still holds.

Bootstrap confidence bands for the conditional cumulative function can be con-
structed similarly.

3. Application and simulation study

In this section we illustrate the proposed bootstrap method on a data set involving
survival of patients diagnosed of primary biliary cirrhosis of the liver (PBC). We also
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carry out a simulation study to assess the performance of the bootstrap confidence bands
and intervals.

The PBC data come from a randomized clinical trial study conducted by the
Mayo Clinic between January 1974 and May 1984, comparing the drug D-penicillamine
(DPCA) with a placebo. Among the 424 PBC patients who met eligibility criteria, 312
cases participated the randomized trial and contain largely complete data. For each
patient, the date of randomization, the disease and survival status as of July 1986, and
a large number of risk factors such as age and serum libirubin were recorded. As of July
1986, 124 were observed to die from the disease and the remaining were censored ob-
servations. Of the additional 112 cases who did not participate in the randomized trial,
but consented to have basic measurements recorded and to be followed for survival, the
data are available on only 106 cases because six of those cases lost follow-up shortly after
diagnosis. The data are given in Fleming and Harrington ((1991), Appendix D.1). '

In their analysis, Fleming and Harrington (1991) showed that there are no detectable
differences between the distributions of survival times for the DPCA and the placebo
groups. Thus we combined the two groups in the randomized trial to study the associ-
ation between the survival time and risk factors. Fleming and Harrington (1991) also
showed that the variable Z=“serum bilirubin”, (in mg/dl) is the strongest univariate
predictor of survival for PBC patients. Although a complete analysis requires the use of
other risk factors, for illustration purpose, here we focus only on the influence of serum
bilirubin on survival probabilities. Specifically, we construct bootstrap confidence bands
and intervals for the conditional survival curve S(¢ | z) for given z using the 312 cases
participated the randomized trial. 1000 bootstrap samples were used in the studies.

Figure 1 gives the 90% bootstrap pointwise confidence intervals for the conditional
survival functions S(t | Z = 0.5) and S(¢ | Z = 2.35) at times t = i x365/4,i =1,...,20.
Figure 2 gives the 90% bootstrap simultaneous confidence bands for S(t | Z = 0.5) and
S(t| Z =2.35) on the interval [0, 1825] (in days), or over the first 5 years. For Z = 0.5,
we used ¢ = 1.7 which gives h, = en™/® = 0.54 and g, = cn%!! = 0.904. For

= 2.35, we used ¢ = 6.6 which corresponds to h, = 2.09 and g, = 3.51. Here ¢
was chosen to minimize the bootstrapped integrated mean square error. Details of a
bootstrap bandwidth selection procedure can be found in Li and Datta (1999).

It is seen from Fig. 1 that a patient with Z = 0.5 has a very high chance of survival
for more than 5 years. For instance, the 90% confidence interval for S(1825 | Z = 0.5) is
[0.91,0.97]. That is, with 90% confidence, the 5-year survival probability of a patient with
Z = 0.5is at least .91 and it can be as high as .97. On the other hand, the 90% confidence
interval for S(1825 | Z = 2.35), the 5-year survival probability of a patient with Z =
2.35, is [0.77,0.86] which is noticeably lower than that for Z = 0.5. Furthermore, both
the confidence intervals and bands revealed that the differences between the estimated
survival curves S(t | 0.5) and S(¢ | 2.35) are not just caused by random variation.
Instead, they reflect the significant drop in survival probability when Z is increased
from 0.5 to 2.35. Finally, we point out that the data are too sparse to produce useful
confidence intervals or bands for survival probabilities when Z is large (e.g., Z = 15),
unless one use a very large bandwidth which in turn introduces severe bias. Detailed
analysis of the PBC data using various parsimonious models can be found in Fleming
and Harrington (1991).

We finally mention that we also carried out a similar analysis by including the
additional 106 cases. As expected, we observed very little differences from the results
presented above.
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Fig. 2. 90% simultaneous confidence bands for S(t | 0.5) and S(t | 2.35) over 5 years.

In Table 1 we report the results of simulations to estimate the coverage probabilities
of the bootstrap confidence band for the conditional survival function S(t | 0.5) on
the interval [0,2]. Here the covariate Z has a uniform distribution on (0,1) and the
conditional survival and censoring distributions (given Z = z) are F(t | z) = 1 —
exp(—2z%t) and G(t | z) = 1 — exp(—bz?t). The parameter b is adjusted to give the
prescribed censoring rate. Note that for this example, P(T' > C | Z = z) = b/(1 + b)
which does not involve z. In the simulation, we used A, = cn~2/5 and g, = cn=%1! with
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Table 1. Observed coverage probabilities of bootstrap bands for S(t | z) over the interval [0, 2].

Nominal Level=.90 Nominal Level=.95
Sample size Censoring rate Censoring rate
n 5% 20% 40% T70% 5% 20% 40% 70%
50 91 92 .90 .90 .95 .95 .93 .95
100 94 92 92 .81 96 .96 .95 .88
200 .88 .88 87 .80 91 91 .89 .87
500 91 .90 .90 .84 97 .98 97 .95
1060 90 .90 91 .85 95 .95 .95 94

Table 2. Observed coverage probabilities of bootstrap confidence intervals for S(itlz)att=2.

Nominal Level=.90 Nominal Level=.95
Sample size Censoring rate Censoring rate
n 5% 20% 40% T0% 5% 20% 40% 70%
50 91 .90 .87 80 96 .94 .91 .85
100 92 .90 .88 71 97 97 .95 .83
200 .91 .93 .94 73 .97 99 .95 .78
500 97 95 .92 .83 .98 .97 .99 .89
1000 .89 .90 .88 7 95 94 .93 .90

¢ = 0.70 which is close to the optimal value of ¢ for a global bandwidth. For a given
sample, 1,000 bootstrap samples were used to construct confidence bands and intervals.
Each entry in the table was based on 100 Monte Carlo samples. (It would be ideal to
use a larger number of Monte Carlo samples. However, this would require enormous
computation time for the simulation when the sample size n exceeds 500. We did run
the simulation for n = 50 and 100 using 1,000 Monte Carlo samples and the results were
consistent with those reported here.)

Table 2 was similarly constructed except that it reports estimated coverage proba-
bilities of the bootstrap confidence intervals for a single conditional survival probability
S5(210.5).

It is seen from both tables that with the exception of heavy censoring, the coverage
probabilities are observed to be close to their nominal values. In the case of heavy
censoring, a much larger sample size would be needed.

4. Proofs

PROOF OF PROPOSITION 2.1. The proof is similar to that of Efron (1981) and is
omitted. A detailed proof can be obtained from the author upon request. 0

Next we prove Theorem 1.

Because (2.12) is a consequence of (2.11) and the functional delta method, we
only prove (2.11). Our proof of (2.11) is carried out by verifying the conditions of
the martingale central limit theorem for /nh, (A% (t | 2) — Ay(t | 2)), conditional on
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the data. It is important to note that the techniques involved in the proof are sub-
stantially different from those used in Li (1997) for establishing weak convergence of
Viha(An(t | 2) — A(t | z)). In particular, we need to derive the rate of uniform (in z)
almost sure convergence for the Beran estimate A and its partial derivative dA/8z and
for some nonparametric mean regression estimators. In contrast, only weak consistency
results with fixed z were needed in Li (1997).

The following lemma gives the rates of uniform strong convergence for Aand 94 /0%,
which will play a crucial role in the proof of Theorem 1.

LeEmMA 1. (Rate of uniform strong convergence for Ag and its first order derivative)
Assume that (A.1), (B. 1) and (B.2) hold.

(a) If an, = (logg )2 — 0 and 320 | g8 < oo for some p > 0, then, with proba-
bility 1, .
(4.1) llAg — A||f = O(max(as,g3)) as n— oo,

where || f||T = sup{|f(¢,2)] : 0 <t <7,z € I} for any real function f(t,z).
(b) If Bn = (k’ﬁ”‘r)l/2 — 0 and ) | gf < oo for some p > 0, then, with proba-
bility 1,

w2) ’ oA, 04

— 2 s
% B2 I = O(max(Bn,9;)) as n— oo.

PROOF. (a) Let

Hy(t,2) :mzz: ( : > Ni(t) and .92(“———2 (

NGn =

) Yi(t).

(4.3) P(HlfIg,.c - EI:ngH} > €) < copgy L exp(—cireing,), k=1,2, forall €>0,

It follows from Dabrowska ((1989), p. 1165, lines 5 and 7) that

where ¢g1, o2, €11, and ¢;2 are some universal positive constants Letting € = a,{(1 +
p)/c1k}1/2, the above inequalities reduces to

P(|Hgr, — EHge|l7 > an{(1+ p)/ck}'/?) < corglh, k=1,2.
This, combined with the Borel-Cantelli lemma, implies that with probability 1,
(4.4) \Hy — EHg|7 = O(aw), k=1,2.

Note that EHy(t, 2) = [w(uw)Hy(t, z + gou)du for k = 1,2. An application of the
Taylor expansion and (A.1) leads to

o*H |

522 O(gi)f k=1,2,

45) IBA(2) ~ I < 62 | [ otu)anl

Is

for sufficiently large n.
It follows from (4.4) and (4.5) that

(4.6) | Hgr — Hyel7 25 k=12
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Write

A (t)2)— A(t] 2) = /0 —md[ﬁgl(s,z)~Eﬁgl(s,z)]

t 1 1 N
+/ = - —= dH (s, 2
0 [HQQ(S, 2)  EHp(s, z)} n(s2)

t 1 R
+ fo Ty B Har (5,2) ~ Has,2)

+ ~ — dEH,;(s, 2
/o [Eng(s, 2) H2(S,Z)] o1(5:2)

and denote by I; the [-th term on the right hand side of the equality, | = 1,...,4. Tt
can be shown that there exist some positive constants Ky, Ko, K3 and K4 such that for
sufficiently large n

L7 < KillHgp — EHp|l7,  ||L||7 < Ko||Hy2 — EHg|F,
5317 < Ksl|[EHgy — Hil|7, and  ||L4]|7 < K4||EHg — Hol|7.

Therefore, for sufficiently large n
(4.7) 1A — A7 < L7 + 12017 + 15517 + a7

2
< K (I1Hok — EHge||7 + | EHgr — He7)
k=1
with probability 1, for some positive constant K. This, combined with (4.4) and (4.5),
implies (4.1).
(b) Now we prove (4.2). Similar to (4.3), it can be shown that

T

OH OH _
P ( el el | e) < borg, ' exp(—bike’ng3), k=1,2,
Oz Oz !

forall e¢>0,

for some positive constants bo1, b2, b1 and bys. This, together with the argument
leading to (4.4), implies that with probability 1, '

T

OH OHy |l B
(4.8) 5 —F > I_O(ﬂn), k=1,2.

Similar to (4.5), the Taylor expansion and (A.1) leads to

T

H H SH ||
4.9) ||E [aazg’“} - 38; <g Uu%(u)du] %’? = 0(¢?), k=1,2.
I -
Finally,

d Bﬁgl (s,2) Bﬁgg(s, z)}

afig(tlzgfot{ Oz }_/0{ Oz

. S dH, (s,
92 HgQ(S,Z) [Hg2(37 Z)]2 91(3 Z)

and
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) w t M
8A(8tz| z) I/O [Hz(izzz) ] _/0 —[@gﬁidﬂl(s,z)'

Similar to (4.7), it can be shown that there exists a positive constant K such that for
sufficiently large n,

N 2
314 3 2 T 3 T
W - 5? Z (”Hgk ~ EHg||7 + |[EHgr — Hill7
o8 _ ot |0t om|
8z Oz ; 0z Oz .

with probability 1. This, combined with (4.4), (4.5), (4.8), and (4.9), proves (4.2). O

LEMMA 2. Assume that (1,21),...,(&n,Zn) are iid random vectors taking values
in [0,1] x R and that the density function f(z) of Z; satisfies inf,<,<p f(2) > 0 for some
—0 < a<b<oo. Define

m(z) =E( | Zi=2) and mg(2) = ZWM )&,

where Wyi(z) is defined by (2.3). In addition, for any function g(z), define

W(z) = d—bci—zg)zg—(%ﬂ/uzw(u)du and wn(z Z (

™ og=1

n

?) @ - 20(2).

Assume that (A.1) and (A.2) hold and that g(z) is continuously differentiable and m(z)
and f(z) are twice continuously differentiable on (a —€,b + €) for some € > 0.
(a) If hp — 0 and for some fized 0 <1 < 2,

(4.10) Z exp(—pnh2t?") < 0o, forall p>0,
n=1
then, as n — 00,
(4.11) sup h-T|mn(z) — m(z)] =5 0.
. aLz<b

(b) If (4.10) holds for r =1, then

(412) sup [thn(2) — $(2)] =5 0.

a<z<b

Proor. (a) Let ¢(z) = m(z)f(2),

z) & and  fo(2) = (nhy) ! iZ:;w (Zz

Then, my,(2) = ¢n(2)/ fu(2). Thus it suffices to show that

(4.13) ¢n(z) = (nhn) 7! Zw (Zzh

(4.14) sup ho7|ba(2) — #(2)] £50, as n— oo,
a<z<b



722 GANG LI AND SOMNATH DATTA

and that
(4.15) sup ho"|fu(2) - f(2)] 250, as n— oo
alz<bh

By (A.1) and the Taylor series expansion, we have

Enlz) — d(z) = 12 / Pw)d (2 + Maw)dy, (A < 1)
Hence, as n — oo,

(4.16)  sup Rh;T|E¢n(2) — ¢(2)|
a<z<b

<2 [ sup sup [¢"(z+6)—¢ (2)] + ¢I’(z):l / w?w(u)du — 0.

<z<b[6|<ha

On the other hand, Lemma 2 of Nadaraya (1970) implies that

P ( sup h,"|pn(2) — E¢p(2)| > p) < e exp(—alpznh?f%)
a<zZ<b
+cz exp(—agp®nh2t?T),  p>0,

for some universal positive constants ¢y, ¢, a3, and as. This, combined with the Borel-
Cantelli lemma and (4.16), implies that (4.14) holds. We can prove (4.15) along the
same lines. Therefore (4.11) is proved.

(b) From the Taylor expansion and (A.1), we have

Epn(z) = / W) W WIW)] du, N <1
dy y=z+Ahnu
Thus, similar to (4.16), we have
(4.17) sup |EYn(2) — ¥(z)| — 0.
a<z<b

Let FZ(z) denote the cumulative distribution function of Z; and let F.Z(z) be the em-
pirical distribution function of Z1,..., Z,. By integrating by parts, it is shown that for
z € [a,b] and sufficiently large n,

[¥n(2) — Evpn(2)| < Kohy,? sup |F (u) — F? (u),

for some constant Ko > 0, where the second equality is obtained by integrating by parts.
"This, combined with the following inequality (cf. Nadaraya (1970), (6))

Pv(sup [FZ(u) — FZ(u)| > %) < cgexp(—2X%), (co > 0 is a universal constant)
implies that

P( Sup_ [Yn(2) — Bibn(2)| > p) < co exp(~aopPnhd),
a<z<h
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where o = 2/KZ2. Applying the Borel-Cantelli lemma, we have

(4.18) sup [Vn(2) — B (2)] 230  as n— oo.

a<z<

Therefore, (4.12) follows from (4.17) and (4.18). O

LeMMA 3. Let Zf,...,Z be defined as in Subsection 2.3. Define fi(z) = -

nhy,
P (2) in (4.13). Assume that h, — 0
and Y o0, exp( pnhy,) < oo for all p > 0. Then, for almost all sequences Z,,2,, ...,
conditional on (Z1,...,2,), f:(2)—=Ff(2) as n — oo at every continuity point z of f.

PROOF. Let z be a continuity point of f. By Rao ((1983), Theorem 3.1.5),
fa(z) —®*% f(z) as n — oo. The conclusion follows from the facts that for al-
most all sequences Zl, Zyy .. E(fi(2) | Z1,...,2Zn) = fu(2) — f(2), and Var(f:(z) |

2 Zn) = e b o WH(5TE) — 1 fale) = 0.0

The following lemma gives a list of results that will be repeatedly used in the proof
of Theorem 1.

LemMA 4. Assume that by, — 0 and g, — 0. Assume further that

(4.19) Zexp(—pnhi) <00, forall p>0,

n=1

and that for some constant 0 < r < 2,

(4.20) i—“ = 0(1),

and

(4.21) zexp(—png,zlwr) <oo, forall p>0.
n=1

In addition, assume that the density f(z) of Z satisfies the conditions of Lemma 2. Let

Hh2(sz h Z (

— )% (),
and, for 1 <i<n,let
(4.22) i, z) = Wi (2) Y (t / ZWh](z)Y*(t)

where N} (t), Y;*(t), and W} ,(2) are the bootstrap counterparts of N;(t), Yi(t), and
Whi(2), respectively. Let a < z < b be fired. Then, conditional on (X1,61,21),...,
(Xn,5n,Zn),

(4.23) sup |H}y(s,2) — Hy(s,2)| 5 0,

s€(0,7]
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(4.24) sup (nhn)‘SZc;"”‘s(s,z) - [HQ(s,z)]_‘S/wl""S(u)du L0, 6>0,
s€f0,7] i=1

(425) sup |B2S ci(s,2)(Z5 - 2) - Hy \(s, 2 )[51{2(3’2‘)] / ww(u)du| 50,
s€[0,7] i—1

n
(426) sup |h2S ci(s,2)(ZF - 2)° - / Puw(u)du| B0,
i=1

s€[0,7]

n t n
@2 Y- [ 167(ds,2)] = . c7(6,2) + Opl(ha)P),  for any p>0,
i=1 70 i=1

for almost all sequences (X1,61,21), ..., where Ha(s, z) is defined in (2.1).

ProoF. Throughout the proof expectations are taken conditional on
(XI) 61) Z1)7 seey (Xn7 6717 Zn)
(a) Let 0 < s < 7 be fixed and define

It can be shown that

E}AI;:Q(S,Z) = %Zw (
L
T

o2 fals ] 20) — Hals | 20)

<(%

Denote by I; and I the first and second term on the right hand side of the last equality.
Then, as n — 00,

) Has | 2).

1 i Zi'—z 2 a.s.
I < [‘m Zw( - )} p Hga(s | 2) = Ha(s ] 2)] 25 () 0=,

i=1

where the almost sure convergence follows from (4.15) and (4.11). Moreover, by (4.14),
I, —®5 Hy(s | 2) f(z) = Ha(s,2), as n — co. Thus, EH},(s,2) —>S Hy(s, 2).
Similarly, it can be shown that as n — oo

o 1 1 « Zi—2z\ A 1 Ak a.s,
Var(Hj,(s, 2)) = e w? ( A ) Hga(s | Z;) - ‘T;[Eth(S, 2 #5 0.
" ™ =1 "

Therefore, for any s, conditional on (X1,61,21),...,(Xn,6n,Zs), ﬁhz(s z) —
Hy(s,z) along almost all sequences (X1, 6, Z1)y- - One can also show that for any
s, conditional on (X31,81,21),...,(Xn,0n, Zn), Hh2(3+ z) =% Hy(s+,2) along almost
all sample sequences {(X;,6;,%;),i = 1,2,...}. Using the standard argument similar
to those in the proof of Theorem 5.5.1 of Chung (1974) and the fact that Ha(s,z) is
left-continuous and nonincreasing, we conclude (4.23).
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Parts (c)-(d) can be proved by applying (a) and Lemmas 2 and 3. Here we omit the
details. O

Proor or THEOREM 1. It is not difficult to verify that the conditions of g, in
Lemma 1 and the conditions of h, and g,, in Lemma 4 are satisfied if nh> — ¢ > 0 and
(2.10) holds. So, all results in Lemmas 1 and 4 apply here. Throughout the proof all
convergence are conditional on the observed sample data (X1,61,21),...,(Xn, 0n, Zn)-

Now let’s prove (2 11). Note that

(Ai(t 1 2) — Ayt | 2))

(/ Zc (s, sz*(s) g(t]z)>

:/ Zc (s, 2)dM;( s)+/ Zc;(s,z)d(Ag(sxz;)_Ag(sjz))
=1

(4.29) = W1n(t | 2)+ Wzn(t | 2),

where c}(s,z) and N(s) (1 < i < n) are defined in Lemma 4, M*(t) = N(t) —
fot Y (s)dA,(s | Z), t € [0,7], i = 1,...,n, are orthogonal locally square integral
martingales (cf. Gill (1980), pp. 26-31 and Fleming and Harrington (1991), Section 2.6),
and WP (t | z) and W3, (t | z) denote the first and second term on the right hand side

of the second equahty Thus, to prove (2.9), it suffices to show that conditional on
(Xla(sh Zl)a ey (Xm 677.7 Z’n)a'

(4.30) Ve Wi (-] 2) S V(- | 2),
(4.31) sup. Vrha Wi (t | 2) — veu(t | 2)] 5 0,
tE T

along almost all sequences (X1, 61, Z1), (X2,62,Z2),..., where u(t | 2) is defined in (2.6)
and V(- | 2) is a continuous Gaussian martingale with mean 0 and variance function
o2(t | z) given by (2.7).

We ﬁrst prove (4. 30). Writing I1 () = nhy, fo T (s, z)als | ZF)ds and L(t) =
nhy, fo r (s, 2)d(A (s | ZF) — A(s | Z7)), we have

(Vnh Wi, V/nh, W (t) = nhy / ZC*Q (s,2)dAy(s | Z}) = Li(t) + Lx(t).

From Assumption (B.3), a(s | w) = a(s | 2) +m (s, w)(w — z), where 1; (s, w) is bounded.
Thus, with probability 1,

Li(t) = /0 {a(s | z)nhnz c;*(s, z) + nh, ZCIQ(s,z)m (s, Z; (2] — z)| ds
i=1

i=1

L [/Ota(s 1 z)Hz_l(s,z)ds] Uwz(u)du] =o’(t|2),

uniformly in ¢ € [0, 7], where the convergence follows from (4.24) and the simple fact
that

n n
nhy, Zcffz(s, 2Ym (s, ZIZ} — z)| < Chy, - (nhy) Zcf(s,z),

i=1
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for some constant C' > 0. Moreover, integrating by parts, we have

L] = ka3 2t 2) Ayt 22) - ACt] 27))
i=1
b g / (Aol | 22) — Als | Z0))dei?(s,7)
<

n n 3
1Ag — AllF -nha Y ci?(t,2) + | Ag — Al - nhy, Z/o | de;?(s, 2)]
i=1 i=1

= A, — A|F (2nhn icfz(t,z) + (nhy) - O, ((nhn)‘1)>

i=1
£ uniformly in ¢ € [0, 7],

with probability 1, where in the third step we have used (4.27) and the last step follows
from (4.1) and (4. 24) Hence, with probability 1,

(4.32) (Vrh Wiy, VRh Wi ) () = (1) +L(t) S o >(t|2) uniformly in ¢ € [0,7].

Similarly, one can use Lemma 1 and Lemma 4 to verify the Lindeberg condition that for
any € > 0,

/O ’ > (Vhacs (5, )Y (v (s, 20) > )dAy(s | Z7)

r n
<t [ )2y (s, dy(s | )
0 i=1
(4.33) £o,
with probability 1. Therefore, (4.30) follows from (4.32), (4.33), and Rebolledo’s mar-

tingale central limit theorem (cf. Andersen and Gill (1982), Theorem 1.2).
Now, we verify (4.31). Write

(434)  rhaWi(t ] 2) = /r / Zc;(s,z)(a(slz;)—a(s|z))ds
++/nh, / Zc (s,2)

d([Ag(s | Z~*) ~A(s| Z9)] - [Ag(s | 2) — A(s | 2)))
— Jnhn /Zc(s als | Z7) - afs | 2))ds
+v/nhy / Zc (s, 2)

d [5;@9(5 |5~ G| 2(6))] (2 -2
= Ji(t) + Jo(t),
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where Z;(s) is between Z} and z, and Ji(t) and Jo(t) denote the first and second term
on the right hand side of the second equation. Then,

Ji(t) = /0 o, (s | 2) {\/nhan;*(s, 2)(ZF — z)} ds
i=1
+/O o, (s, 2) [\/nhan;‘(s, 2)(Z; — z)2J ds

+/t [\/nhnzn:ci(s,z)fy(s, ZINZr — z){l ds
0 i=1
(4.35) 5 Veu(t | 2)

uniformly in ¢ € [0, 7], where the first equality is from Assumption (B.3) and the last
step follows from (4.25), (4.26), the assumption that nh3 — ¢, and the fact that

' /0 [\/nhn Z ci(s, 2)v(s, Z) ) Z} — z)3J ds
i=1

t n
< thn/ Vnhy, Zci(s, 2)(ZF ~ z)%ds.
0 i=1

Moreover, integrating by parts, we have

|Ja(8)] < \/nhan;‘(t, N - 2) (aAg(talzzi(t)) ~ 8A(t6[z2i(t))> '
*W/ Z (2; - l - (PRl 2D SR LROD] g,
i (Zc<tz + [ i) )
= /nht 3Az (QZC tz)—{—Op(l))
k3 log gn'! 5
=0 (ma‘x { g v hngn}) (2+0,(1))
(4.36) = o(1),

where the third step uses (4.27), the fourth step follows from (4.2), and the last step
follows from (2.10). Combining (4.34), (4.35), and (4.36), we prove (4.31). O

Remark 4.1. Tt is seen from the above proof that in order for the bootstrap to
pick up the correct amount of bias (i.e. for (4.31) to hold), a;; 2 has to be uniformly
strong consistent at appropriate speed (see the last two steps in (4.36)). This, in turn,
it requires that g, satisfies condition (2.10). As mentioned in Remark 2.1, this means

that g, has to go to 0 at a slower rate than h,,.
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