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Abstract. For semi-recursive and recursive kernel estimates of a regression of Y
on X (d-dimensional random vector X, integrable real random variable Y), intro-
duced by Devroye and Wagner and by Révész, respectively, strong universal point-
wise consistency is shown, i.e. strong consistency Px-almost everywhere for general
distribution of (X,Y). Similar results are shown for the corresponding partitioning
estimates.
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1. Introduction

Let X be a d-dimensional random vector with distribution Px =: p and let ¥ be
a real random variable with E|Y| < oo. The regression function m : R% — R defined
by m(z) := E(Y | X = z), shall be estimated on the basis of an observable train-
ing sequence (Xi,Y1), (X2,Y2),... of independent copies of (X,Y) where no further
assumption on the distribution of (X,Y) is used. Let in the context of observations
(£1,91)- s (TnsYn) of (X1,Y1),..., (Xn,Yy,) a nonparametric estimator of m(z) be de-
noted by mu(T1,Y1,- .-, Tn, Yn; L) =: Myp(z), T € R?. To simplify the notation the
abbreviation mod p is used to indicate that a relation holds for y-almost all z € R4,
I denotes an indicator function, S denotes a closed sphere in R? around 0 with finite
positive radius.

The estimation sequence (m.,) is called strongly [weakly] universally pointwise con-
sistent, if

almost surely (a.s.) my, — m(z) mod p
[mn(z) — m(z) in probability mod u]

for all distributions of (X,Y) with E|Y| < co. We shall use this definition although in
literature often the last condition is replaced by the stronger condition EY? < c0. In
the case that, with EY? < oo, pointwise consistency is replaced by consistency in L?(p)
sense, one speaks of strong [weak| universal consistency.
Stone (1977) first pointed out that there exist weak universal consistent estimations.
The aim of this paper is to show strong universal pointwise consistency for some
(wide sense) recursive estimation sequences, namely semi-recursive kernel and partition-
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ing estimates and (narrow sense) recursive kernel and partitioning estimates with suitable
kernels and bandwidth sequences and suitable sequences of partitions, respectively.

For a sequence of measurable functions K, : RYxR? — R4 (n € N), we first consider
estimates of the form

(1.1) My () =
0
Such an estimate is called semi-recursive because it can be updated sequentially by
adding extra terms to both the numerator and the denominator when new observations
become available.
The semi-recursive kernel estimate is defined by a kernel K : R — R, and a
sequence of bandwidths h, > 0 via (1.1) with

(1.2) Ko(z,u) =K (‘2“) .

This estimate was introduced by Devroye and Wagner (1980b), who investigated, as
Krzyzak (1992), Li-convergence. Its definition is motivated by a recursive density esti-
mate due to Wolverton and Wagner (1969) and Yamato (1971), compare also Greblicki’s
(1974) and Ahmad and Lin’s (1976) regression estimate. Krzyzak and Pawlak (1984) and
Greblicki and Pawlak (1987) showed weak universal pointwise consistency, also strong
pointwise consistency in the case E|Y|P < oo for some p > 1, under some conditions on
the kernel and the bandwidth sequence. Gydrfi et al. (1998) treated weak and strong
universal consistency.

In the non-recursive kernel estimate (Nadaraya (1964), Watson (1964)), K;(i =
1,...,n) in (L.1) is replaced by K, in (1.2). Its weak universal consistency for rather
general kernels and bandwidth sequences was proved by Devroye and Wagner (1980a)
and Spiegelman and Sacks (1980). Strong universal consistency for special bandwidth
sequences was proved by Walk (2000). Weak universal pointwise consistency for suitable
kernels was shown by Devroye (1981) and Greblicki et al. (1984). Whether strong uni-
versal pointwise consistency holds, is an open problem. Kozek et al. (1998) showed that
for window kernel K = I strong pointwise consistency holds under a slightly sharpened
integrability assumption on Y, see also Stute (1986), or an assumption x on yp fulfilled
e.g. for absolutely continuous p. The integrability condition means E®(|Y|) < oo for
some symmetric convex @ : Ry — Ry satisfying ®'(2t) < C®'()(0 < C < o0), ®(0) =0,
®(+/7) subadditive, which is used together with the condition h, | 0, h2®(nh2)~! < co
concerning the bandwidths; e.g. ®(t) = t(c* + In(1 + t)(lnln(1l + ¢))") (r > 1, suitable
~¢*>0)and b, =cn”7 (0 < ¢ < 00,0 < yd < 1). The assumption x means

=t (o)

0 < liminf u(z + h, S)n' ~F < limsup p(z + haS)n* ™" < 00

p-almost everywhere for some £ € (1 — 6d,1] which can also be replaced by countably
many &;(z) € [1 — vd,1], where h, = cn”7(0 < ¢ < 00,0 < yd < 1). Greblicki and
Pawlak (1985) used Dirichlet kernels and kernels associated with the Hermite series and
showed weak and strong pointwise consistency for integrable and uniformly bounded Y,
respectively, in the case that X1, Xo,... are real random variables with a density.

The semi-recursive partitioning or histogram estimator is defined analogously via
(1.1) in the context of a sequence of partitions Py, = {An1,An2, ...} (finite or denumer-
able family of Borel sets) of R? where

(1.3) Ky (z, u) = IAn(x)(u),
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A, (z) denoting the set A,; with € A,;. We require that the sequence of partitions is
nested, i.e. that the sequence of generated o-algebras F(P,) increases. The estimator
can then be computed efficiently by storing the constant denumerator and denominator
for each cell of (P,). Weak and strong universal consistency were studied by Gyorfi et
al. (1998).

" The non-recursive partitioning estimate, where K; (i = 1,...,n) in (1.1) is replaced
by K in (1.3) was investigated by Devroye and Gyorfi (1983), Gyorfi (1991) and Walk
(2000). Also here the problem whether strong universal pointwise consistency holds, is
open.

For the function sequence (K.,) := (h,9K,,) with general K, as before and positive
numbers A, we also consider recursive estimates m,, (n € N) of stochastic approximation
type defined by

(14) m; = Yi,

(1.5)  mpp1(z) = mp(2) — any1mn (@) Kng1 (2, Xny1) + an+1Yn+1Rn+1(x, Xnt1)

with positive numbers a,,, so-called gains.

Equations (1.4), (1.5) with K, given by (1.2) define the recursive kernel regression
estimate introduced and investigated by Révész (1973). Strong universal consistency
and strong pointwise consistency of this estimate was proven for suitable kernels, gains
and bandwidths by Gyorfi and Walk (1997) under the assumption EY? < co.

Equations (1.4), (1.5) with K, given by (1.3) define a recursive partitioning regres-
sion estimate.

In this paper we show strong universal pointwise consistency for semi-recursive ker-
nel estimates with special kernels, mainly window kernels (Theorem 2.1a) and for semi-
recursive partitioning estimates (Theorem 2.2) allowing rather general bandwidth se-
quences and (nested) partitioning sequences, respectively, in contrast to the non-recursive
case. In the proofs we use truncation and the covering argument. Obviously the results
can be considered as strong laws of large numbers for conditional expectations. In the
case of more general kernels with compact support, strong pointwise consistency is es-
tablished under condition E|Y|In* |Y| < co (Theorem 2.1b). Considering a general
structure of K, (in a proposition) we prove strong universal pointwise consistency for
recursive kernel estimates, with rather general kernel, and for recursive partitioning esti-
mates (Theorems 2.3 and 2.4, resp.) under rather strong conditions on the gain sequence
and the bandwidth and partitioning sequence, resp., which cannot be essentially weak-
ened.

The results are presented in Section 2, the proofs are given in Section 3.

2. Results

The first result deals with the semi-recursive kernel estimator of Devroye and Wagner
(19800).

THEOREM 2.1. Forn € N let

Srvk (22
My (z) = L ,
n T — Xz

xERd,
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with symmetric measurable K : R — R, and h, | 0, S hd = oo.
a) If als < K < BIs for some 0 < a < 8 < 0o, then a.s.my(z) — m(z) mod p.
b) If aH(llzll) < K(z) < BH(|z]), = € R%, for some 0 < a < 8 < oo and
nonincreasing H : Ry — Ry with compact support and H(+0) > 0 and if additionally
E[Y|In* Y| < 00 is assumed, then a.s. my(x) — m(z) mod p.

Remark 2.1. One can obtain Theorem 1 of Kozek et al. (1998) concerning the non-
recursive case with K = Ig from Theorem 2.1a) for h, =cn™7,0< ¢ < 00, 0 < vd < 1,

noticing
K(x;Xi)§K<x_Xi> for i=1,...,n

n i

and

n

np(x + h,S)

S VK (z . Xz)
a.s. — m(z) mod u
for bounded Y (Devroye (1981)), especially for Y = 1 and m(z) = 1, by use of assumption
k quoted above and of the argument in the proof of Lemma 3.1. Under the same
assumptions a similar argument yields strong pointwise consistency of Greblicki’s (1974)
and Ahmad and Lin’s (1976) kernel estimate for which one has in (1.1) A %K ((z—X;) /)
instead of K ((z — X;)/h;).

Remark 2.2. The condition Y A2 = 00 is also necessary for both general assertions
in Theorem 2.1 as the following argument shows. In the case of an independent family
{X1,Y1,X2,Ys,...} with X; uniformly distributed on [0,1]¢ and P[Y; = 1] = P[Y; =
—1} = 1/2, the assumption > h¢ < oo would yield —for each z € [0, 1]%— convergence
of the series ) EK((z — X;)/hi), > Var K((z — X;)/h;) and 3 Var(V; K ((z — X;)/h:))
with real-positive series sums, say E, V and W, respectively, where > E(Y;K((x —
X;)/hi)) = 0, thus, according to Sections 16.3 and 17.2 in Logve (1977), a.s. convergence
of (3°7 1 K((x — Xi)/hi)) to a real-positive random variable, further a.s. and quadratic
mean convergence of (3.7, Y;K((z — X;)/hs)) to a random variable with expectation
0 and variance W, therefore a.s. convergence of (mn(z)) to a real random variable not
degenerate to 0 = m(z).

The following result on semi-recursive partitioning estimates is an analogue to
Theorem la. A denotes Lebesgue measure.

THEOREM 2.2. Let (Pn)nen be a nested sequence of partitions P, = {An1, Ana, .. .}
of R% by Borel sets such that

diam An(z) ;= sup [lu—v]| =0 (n—o00), D A(An(2)) =00

u,v€EAL, (2
for each z € R%. Forn €N let

_ i1 Yilayw) (X5)
Yt La, @) (Xi)

Then a.s. mp(z) — m(z) mod p.

mu(z) : z € R4
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Now recursive estimates of stochastic approximation type are considered. Theorems
2.3 and 2.4 on the kernel method of Révész (1973) and its partitioning analogue, resp.,
are consequences of the following proposition which will be stated first.

PROPOSITION. Let (K, )n>2 be a sequence of measurable nonnegative functions on
R% x R? such that for every distribution p of X

[ Knlz,2) f(2)p(dz)

2.1 = — f(z) mod

&y TRn(w, duldzy /1 otk

for all u-integrable functions f on R? and

(2.2) | liminf/f(n(:z:,z)p(dz) > 0 mod p.
n

Let (ay)n>2 be a sequence of positive numbers such that

(2.3) Zan = 00,
(2.4) 1> apsup Kp(z,2) =0 (%) .

If the sequence (My)nen is defined by (1.4), (1.5), then a.s. my(x) — m(z) mod u.

THEOREM 2.3. Let K be a symmetric measurable nonnegative function on R? sat-
isfying aH(||zl)) < K(z) < BH(||z]]),z € R?, for some 0 < a < B < oo and a non-
increasing H : R — Ry with H(+0) > 0 and rH(r) — 0(r — 00). Let (hy)n>2 and
(an)n>2 be sequences of positive numbers satisfying

h, — 0, Zan =00, supK(z)supa,/hd <1, an/hd=0(1/n)

(e.g. an = nk:gn, h, = (bgi)l/d (n=2,3,...) with K <1). If the sequence (Mn)nen 18
defined by
my = },17

1 z— X,
M t1(Z) = Mp(Z) — any1my(2) P K ( - +1+1>
n+41 n

1 Z— Xn+1
Fan+1Yn K ,
Grtttntt h';iz+1 ( hn+1 )

then a.s. my{z) — m(z) mod p.

Remark 2.3. The rather restrictive condition on (a,) and (hy) in Theorem 2.3
imposed in view of pointwise convergence under first moment condition cannot be es-
sentially weakened as the following simple counterexample shows.

Counterezample. Let d =1, u be concentrated on z* € R, K = I|_; 1}, a, | 0 and
hy | 0 such that a,/h, — 0, pp = nan/hy, — 0, Y integrable, but with

(2.5) > P[Y >n/ps) = 0.
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Let (m,,) be defined as in Theorem 2.3. If a.s. m,(z*) — EY, then

1 *— X,
a.s. anYnh—— < anYnhi (f—h—£> —0,
({3 n n

thus by the Borel-Cantelli lemma,
h h
Y. = -
E P{n>anJ E P{Y>an}<oo
in contradiction to (2.5).

THEOREM 2.4.  Let (Pp)n>2 be a nested sequence of partitions Pp, = {An1, Ana, ...}

of R? by Borel sets and let (hn)n>2 and (an)n>2 be sequences of positive numbers such
that

hn — 0, Z(znzoo, 1> an/he = O(1/n)
diam A,(z) - 0(n — c0), liminf i(%ﬂ)— >0

for each z € R, If the sequence (My)nen is defined by

my :},1’

1
Mt 1(Z) = Ma(T) = Gnp1mn (@) 77— L4, () (Xnt+1)

e
1
+an41Ynt1 Ed_’“IA,H_l(a;) (Xnt1),
n+1

then a.s. my(z) — m(z) mod p.

Remark 2.4. 1In the case d = 1, the assumption in Theorems 2.2 and 2.4 that (P,)
is nested, can be cancelled, if each partition consists of non-accumulating intervals (see
end of Section 3).

3. Proofs

Lemma 3.1 adapts Theorem 2 of Gyérfi (1991) for LP-convergence to the case of
pointwise convergence. Lemma 3.2 is a consequence of classical results of Abel, Dini,
Pringsheim and Ceséro (compare Knopp (1956), Section 5.1). Both lemmas are used for
the proofs of Theorems 2.1 and 2.2.

LEMMA 3.1. Let (K,) be a sequence of measurable nonnegative functions on R? x
R with Kp(2,2) < Kmax € Ry for all (z,2) € R? x R? and all n € N. Assume that for
every distribution u of X

[ Kn(z,2) f(2)p(dz)
] En(z, 2)u(dz)

(3.1) — f(z) mod p
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for all u-integrable functions f on R? and
(3.2) Z/Kn(:v, z)u(dz) = oo mod p.
n

Assume further that a finite constant c* exists such that

. S YiKi(z, X5)
3.3 a.s. limsu =
33 SUP TS T K, On(d?)

for all distributions P xyy with Y > 0, EY < oo. Let (my,) be a sequence of estimates
of the form

< ¢*m(z) mod p

_ Z?:l l/iKi(x: X'L)
Z?:l Kl(m’ X’L) ’

where E | Y |< co. Then a.s. mp(x) — m(x) mod p.

My (T) z € RY,

PROOF. Lemma 1in Gyorfi et al. (1998) states the assertion under the assumptions
(3.1) and (3.2) for (Ky) in the case of square integrable Y.

In the case of integrable Y which is assumed nonnegative without loss of generality,
we use a truncation argument according to the proof of Theorem 2 in Gyérfi (1991).

First we state n
Zi:l K»,;(.’L', Xl)
Yoy [ Ki(z, 2)p(dz)

as in the proof of Lemma 1 in Gyorfi et al. (1998). This together with (3.2) and (3.3)
yields

a.s. — 1 mod

(3.4) a.s. limnsup mn(z) < ¢*m(z) mod p.
Now fix € > 0. For all L € N, define Y}* := Y;Ijy,<1) + Lijy,>1) and let m, and myy, be
the functions m and m, when (Y;) is replaced by (Y;*). Then
as. mpr(z) —mp(z) =0 (n—o00) forall L€Nmodu
(see above) and with suitable L1(z) € N
| ime(z) —m(z)| <€ forall L3> Li(z) mod p,
further by (3.4)
as. limsup|mn(z) —mar(z)| < E(Y; - Y | X1 = 1)
" < c*e forall L > Li(z) modp.
These relations yield

a.s. limsup|mg,(z) — m(z)| < c*e +emod p
n

and thus the assertion. O
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LemMma 3.2, Let 0 <71, <1;R,:=r1+--+r(n €N), Ry :=0. There is a
sequence p; of integers with p; T oo and

(3.5) R, <i+1,
> T; 1
3. —
(3.6) Z(1+Rj)2<i’
J=pi

Ty . .
< .
13 E <In(E+2) ieN)

Pi
(3.7) >
j=1

PrOOF. Set Ry :=lim R, and 1/(1 + Ry) := 0 if Ry, = oo. For p € {2,3,...}
we have :

r; = 1 1 1 1
L - = - )
Z(1+Rj)2—z(1+Rj_1 1+Rj) 1+Rp_1 14+ Ry

j= j=p
For i € N choose p; € {2,3,...} as the first index with
1 1 1
- < -
14+ Ry 1+ Ry i
Then (3.6) holds and by definition of p;, Rp,_2 < i—1, if p; > 3, thus (3.5). Because of

T‘j 7"_7' .
<_mf1- N
1+ R, = n( 1+Rj>’ JEN,

and (3.5) we obtain

pi

’f‘j . .
Zl+Rj <In(1+ Rp,) < In(i + 2), i€N,

=1

i.e. (3.7). If the construction yields constant p; from some index #* on, then r; = 0 for
j > pi~, and we can replace p; for ¢ > i* by larger integers such that p; 7 co. O

ProoF oF THEOREM 2.1. The proof consists of five steps. Only in the last two
steps the special assumptions on K and Y in parts a) and b), resp., are distinguished.
- We use Lemma 3.1 with

Kn(z,t) = K (xh;t)‘

In the first step notice that (3.1) and (3.2) follow from Lemma 1 of Greblicki et al.
(1984) and (11) in Greblicki and Pawlak (1987).

It remains to verify (3.3) for Y > 0, EY < 00. A covering argument and a truncation
argument are used. Choose R > 0 such that H(R) > 0 (in part a) we choose R as the
radius of S). Let the compact support of K be covered by finitely many closed spheres
S1,...,S5n each with radius R/2. Let k& € {1,...,N} be fixed. As in Gyorfi et al.
((1998), p. 13) for each n € N and t € R? we show that & € ¢ + h,, S}, implies

(59) w(55)z e ()= (7))
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foralli € {1,...,n} with ¢ = aH(R)/BH(0) € (0, 1]; compare Lemma 1 of Devroye and
Krzyzak (1989). With ¢t = 0 (without loss of generality) and z/h,, = Z it suffices to show
K(u— Zhy/h;) > cK(u) for all &, u € Sy and alln € N, i € {1,...,n}. Because of

< max [lu—rZ|
O<r<1

= max{|[u|, [lu — Z[|} < max{||u]/, R}

u—2I

h_
(since h,, < h;) we have H(|ju—2 ~h" =) > H(R)H(||u||)/H(0) in both cases flu—Zhn/hsi <

llull, llu — Zhn/hi]| < R by monotomclty of H, and thus the desired inequality. In view
of (3.3) it suffices to show

n x— Xz
SR () e ()
(3.9) a.s. lim sup : p— < ¢*m(z) mod p
B S vy Loy e

for some c¢* € R, independent of P xy) with ¥ > 0, EY < co. Without loss of
generality in the following K < 1 may be assumed.

In the second step, according to Lemma 3.2 with r,, := fK(%fn“t)IthSk (x)pu(dx)
we choose for t € R® indices p; = p(t,k,i) T oo (i — oo) such that (3.5), (3.6),
(3.7) hold for all i € N. For p(t,k,-) we define an inverse function ¢(¢,k,-) on N by
q(t, k,n) = max{i € N;p(t, k,i) < n}. Further we define the truncated random variables
Zi := Yiliy,<q(x, k.5 ¢ € N. It will be shown

LL’—-—XZ'

%

ZE—Xi

i

) Io_h,se ().Q) -EZK (
1S K (5

Because of (3.2)., according to Section 16.3 in Loeve (1977) it suffices to show
z— Xy 2 z— X,
EZ2K ( s ) Ig, ( - >
2 — :
(1o K () )
But this follows from

o Pk (F5) 6 (55%)
PE s )™

r—t 2
E(Z2| X, =t)K (T) Iiyh,s. ()

—g/ / <1+2§=1fK(3—h——;—33)u(d8)>2

Sy [ZiK( )Iz—hisk (Xz')}

(3.10) as.

— 0 mod p.

< oo mod p.

u(dz) | p(dt)
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{ E(Z2 | X t)K( e )It+h si ()

/(1+ZHIK( )Isk( )u(dS))

q(t.k,n)
/ v? Py x =4 (dv)

/z

(i-1.]
() e
oz () () )

: /i / v? Py x—¢(dv)

=1 (i—1,4]

su(dz) | pu(dt)

3
ll_\

A
Q| =
M
\, —~—

I
Q| =
NgE

3
l
—

su(dr) | p(dt)

o0 JK ( )It+hn5k($)#(d$)
. Z | —
e (v () o)

< 5 [ B 1 x = fu(ay

1
= ‘EEY<OO,
C

5 4(dt)

where we obtain the first inequality from (3.8) and the second inequality from (3.6).
In the third step we notice

T — Xz
i BZK ( . > Ly hi5.(Xs)
lim sup L < lim

" 1+Z,_1fK< ) p(dt) " 1+Z,—1fK(

= m(z) mod y

i fmK (50) uta

) wiar

~ because of (3.1), (3.2) and the Toeplitz theorem. This together with (3.10) yields

QS*X.,;
h

i

Yim1 ZiK ( ) Lohis, (X5)
(3.11) a.s. lim sup

" 1+, [K ( ) w(dt)

< m(z) mod u.

In the fourth step we use the special assumption afg < K < 8Is with 0 < a < B <
oo and show

(312) ZP [ZnISﬂSk (CU h,X ) 7é Y, IS'ﬂSk (:L.—};XH')} < 00 mod H.
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But this follows from

/i P[Y, > ¢(Xn,k,n), Xp € & — hp(S N Sk)|p(dx)

' = /i:: </P[Y > q(t,k,n) | X = 1] Ix—hn(SﬂSk)(t)U(dt)) p(dz)

=3 [PV > k) | X = thale + ha(S 0 S

p(t,k,i+1)

< /iP[Y e (i,i+1]| X =t Z plt + by (S N Sk))p(dt)
i=1

n=1
< 3/E(Y | X = £)u(dt)
=3FY < o

by use of (3.5). Relation (3.12) yields that a.s. for p-almost all  from some random

index N, on
z— Xn z— X
Znlsns, (T) = Ynlsns, ( ™ n) .

This together with (3.11) and (3.2) yields (3.9). Thus the assertion in a) is proved.
In the fifth step, in the context with general K we use the assumption EY ntY <
oo. We show

n Z - Xz
S0 - 20K (252 fonisy ()
(3.13) a.8. > — 0 mod p.
L, K (5
By (3.2) and the Toeplitz theorem, this follows from
z— Xn
00 EYnI[Yn>q(Xn,k,n)]K< h > IXn-I-hnS'k (.’L‘)
. n
/ > — p(dz)
n=1 1+ K ( h. ) p(dt)

o [JEYIysqernm | X =t)K ( >1t+h s (z)p(dt)

/ — ey K ( ) u(dz)
w0 Dvimg(thm) Jiiry VPYIX=t () K ( > Iitn, s, (z)p(dt)
) 1; / 1+ [ X ( gp(ds .

o

< i/Z / VPyx=¢(dv)

i=1 (¢,34+1]
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x—t
plt.k,i+1) K ( 7 >1t+hnsk(w)u(dx)

>.n44ksk<s)u<ds)

P p(dt)

n=1 1+Z?=1IK< hz
< % / > / 0Py x—s(dv)u(dt) In(i +3)
]

=10 i1

< %(3+Eym+ Y) < oo,

where we obtain the first inequality from (3.8) and the second inequality from (3.7).
(3.13) together with (3.11) yields (3.9). Thus the assertion in b) is proved. O

PROOF OF THEOREM 2.2. We use Lemma 3.1 with K, (z,t) = I, (4(¢).

Equations (3.1) and (3.2) follow from (13) and (14) in the proof of Theorem 2 in
Gyorfi et al. (1998). A simple proof of (3.1) is given in Algoet and Gyorfi ((1999), p. 136):
(fr) Pn)nen with fo(z) == E(Y | X € Aq(z)), = € R?, is a martingale on (R%, By, 1)
since (Py) is nested. By the martingale convergence theorem (f,(x)) converges modu,
where by diam A,(z) — 0, z € R%, the limit is m(z) mody. This argument and the
proof of Lemma 2.2 in Devroye (1981) also yield (3.2): for a fixed open sphere Sg in R?
around 0 with radius R, (gn, Pn)nen with g, () := M An(z)NSr)/u(An(z)NSR), z € Sr,
is a martingale on (Sg, Sr N By, 4ispns,), where on Sk (gn(z)) converges mod p (for
application of the martingale convergence theorem notice A\(Sg) < 00); thus, by diam
An(z) — 0, z € R, it holds on Sg, even on RY, lim pu(An(z))/A(An(z)) > 0 mod pu,
which together with 3" AM(An(z)) = oo, z € R?, leads to (3.2).

It remains to verify (3.3) for P x,y) with ¥ > 0, EY < co. According to Lemma
3.2 with r,, = u(An(t)) we choose for t € R? indices p; = p(t,) T 0o (i — o0o) such that
(3.5), (3.6) hold for all ¢ € N. As in the proof of Theorem 1, we define for p(t,-) an
inverse function ¢(t,-) on N by ¢(t,n) := max{i € N;p(¢,i) < n}, further the truncated
random variables Z; := Y;I|y,<qx,,i))» # € N. For the nested sequence of partitions, as
in the proof of Theorem 2 in Gyorfi et al. (1998) we notice that z € A,(t) and j < n
imply A;(z) = A;(t). Now as in the proof of Theorem 3.1 we obtain

- Xl Zilaw)(Xi) — EZil 4, (X3)]

a.s. n — 0 mod u.
1+ Zi_—.1 H(Az(x)) .
Fuarther
. Y1 BZila o) (X)) . Yory [ml(t) ) (t)u(dt)
limsup == f—— < lim = T = m(z) mod
P T aA@) ST 1+, m(Adm) (z) mod 4

because of (3.1), (3.2) and the Toeplitz theorem. Thus

. Do Zil 4,2y (X3)
3.14 a.8. limsup === -
(319 STy M)

As in the proof of Theorem 2.1, we obtain

(3.15) > P(Znla,@)(Xn) # Yala,(z)(Xn)] < 0o mod p.

< m(z) mod p.
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Because of (3.2),

(3.16) 1+ i,u(Az(:c)) — 00 mod f.
i=1

(3.114), (3.15) and (3.16) yield (3.3). Now the assertion follows by Lemma 3.1. O

PROOF OF THE PROPOSITION. Without loss of generality Y, > 0 may be assumed.
We use the notations

An(z) = anKn(z, Xn),

Bn(z) := [(1 — Aa(2)) ... (1 = An(2))] ™,
Gn(z) == An(z)Bp(zr) (n=2,3,...),
Bi(z):=1, Gi(z):=1.

Representations of the following kind are well known (compare Ljung et al. (1992), part
I, Lemma 1.1):

(3.17) B,(z) = Zn: Gi(z) (neN),
i=1
(3.18) Mn(z) = Bp(z) ™! ‘Z:Gz(:c)Yz (n € N).
=1 -

We notice a.s. 3. An(z) = 0o mod p by a.s. convergence of 3_(An(z)—EAn(z)) (because
of (2.4) and thus Y EA,(z)? < 00) and Y EA,(z) = oo mod u (because of (2.3) and
(2.2)), thus

(3.19) a.s. By(z) T oo mod p.

Let Yy, := Y, I, iv.<n}(n € N). As is well known from the proof of Kolmogorov’s strong law
of large numbers for independent identically distributed integrable random variables,

(3.20) > %Ef’f < oo
and _
(3.21) > PlY, # Y] < oo
By (3.18) we can use the representation my,(z) = )(:c) +m? (z) + m$) (z), n €N,
with
1< - EYKi(z,X;)
(1) . Y, — e )
mn () = )ZG(@( T ER(w X)) )
EYK EYiKi(z,X;)
(2)
ma (@) = 5 ZG( BRi(z, X;)
m® () = ZG (2)(Y; = Y3).

)
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In the first step we show
(3.22) as.  mi(z) — 0 mod p.

By (3.19) and the Kronecker lemma it suffices to show a.s. convergence of
- EY,K,(z,X)
A Y- ————~ .
2, Anl2) ( ER,(z,X,) )

> E(An(2)Y,)? < o0,

which holds because of (2.4) and (3.20).
In the second step we show

But this follows from

(3.23) as.  m?(z) — m(z) mod p.
Because of (3.17), (3.19) and the Toeplitz theorem it suffices to show

EY, K, (z,X,)

(3.24) ER,(z, X)

— m(z) mod p.

By (2.1) we have

, EY,K,(2,X,) .. EYR,(z,X)
—nnim An) < andulliniek A\ ek A
hmnsup FR.(z, X)) S 1171;11 ER,(z, X) m(z) mod p,

on the other side for each c € N

BV, Ra(2,X,) . EYIy<qKn(z, X)
= > = = = .
hmnmf ERn(z, X)) > h,{n ER,(z,X) =E(YIiy<q | X =z) mod p
‘These relations with ¢ — oo yield (3.24).
In the third step we obtain
(3.25) as.  m®(z) - 0 mod

by (3.19) and (3.21). Now (3.22) , (3.23), (3.25) yield the assertion. [
PROOF OF THEOREM 2.3. Setting
_ 1 _
Ru(z,2)= K (Z=Z), (z,2) eR*xR?% ne{2,3,..]},
hd Ry,

we verify the conditions of the proposition. (2.1) and (2.2) follow from Lemma 1 in
Greblicki et al. (1984) and from the proof of Lemma 2.2 of Devroye (1981), respectively. [J

PROOF OF THEOREM 2.4. Setting

1
K, (z,2) = EEIAn(m)(z), (z,2) ER*xRY, ne{2,3,..},
k13
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we verify the conditions of the proposition. As in the beginning of the proof of Theorem
2.2 we obtain 12.1), also lim p(An(z))/A(An(z)) > 0 mod p and thus (2.2). O

Proor oF REMARK 2.4. The proof differs from that of Theorems 2.2 and 2.4 only
at the beginning, namely in the proof of relation

(3.26) / F(2)u(d2) /i An(@)) — f(z) mod p,
An(m)

ie. (3.1) with Ky (z,t) = I, (5)(t), for all y-integrable functions f on R, and of relation
(3.27) lim inf (A, (z))/A(An(z)) > 0 mod p.

Let v be a finite measure on the Borel o-algebra B in R. For each a > 0 we set

M =M, = {93 € ]R;szp v(An(z))/ (An(z)) > a}
and shall show
(328) HM) < ZU(R)

by a modification of a covering argument of de Guzmén (1970) and of the proof of Lemma
(10.47a) in Wheeden and Zygmund (1977). Let G be an arbitrary bounded subset of R
and set :

Dy = {:c eGNM: {13 }V(An(:v))/u(An(w)) > a}, NeN
neil,...,

Then Dy T GN M. Let N € N be arbitrary. For each n € N the set Dy is cov-
ered by a finite subfamily P/, of P,. For each z € Dy choose n, € {1,...,N} with
v(An, (2))/ ,u(Anx (z)) > . The intervals A(z) := A, (z), ¢ € Dy, form a (finite) sub-
family Qpn of U _1Pr and cover Dy. We use the following selection procedure. First
choose the mterval A! from Qp with largest extension to the left, if not unique among
the possible intervals that with largest extension to the right. Let A!,..., A* already
be chosen from Qn and let Qn ; be the subfamily of Qn\{A!,..., A} consisting of
the intervals which have a larger extension to the right than A*. If Qx x is void, then
stop the selection procedure. If Qp . is non-void and if its subfamily Q;V' i of intervals
A’ for which A’ U AF is also an interval, is non-void, then choose an interval A*¥+1 from
Q) 1, With largest extension to the right. If Qu is non-void and Ql , is void, then
choose an interval A**! from Qy 4 according to the rule for choice of A from Qu. The
procedure stops after a finite number [ of steps and yields intervals Al,... VAL € On
with v(A7)/u(A9) > a(j = 1,...,1) such that Al,..., A’ cover Dy and that each z € R
is covered at most two times by these intervals. Thus

I l
u(ow) < S ouah < LY va < 20 (6 a7) < 2w
j=1 j=1 J @

and, by N — oo p(G ﬂ M) < 2y(R). Letting G T R we obtain (3.28). Now from
(3.28) with v(B) = [ f(x)u(dz), B € B, and diam A,(z) — 0, z € R, we obtain (3.26)
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as in the proof of Theorem (10.49) in Wheeden and Zygmund (1977). As to the proof
of (3.27), let Sg be the open R-neighborhood of 0 and define the finite measure )’ by
N(B) = A(BN Sg), B € B. Because of diam A,(z) — 0, z € R, we obtain

 ({= € Smstimsup A n @) /(40 = })
= 1s({ € S tmup ¥ (40 )/ 4n () - })
< ({ € Risup X (An(e)) (40 = w})
= Jim 1 ({o e Riswp X (An(@)) /(A (0) > o})

A~ 00

=0
by (3.28) with » = X', and thus, by R — oo, relation (3.27). 0
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