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Abstract. Wavelet-based regression analysis is widely used mostly for equally-
spaced designs. For such designs wavelets are superior to other traditional orthonor-
mal bases because of their versatility and ability to parsimoniously describe irregular
functions. If the regression design is random, an automatic solution is not available.
For such non equispaced designs we propose an estimator that is a projection onto a
multiresolution subspace in an associated multiresolution analysis. For defining scal-
ing empirical coefficients in the proposed wavelet series estimator our method utilizes
a probabilistic model on the design of independent variables. The paper deals with
theoretical aspects of the estimator, in particular MSE convergence rates.

Key words and phrases: Irregular design, NES regression, nonparametric statistical
procedures, projection estimators, wavelets.

1. Introduction

Function estimation is of fundamental importance in statistics and science in general
where it applies to a wide range of problems and has a multitude of different ob jectives.
For the majority of data sets encountered in real life the most appropriate procedures are
nonparametric. Wavelet-based non-parametric methods, introduced in statistics by the
work of Donoho and Johnstone in early 90’s, represent a novel, break-through technology
in theory and practice of nonparametric function estimation. The benefit of wavelets is
their ability to adapt to unknown smoothness (Donoho et al. (1995)), although the adap-
tivity can be obtained by using traditional kernel estimators (Lepski et al. (1997)). For
the equally spaced observations (for example, measurements at equal time increments),
Donoho and Johnstone developed a simple and adaptive procedure, called WaveShrink,
based on discrete wavelet transformations. WaveShrink is a fast procedure that has very
broad asymptotic near-optimal properties. ‘

Generalizations of WaveShrink-type techniques to non-equally spaced (NES) designs
impose additional conceptual and calculational burdens. There are several proposals on
how to estimate regression function by wavelets when a design is irregular. The simplest
proposal to ignore the design and is to carry out the analysis as if the data were equally
spaced. This “method” is known as the coercion to equal spacing.

Another class of wavelet-based methods applicable on non-equally spaced data uti-
lize interpolations and averaging. Based on the available data, the approximations (inter-

*Now at Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332,
U.S.A. The research of the second author was partially supported by NSF Grant DMS-9626159.

681



682 MARIANNA PENSKY AND BRANI VIDAKOVIC

polations) of the function are done at equally spaced dyadic points. On such approximate
values the standard wavelet methods are applied. References on that method include
Antoniadis et al. (1997), Deslauriers and Dubuc (1989), Foster (1996), Hall and Turlach
(1997), and Hirdle et al. (1998), among others. Sweldens (1995) proposes the “lifting
scheme” technique to define wavelet transform of data sampled over a variety of topo-
logical objects. Sardy et al. (1999) consider the Haar basis and propose four approaches
that extend the Haar wavelet transform to a NES data. Each approach is formulated
in terms of continuous wavelet functions applied to a piecewise constant interpolation of
the observed data, and each approach leads to wavelet coefficients that can be computed
via, a matrix transform of the original data. Some related approaches can be found in
Antoniadis et al. (1994), Antoniadis and Pham (1998}, Cai and Brown (1998), Delyon
and Juditsky (1995), and Hall et al. (1998).

In this paper we propose a linear wavelet-based regression estimator and explore
some of its large sample properties. The proposed estimator can be re-expressed in a
form which reminds the wavelet modification of Nadaraja-Watson estimator (Antoniadis
et al. (1994)) but conditions on the “pre-estimator” of the design distribution are relaxed.
The practical implementations are subject of ongoing simulational study.

2. The estimator and its large sample properties

Let ¢ be a compactly supported scaling function generated by an s-regular mul-
tiresolution analysis (MRA) of ILa(IR). Assume that s > 2, and that the support of ¢ is
contained in the interval [—A4, A].

Let

(21) (X17}/1)a(X27}/2)7"~7(Xnayn)7

be a sample of size n. Denote by f the marginal density of X and by m(z) = E(Y |
X = z) the regression function to be estimated. Assume that m(z) € IL?(—o0, 00).
Instead of estimating m(z) directly we estimate its projection on a multiresolution
subspace V;, ms(z) = Projy, m(z) = 3, oz s kb k(x), where ¢yp(z) = 27/2¢(27z —
k). By the properties of MRA, U;V; is dense in ILy(IR) and the linear approximation
mj(z) converges to m(z) uniformly on compacts, when J — oo.
The coeflicients are

(2.2) crp = 272 /oo (27 - k) m(z)dz
[ 29227z — k) m(z)
- L e e
e lP(X)Y
sl omlt

Consider an estimator fn(m) of f(z) constructed on basis of n — 1 observations,

Fa@) = fulz | Z1y. .o Zna)
which is symmetric with respect to Z3,..., 2,1, that is,

fn(ib' l Zl,.. -,Zn—l) = fn(:c , Ziu""Zin—l)'



NON-EQUALLY SPACED WAVELET REGRESSION 683

Let 7, (z) be an estimator of m(z), more precisely, of Proj,,, m(z),

(2.3) in () = erpdap(),
k

with &5 motivated by (2.2),

1\~ XiY;'lAXi X ;) >
(2.4) == $op(X)Ys LfnXi [ X5 2 60) |
s fn(Xz ‘ X—-i)
where X_; is the sample with -th observation excluded, i.e., X1,..., X;_1, Xi41,-.., Xn.

We will call estimator in (2.3) the NES linear wavelet estimator. Estimator similar to
(2.3) was recently proposed by Pinheiro (1997). He proved that under mild regularity

conditions on fp, sk — Cjk, G.8.

To derive quantitative results, we now discuss the MSE convergence rates of the
NES estimator. Denote v(z) = IE(Y? | X) and notice that v(z) — m?(z) > 0. Let us
consider the class of linear estimators of the density f(z), that is, estimators of the form

. -
(2.5) fal@ | Xoi) = == > Kan(, X;),
j=1
7
where IK,,(z,y) is a bounded kernel, symmetric in its arguments. Assume the following

conditions hold:
Al. ||fllc = sup, f(z) < oo;

2
A2. supm('—f’%) < Vi < o0, supz(%—(%)) < Vo < o0;
A3. the kernel IK,,(z,y) satisfy the conditions

(a) sup |Kn(z,y)| < Cin/C¥), () supE [K;(z, X1)] < Cont/C7HY;
Y T

A4. the estimator (2.5) achieves the following convergence rate

sup E(f, (z)— f(z))2dz < Can~ /70 sup B(f,(2) - f(2))* dz < Cyn~(H1=D/Cr+D),
T X

with v > 1;
 A5. m(z) is s times continuously differentiable with [m(®)(z)| < ms < co.
Denote ||¢]lc = sup, ¢(z), |4l = [|¢(z)|dz. The main result of this paper is
expressed in the following theorem.

THEOREM 2.1. Let the conditions A1-A5 hold, and 6, be such that
(2.6) b =6p n~ VD np,
with b > 4C1. Then

(Cs +07)n—4'ys/(2'y+1)(28+1)(lnn)4s/(2s+1)(l +o(l)),
if 2y>2s+1
(C6 + Cr)n~ 7= D/CT D (lnn) ~2(1 + o(1)),
if 2y<2s+1,

sup E(rnn(z) - m(2))? <
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provided
@2.7) 97 {n%’@‘f“’@””ann)‘”(%*‘), if 27>2s+1

n(2y=1/2sQy+1)) (n )1/ if 2y<2s+1.

Here Cs = 24(2A + 1)2||8)|2(Cy + Cf)V256_2“¢”37 Co = 27/2 - (2A+1)?||¢|} V765, and
Cr = 24+ 1)?[Igl2[I9l17 (s) ~2m72% A%.

The proof of Theorem 2.1 is given in Section 3.

It is easy to see that conditions A3 and A4 are satisfied if f, (z) is a kernel density
estimator or a linear wavelet estimator provided f(z) is -y times continuously differen-
tiable with sup, | f* ()] < co. The choice of the parameter &, is determined by v and
C; where C; depends on K,(z,y) which is known.

From Theorem 2.1 it follows that the rate of convergence of the estimator ., (z)
is determined significantly by v. If v is fixed, then the rate of convergence of 7, (z) is
O(n~y=1/Cr+)(Inn)~2) for any s > v — 0.5. Hence, even infinite grows of s does not
improve convergence rate. If s is fixed, the rate of convergence grows slowly with the
increase of v and reaches O(n~(479)/[(2v+1)(2s+1)l(In )48/ (25+1)) a5 4 — 00. Therefore,
the estimator (2.3) should be applied only if we expect f(z) to be reasonably smooth,
that is, when ~ is sufficiently large.

3. Proof of Theorem 2.1

We give now a proof of Theorem 2.1. This proof is based on a series of auxiliary
" lemmas. To simplify the notations, in what follows we will denote f,, (X)) = fn (X | X_4),
falz) = falz | X_n). Also, the index n in J, will be suppressed and we will simply
write J. However, the level J is a function of a sample size as conditioned in (2.6).

LEMMA 1. Under the conditions A1-A4

Xk E[(fa(X1) ~ F(X1))* | X1, Xa] < 2(C3 + CP)n =770 (1 + o(1)),
@1

sup E[(fn(X1) — F(X1))* | X1, X5] < 8(Ca + C)n~Wr=1/Cr+1(1 4 o(1)).
X1,X2

Proor or LEMMA 1. Let us prove the first assertion. Partitioning fn(Xl) into the
. part containing and not containing X» and applying the inequalities (a + b)% < 2a2 + 252
and (n—2)/(n - 1) < 1, we obtain

n 2 n
B[(fa(X1) - F(X1))* | X1, Xs] < 2// (Z W - f(X1)> 11 f(ex)dax
k=3 k=3

2 n
+(‘,{f’f)§f"'/(ﬂ<n(X1,X2) —f(Xl))zkl;[sf(zvk)dzk.

Therefore, B[(fn(X1)—f(X1))? | X1, X3] < 2C3(n—1)"2/ 7+ 42(n—1)~2(C3+]| /]|2),
which implies (3.1). The second inequality in Lemma 1 can be derived in a similar
manner.
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LEMMA 2. If assumptions A1~-A4 and (2.6) are valid, then

S‘;plp(lfn(x) = f(@)] > 6,) < 2n~!

PrROOF OF LEMMA 2. According to condition A4, sup, |Ef.(z) — f(z)] <
Can~"/(27+1) | which implies that for every z

P(|fn(z) — f(2)] > 6n) < P(|fn(z) — Bfu(z)| > (Solnn — /Cs)n™/C7+1),

To majorize the right-hand side of the last inequality, recall Bernstein’s inequality (see
Pollard (1984)). If Zy, Zs, ..., Zy are i.i.d. bounded random variables such that IEZ; =
0, EZ? = 02, and | Z;] < || Z]|00 < 00, then for any A > 0

M )2
(3.2) ('M ‘ZZ >A> = 2exp (“zau(z/s)xuzuoo))'

Apply (3.2) with Z; = K, (z, X;)—EK,(z, X;), M =n-1,02 < Con™ /@71 |1 Z]|
2010~ @7+ Jand A = (g Inn — /Cz)n =7/ 71, Takmg into account that for large n
the following inequalities hold: Cy + (2/3)Cy(SpInn — /C3)n=(r~V/r+1) < 16, 1nn
and n~!(n — 1)(6p Inn — +/C3)? > 0.563 In® n, we obtain

P(|fn(z) — F(z)] > 8,) < 2exp {—6o Inn/(4Cy)},

which completes the proof.
LEMMA 3. Under the assumptions A1-A4 and (2.6)
(3.3) sup E(ésk — csp)? < n 2D [Cent/CrHho=I(1n ) =2 4 Cy(lnn)?)(1 + o(1)),
k
where Cg = 24(Cy + CHVa652|16l|2 and Cy = 27/2VL63.

PROOF OF LEMMA 3. Denote by A = E(ésx — csx)? and observe that A <
3(A; + Az + Ag) where

2
1 R
A =TE -_Zd’Jk:( (fn(X) fn(Xi)) 1(fn(Xi) > 5n):] )

2
Ay=T —Z "5”( 51 (fulx) 2 m}

_ 2
1 & X)) Y
As =TE "ZM—)‘—~0J¢] )

In the proof of the theorem we will bound from above Ay, Ay, and Aj, separately.
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An upper bound for Ay. Observe that

QZ¢M< yaUn(Xs) - FOX)" (ﬁ(&-)za@}

f?'(X )f2(Xe)

Z $a k(X)) (X) (Fn () — FX)) (Fu(X5) — FX))YY;

il Fa (X F () Fn(30) F(X5)
i#]

]
A(Fa(X0) > E)L(Fa(X) > 60) J

= A1y + Apo.
Since (X;,Y;), ¢ = 1,...,n, are identically distributed, it is easy to see that

2 (@o(z) {(fnm f(x))zl(fn(X)M)} Flo)da

fe) 2(@)
< V103(n63) Lp=20/(r41) = o(p=21/(21+D)),

Similar considerations lead to the following upper bound for Ajs:
Ap < o { |¢0.6(X1) |06 (X2) [[m(X1)||m(Xa)]
= n f(X)f(X2)
I:Ifn(Xl) f(X1)] ,fn(Xg) — f(X2)|
fn(Xl) fn(XQ)

Ao (X0) = 61(Fa(Xa) > 6n>1X1,Xz] }

Representing fi7! as =1+ (f — fu)(Fn f)~! we majorize Ajq by the sum of two terms:
Az < Aqoy + Aqgy. Here

2 X)|m(X;
Aum = E{U s mx ]
B[ fa(X1) = F(X0)||fa(X2) — f(Xa)| | Xl,XZ]}:

A < {H {lqu,k(Xi)tJm(Xi)l]

i=1 fz(Xz).fn(Xz)

TE[(fa(X1) — £(X1))?(f(X2) — £(X2))? | Xl,Xz]}~
According to Lemma 1, as n — o0

2
I [ O fy 7 000 — 05y | X1, | }

IASTTERS IE{

i=1
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2(Cs + C?) [/_m ——-—*———mk;{?&?ﬂx)' (z)d } n~2/ v (1 4 (1))

< 2(Cs + CY)Vall¢llin =027 (14 0(1)).

For Aj52 we can construct a similar upper bound

Az < 5;2E[1{E (LR it — s 10,30 |}

8(Cy + CHVallg||in~r=1/CrHo=J5-2(1 4 o(1)).

Plugging in the value of §,, and combining A1y, Aj21 and Ajg2, we derive that
(3.4) A; = (1/3)Csn~@—D/Cv+1) (1n p) 297,

An upper bound for As. Note that

2
Ay =T ( Z"“’“(QY fn(X)<6)> = Ng1 + Ao,

where the first term A,y has the form

A = 5 3o (B ) < 0)

f2(X:)
G116 (X)YE
= IE( f3(Xy1) )
1% par(z)v(x) Vi
“nle @ ESw

For the second term the following relations are valid

1 X; X;
b= S E {M(f())fi];((x 8

n2 =t
E {¢J,1s(X1)¢J,k(X2)m(X1)m(X2)
f(X1) f(X2)

1(Fa(X) < 6)1(Ju(X,) < 6 )]

1 (X0) < 62)1(Fa(Xa) < ,«m}

}2
Observe that 1(f,(z) < 6,) < 1(f(z) < 1.56,) + 1(|fa(z) — f(z)| > 0.56,). There-

fore,
(3.5) Agg < 2A901 + 2099,

2 2
< {E[ J’k(;gl(z:)(&M(fn(XI) < 62)

where

2 Xl m2 X1 2
Aggy = {IE{ J”“(fg()Xl)( )1(f(X1) < 1.55@]}
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* ¢7 k(z)m?(z) 2
{ TP 1(f(z) < 1.56,) f(x)dw}

< (1.56,Va)? = 2.25V262n =27/ 7+ (Inn)?,
¢Jk( 1) m?(X1)

{’E e

il

A222

1l

aﬁm%JhM>a5%ﬂ}

3 e(X1)m 2(X1)
f2(X1)

2, (X)) m2(X1) 2])
S{_ P '4}'#%’

according to Lemma 2. Combining the upper bounds for Agp; and Aggy in (3.5) and
taking into account that Ag; = O(n~1) and Aggs = o(n™1), we obtain

E

ll

2
P(|fa(2) = f(z)] > 0.56, | X1)} }

(3.6) Agg < (1/3)Con™ 2/ (Inn)2(1 + 0(2)).

An upper bound for Aj.
2
Z bpX) Ys
f (X ’
1
n

_ $k(Xi) ¢7x(X) Y2

_Var( Z J;(X )_ ]E( J;2(X) )
o) 2

= }1—1,/_00 ¢J,k(fg;)(sc) (CC)f( Jdo < Ynz’

so that Az = o(n~27/(27+1)), Combination of the last result, (3.4) and (3.6) completes
the proof.

ProOF OF THEOREM 1. Partitioning

thin(z) = m(@) =D (Erk — Cop)bak(@) + D cardrrlz) —m(z),
P %

we obtain that
2

2
E(rhn(z) — m(z))? = IE (Z(éj,k - CJ,k)¢J,k(CC)> + (Z crkPane(T) — m(@)
P

k
= Ry + Rj.

Denote K, = {k | k € Z,2'z — A < k < 272+ A} and observe that K, contains at most
(2A + 1) elements. Then

=Y 2TE(Crk — cap)lni — cr)$(2z — k)p(27z — 1)
kol
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IA

2 S B~ cap)? \E(rs ~ c0)?19(27z ~ )||6(27z — )|

k€K,
< (24+1)%))12 27 sup B(esk — con)?,
k
where ||¢||. = sup, |¢(z)]. Thus, from Lemma 3 it follows that
(3.7) Ry < (24 + 1?||g)2n =27/ 7D [Cent/ D (lnn) =2 + Co2” (lnn)’[(1 + o(1)).

To construct an upper bound for Ry recall that supp¢(y) C [—A, A]. Hence, using
Taylor’s expansion and the fact that |k — 2J:1:| < Aand |y| < Aimply |27/ (y+ k) — 2| <
21=J A, we derive that

Ry = Zd)(?’x — k) /_00 27 6(27 2 — k) m(z)dz — m(x)

k
A
=3 @7 k) [ @M@ (y+k) - m(z)ldy
kekKo -
)z
= > 627 -k {Z/ 3y [277 (v + k) — =)' m(l()dy
keK,
(s) -J —
/ oy Ty + k) —a]° m [x+£(2s!(y+k) )]dy},

where 0 < ¢ = &(y) < 1. Since ffooo v o(y) .= 0, i = 1,...,s, all the integrals

ffA #()[2=7 (y + k) — z]!dy = 0. Therefore, we obtain

(38) [R| < (24 + 1)m2°A°(s) 7 | bllcligll277® = /Cr2~7e.

Combination of (3.7) and (3.8) results in

sup E (it () — m(z))? < [Csn =20/ @vHD) (In ) =2 4 0527 n =27/ @7+ (1n )2 4 C,2-2%9)
’ (1 + o(1)).

To complete the proof choose J according to (2.7).
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