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Abstract. Monotonicity and convergence properties of the intensity of hard core
Gibbs point processes are investigated and compared to the closest packing density.
For such processes simulated tempering is shown to be an efficient alternative to com-
monly used Markov chain Monte Carlo algorithms. Various spatial characteristics of
the pure hard core process are studied based on samples obtained with the simulated
tempering algorithm.
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1. Introduction

This paper is concerned with hard core Gibbs point processes from the point of
view of primarily spatial statistics and stochastic geometry and secondarily statistical
physics. Hard core Gibbs point processes are of interest in spatial statistics and stochastic
geometry as they provide models for marked point processes of discs (or balls) exhibiting
a much higher degree of regularity than other types of hard core point processes such as
Métern’s hard core models and ‘simple sequential inhibition’ processes (for definitions of

“these models, see Diggle (1983), Stoyan et al. (1995), Stoyan and Schlather, (2000)). In
statistical physics, phase transition behavior of hard core Gibbs point processes has been
a topic of intense study since Metropolis et al. (1953) investigated the classical hard-disc
model in two dimensions; see, for example, Strandburg (1988), Ferndndez et al. (1995),
Weber et al. (1995), and the references therein.

The intensity is a fundamental characteristic of a hard core Gibbs point process. It
is known to be a strictly increasing function of the so-called activity parameter z > 0
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(— log z is also called the chemical potential) but otherwise only various approximations
exist for the intensity, see Stillinger et al. (1965), Salsburg et al. (1967), Hoover and
Ree (1969) and Hansen and McDonald (1986). In Section 2 we consider stationary
Gibbs point processes where the pair-potential is hard core and regular. As z tends
to infinity, the intensity of the process is shown to attain the closest packing density p
defined as follows. For a > 0, let A(a) = [—a, a[* be the d-dimensional hypercube and let
An = A(n+1/2), n € Ng. The Lebesgue measure of a Borel set A C R? is denoted |A|.
Let v, = |A,| and let N, be the maximal number of mutually disjoint open unit balls
which are included in A,,. The d-dimensional closest packing density is now defined by

PP =sup Ny /v, = lim N, /v,
n n—oo

(see Lemma A.3, Appendix A).

Consider n™2* = p™@*y,, where wy denotes the volume of the d-dimensional unit
ball. In the terminology of stochastic geometry, 7™2* is the maximal area fraction (d = 2)
or the maximal volume fraction (d = 3). For d = 2, it is known that ™ = 7/(2v/3) ~
0.907 is attained by close-packed hard discs whose centers form an equilateral triangular
lattice in R?; see, e.g., Téth (1972). For d = 3, according to Kepler’s conjecture, n™?* =
7/4/18 = 0.740, which corresponds to a lattice of equilateral tetrahedrons in R3. A proof
of this conjecture is given in a series of papers by Hales (1997a, 19975, 1998a, b, ¢, d)
and Ferguson and Hales (1998).

Various theoretical and simulation results suggest the existence of phase transitions
for a pure hard core Gibbs point process on R% (i.e. the simplest case of a hard core
Gibbs point process, also called a Poisson hard core process), see Alder and Wainwright
(1957, 1962) and especially Weber et al. (1995). For example, it is known that two
physically important characteristics such as the intensity and the pressure may have
finite radii of convergence when they are considered as analytic functions of z, see Ruelle
({(1988), Theorem 4.5.3). It is furthermore believed that there exist discontinuities for
the intensity or its derivatives considered as a function of 2. Another question, in the two
dimensional case, is to what extent realizations of a pure hard core Gibbs point process
look like the configuration of vertices of an equilateral triangular lattice.

As hard core Gibbs point processes are analytical intractable, simulations play an
important role, though they have been seriously limited by computer running times. In
 statistical physics mostly the ordinary Metropolis et al. (1953) algorithm and molecular

dynamics (Strandburg (1988); Allen and Tildesley (1987)) have been used with a fixed
number of points/balls (within some bounded region). In Section 3 we consider both
the fixed and random number of points cases and we improve the mixing properties of
certain Metropolis-Hastings algorithms (Geyer and Mgller (1994); Geyer (1999); Mgller
(1999)) by using simulated tempering (Marinari and Parisi (1992); Geyer and Thompson
(1995)). Finally, in Section 4 we discuss some empirical findings for pure hard core Gibbs
point processes. Though the number of points in our experiments is relatively small
compared to what physicists think is appropriate (usually several thousands of points),
it-is certainly within the range of what is common for applications in spatial statistics
and stochastic geometry—we leave more extensive simulation studies to physicists like
Ferndndez et al. (1995), who report on computer work performed on many workstations
over a year’s time.
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2. Hard core Gibbs processes

In this section we consider the intensity of stationary Gibbs point processes. Basic
definitions are given in Subsection 2.1. Subsection 2.2 contains monotonicity and limit
results for the intensity. Our main result (Proposition 2) is concerned with the particular
case of hard core Gibbs processes.

2.1 Definitions

Let C be the space of point configurations of Rd, i.e. the set of locally finite subsets
of R%, and let F be the standard o-algebra on C, see e.g. Daley and Vere-Jones (1988). A
probability measure P on (C, F) is said to be n-th order if [ N3dP < oo for all bounded
Borel sets A C R?, where Na (w) denotes the cardinality of ANw,w € C. Let P be
the space of all stationary first-order probability measures on (C, F). The intensity of a
point process P € P is given by

(2.1) o(P) = l-zlq / NadP

where A is any bounded Borel subset of R? with |A| > 0.

A potential function is an even measurable function ¢ : R? (=00, 400]. The
corresponding Hamiltonian H, on A, with the free boundary condition is given by
H,(w) = %Zx’yEwnAmx#y ¢(z — y),w € C. The potential ¢ is stable if there exists a
constant b such that H,, > —bNN,, for alln > 0. It is superstable if § = ¢°+¢", where ¢°
is a stable potential and ¢" is a purely repulsive potential, that is, ¢" is both nonnegative
and bounded away from 0 near the origin. The potential is lower regular if there exists
a decreasing function ¢ : [0,00) — [0,00) such that ¢(x) > —(sup, |z;|) for all z € R?
and [;° 9(s)s? 1 ds < oo. It is regular if, if in addition, there exists a number r(¢) such
that ¢(z) < 9(sup, |z;|) whenever sup; |z;| > 7(¢). Finally, it is hard core if there exists
a number D > 0 such that ¢(z) = oo if ||z|| < D. The supremum of such D is called the
hard core distance. A hard core potential which is lower regular is also superstable.

Define the set of tempered configurations by

Cr=qwel: Z N§O+s(w) < twv, for some t > 0 and all n € Ny
sez?
sup; |s:|<n
A probability measure is called tempered if it is supported by C*. For n > 1, let C,, be the
space of point configurations contained in A,,. Given a potential ¢, define for z,8 > 0
and ¢ € C*, the local Gibbs measure P, , g ¢ on C, by

1 > 2™ —_BH
g(w)dPn, 2 p,c(w) = / —g((@)m)e e (@) g(z)
where g is nonnegative and measurable, (), and d(z), are short hand for {z1,...,z,}

and dxi - - - dzx,, respectively,

Hn,C(w) = Hn(w) + Z ¢($ - y): w € Cp,
€W, yEC\An
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is the Hamiltonian with boundary condition (, and

© m
E : z — T

ZnzBg = W/ e Pnc(@n)d(g)m,
m=0 " n

is the local grand partition function. A tempered probability measure P on (C,F) is
Gibbsian if

(2.2) / gdP = / dP(() /C 90U ((\AR))dPr 1 .6 ()

for all n > 0 and for any nonnegative measurable g. Gibbs measures with hard core
potentials are tempered. Let G(z, 3) denote the set of stationary, tempered, first-order
Gibbs measures which satisfy (2.2). It is well-known that G(z,8) is nonempty if the
potential function is both superstable and regular. If G(z, 3) is not a singleton, then a
phase transition is said to occur.

2.2 Results

Proposition 1 below states that the intensity p(P) is strictly increasing in z if P €
G(z,B). This is a well-known result in statistical physics (see e.g. Georgii (2000)), but
since the result and its proof are less known among statisticians, a proof is included in
Appendix A. A part of the proof is furthermore necessary in the proof of Lemma A.1 in
Appendix A.

PROPOSITION 1. Suppose that ¢ is superstable and regular and let p(z, 3) denote
the intensity for P € G(z,0), 2,8 > 0 (select any if #G(z,6) > 1). For each 8 > 0,
p(z, B) is strictly increasing in z € |0, 00].

The following is our main theoretical result, which states that the intensity of a hard
core Gibbs point process attains the closest packing density as z tends to infinity. The
proof is given in Appendix A. The result itself seems well-known among physicists.

PROPOSITION 2. Assume that ¢ is reqular and hard core with hard core distanée 1,
and let p(z,B) be specified as in Proposition 1. Also assume the condition

(2.3) [ delds<oo, g —max(s,0}
|z]>1

For each 3 > 0,
— pma.x.

lim p(z, 8)
Z=r 0
3. Markov chain Monte Carlo for planar pure hard core Gibbs processes

We consider now the particular case of a planar stationary pure hard core Gibbs
process, i.e. d = 2 with ¢(z) = oo for ||z|| < D and ¢(z) = 0 otherwise. As this process
does not depend on the value of 3, we have that p(z,8) = p(z), etc. Propositions 1
and 2 establish that the intensity p(z) is monotonically increasing towards the closest
packing density. But many other questions concerning the qualitative behavior of p(z)
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are still open, in particular the question concerning existence of discontinuities of p(z)
or its derivatives. Equivalently we may consider the area fraction

(3.1) n(z) = p(z)mD* /4

of the system of non-overlapping discs of diameter D and centered at the points in the
process; this is a natural characteristic as p(z) but not 7(z) depends on the value of
D > 0. Discontinuities of 7(z), if they exist, could be associated with critical points for
phase transitions. Experimental results indicate the existence of a critical point between
the ‘freezing point’ n = 0.69 and the ‘melting point’ n = 0.716 (Weber et al. (1995);
Mitus et al., (1997); Truskett et al. (1998)). Changes from short to long range order
of the spatial distributional behavior of the Gibbs process are also expected, but it is
not clear whether this change happens continuously or abruptly as a function of z. In
order to investigate such properties one has to resort to computer simulations of a grand
canonical local pure hard core Gibbs process on a bounded region G.

In our simulations G = [0,a]? is a square and we use the periodic boundary con-
dition. Our target density with respect to the unit rate Poisson process on G is thus
proportional to

(3.2) m.(€) = 2#1fforall z,y € £ lz—y|| > Difx #£y), ¢£e€C(G),

where 1[-] denotes the indicator function and C(G) is the set of finite point configurations
contained in G. Here and henceforth,

|zl = \/(min(ml,a - xl))2 + (min(z2,a — :1:2))2, = (z1,22) € G

denotes geodesic distance when G is wrapped on a torus. Note that if we fix the number
of points in (3.2) to be #£ = n, then 7, can be considered as an unnormalized conditional
density with respect to the Bernoulli process with n i.i.d. points in G, and 7, « 1[ -]
does not depend on the value of z.

The simulation problem becomes difficult when z increases. In order to obtain a
simulation algorithm with good mixing properties, we use simulated tempering (Marinari
and Parisi (1992); Geyer and Thompson (1995)); for short simulated tempering is called
ST below. Our basic algorithm is the Metropolis-Hastings (MH) algorithm studied in
Geyer and Mgller (1994), Geyer (1999) and Mgller (1999); Subsection 3.1 provides a short
description of the MH algorithm. Note that it covers the canonical ensemble (i.e. the fixed
number case) as well as the grand canonical ensemble (i.e. when the number of points
fluctuates). The combination of the MH and ST algorithms is studied in Subsection 3.2.
Subsection 3.3 considers some practical issues concerning the implementation of the
ST algorithm. In Subsection 3.4 we demonstrate the improvement of ST over MH.
Furthermore, the ST algorithm is shown in Appendix B to be geometrically ergodic.
This ensures that Monte Carlo estimates follow central limit theorems, where the square
root of the asymptotic variance in the limiting normal distribution divided by the sample
length yields the standard deviation of a Monte Carlo estimate; see e.g. Mgller (1999)
and the references therein.

3.1 Basic algorithm
For later purposes it is convenient to describe the MH algorithm for the case of
simulation from any generalized unnormalized density g, i.e. when ¢ is a nonnegative
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integrable function with respect to the distribution of the unit rate Poisson process on
G.

The MH algorithm generates a Markov chain as follows. Assume that & with g(¢) > 0
is the current state of the Markov chain. It is then proposed to either (a) add, (b) delete,
or (c) move a point with probabilities p; (£€), p2(€), and 1 — p1(€) — p2(£), respectively.
The proposal &’ for the next state in the chain is generated as follows:

(a) & = &U{z} where the new point z € G is sampled from a density b(¢,-) on G;

(b) ¢ = &\ {z} where z € £ is chosen with probability d(£,z) (if £ = 0 we set
£ =¢&);

(c) & = (& \ {z}) U {y} where z € £ is chosen with probability d({,z) and y is
sampled from a density m(¢ \ {z},z,-) (if £ = we set &' = 0).
The proposed state £’ is accepted as the next state of the Markov chain with probability
min{1,7(£,£')}, where the Hastings ratio r(£,¢’) depends on the type of transition and
is given by

(a) 9(€")pa(€)d(¢’ \z) |

9(&)p1(E)b(€,x) °

(b) LEAELLL) (if ¢ = 0 then 7(£,€') = r(0,0) = 1);

(©) 9(€) (1-p1(€)=p2(£))dl¢" VIm(E\{y}.y,2)
9(8)(1—p1(8)—p2(8))d(€,x)m(E\{z},2,y)
If ¢’ is rejected, the Markov chain remains in £.

In our simulations, p; (£) = p2(£) = p are constant with 0 < p < 1/2; the densities
d(&,-) and b(,-) are uniform on £ and G, respectively; and the density m(¢ \ {z},z,")
is uniform on a square of side length 2 X ¢ centered in z. Note that the Metropolis
algorithm (Metropolis et al. (1953)) is the special case with p = 0 and a fixed number
of points.

Theoretical properties of the MH algorithm are studied in Geyer and Mgller (1994),
Geyer (1999) and Mgller (1999). By construction the Markov chain is reversible with
invariant density specified by g with respect to the unit rate Poisson process on G if
p > 0 or with respect to a Bernoulli process on G if p = 0. In particular, if g = 7, is the
target density (3.2), the Markov chain is uniformly ergodic when p > 0, and also when
p = 0 provided that D is sufficiently small (this is needed to ensure irreducibility), cf.
Geyer (1999) and Mgller (1999).

Despite the property of uniform ergodicity when g = =,, the MH chain converges
very slowly and produces highly autocorrelated samples for large values of z. As an
~ example we applied the MH algorithm with p = 0.1 and ¢ = 0.3 for simulation of
the process with ¢ = m,, G = [0,10]2, D = 1 and logz = 12.62. Figure 1 shows
the corresponding time series and estimated autocorrelations for the random number of
points. The time series of length 25000 were obtained by subsampling each 420000th
state of a chain given by 10.5 x 10° basic updates, i.e. either insert, delete or move. The
Monte Carlo estimate of the intensity p(z) based on the time series in Fig. 1 is 90.03,
and the Geyer (1992) initial positive sequence and initial monotone sequence estimates of
the asymptotic variance are 1166.4 and 543.2, respectively. The ‘automatic windowing’
estimate described in Sokal (1996) gave a value of 1153.5 for the asymptotic variance. The
standard error for the Monte Carlo estimate of the intensity based on the subsample of
length 25000, and using the initial positive sequence estimate of the asymptotic variance,
is 0.22. Better results are obtained when the MH algorithm is combined with simulated
tempering as described in the following section.
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Fig. 1. Time series for the number of points and estimated autocorrelations obtained with the
Metropolis-Hastings algorithm.

3.2 Simulated tempering

The equilibrium distribution of our implementation of the ST algorithm is a mixture
of repulsive point process models with unnormalized densities g1, ..., gn,n > 2, where the
MH algorithm for g; mixes well when ¢ is small, while it produces highly autocorrelated
samples when ¢ increases towards n. Simulated tempering generates a Markov chain
(X1, I1)1>0 whose equilibrium distribution is given by the (unnormalized) density

g(gvz) = 91(5)57,) £e C(G)7 t=1,...,n,

with positive §;. Suppose that (X,I) ~ §. The component X is a point process with
marginal distribution given by the mixture Y . ; ¢;6; and I is an auxiliary variable with
P(I = 1) o< 8;¢; where ¢; denotes the normalizing constant (grand partition function) of
¢i- The conditional density of X | I =1 is proportional to g;.

Given a current state (£,4) of the ST chain (X}, I;), the two components are updated
in turn as follows. First the MH update for the density g;(-) is made as described in
Section 3.1; suppose that £ is the updated state. Second it is proposed to update i — 4’
using a proposal kernel @ given by Q(i,i +1) = Q(i,i — 1) = 1/2 for 1 < i < n and
Q(1,2) = Q(n,n — 1) = 1. We return (£,7') with probability min{1,r(i,i’ | &)} and
retain (¢',4) otherwise, where r(i,i' | €') = 3(¢',)Q(#,5)/(5(¢', )Qi,i)).

. By construction the Markov chain (X7, I;) is reversible with invariant density g; in
particular, (X, 1)i>1:I,=n has equilibrium density g,. Geometric or uniform ergodicity of
the ST chain can be established under mild conditions, see Appendix B.

In our application, for i =1,...,n,
(£) = HE _ _ull < D) 4 10 D/2) N b(y, D/2)]
#) = e | 5 3 1y < D)+ LEDLIH
g

with0 =7 <7y < -+ <Y1 <7, =00 and ¢ > 0, where 0 x oo = 0. The terms
1:1{llz — yl| £ D) and v;clb(z, D/2) N b(y, D/2)|/1b(0, D/2)| both introduce a penalty
whenever two discs overlap; the latter term enables us to distinguish between point
patterns with the same number of overlapping pairs of discs, but where the degree of
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overlap differs. In particular, g, = 7., is the target density with z = z,, while g
specifies the Poisson process with rate z;. The penalizing parameter «; is by analogy
with physics often referred to as an inverse temperature, so that the Poisson process is
the ‘hot’ distribution and the target process is the ‘cold’. For the simulations reported
in this paper, the value ¢ = 10 was chosen as a result of some pilot simulations.

3.3 Choice of parameter values for the ST algorithm

It is important that the simulated tempering chain does not spend an excessive
proportion of time in just one temperature and if ¢; was known, one could take §; = 1/¢;
to obtain a uniform distribution over the temperatures. In practice one takes §; = 1/¢;
where é; is an estimate of ¢; in order to obtain an approximate uniform mixture. Es-
timates of ¢; can up to a constant of proportionality be obtained in different ways as
described in Geyer and Thompson (1995). One possibility is to use stochastic approx-
imation and another is reverse logistic regression (Geyer (1992)) where the normaliz-
ing constants are estimated from preliminary samples obtained with Metropolis-coupled
Markov chains. Our experience is that stochastic approximation is not feasible for large
n, while reverse logistic regression is computationally demanding but secure.

Let (p;,€;) denote the parameter values for each of the MH algorithms combined
in the ST algorithm, ¢ = 1,...,n. We choose the parameter ¢; to be decreasing as a
function of i so that reasonable acceptance rates for proposed moves are obtained for
each temperature. The values of p; are also taken to be decreasing since insert or delete
proposals have low acceptance probabilities for the low temperatures.

The chain (X;);>1:1,—n yields a well-mixed sample from the target model g, pro-
vided that the pairs of parameter values (z;,7;) and (2i4+1,7Vi+1) are chosen sufficiently
close so that reasonable acceptance rates between 20% and 40% for transitions (£,%) —
(£,i + 1) are obtained. The intensity of the Poisson process with density g; is chosen
as z; = 1/D? This value corresponds to the area fraction 7(z) = 7/4 = 0.785 of a
hard-disc point process with the same intensity. The remaining parameters are chosen
as

log z; = log 21 + t;(log 2, — log 21)

and
_{t{y* for 1<i<n
Yi = .
o0 for i=n
with n normalized ‘temperatures’ 0 = t; < t2 < .-+ < t, = 1 and a value of v* such

that there are almost no overlapping discs in the (n — 1)th chain (X;);>1:1,=n-1. Finally,
the adjustment of n and (¢;)i=1,...,» to obtain reasonable acceptance rates for transitions
(&,1) — (&,4 £ 1) are done similarly to Geyer and Thompson ((1995), Section 2.3).

3.4 Comparison with MH

For comparison with Fig. 1, Fig. 2 shows the time series and estimated autocoi-
relations computed from the coldest states (X;);>1.5,=n of a ST sample with n = 21
temperatures and of length 10.5 x 10%; the parameters for g, are again G = [0, 10}?,
D =1 and logz, = 12.62. The time series were obtained by subsampling the cold
chain in order to obtain time series with lengths 25000 as in Fig. 1; another plot (not
shown here) confirms that each (I;) is approximately uniformly distributed as desired.
The Monte Carlo estimate of the intensity based on the time series in Fig. 2 is 89.8, the
initial positive sequence estimate of the asymptotic variance is 241.0 and the standard
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Fig. 2. Time series for the number of points and estimated autocorrelations obtained from the
coldest chain in the simulated tempering algorithm.

error of the Monte Carlo intensity estimate is hence 0.10. In this case the initial positive
sequence, the initial monotone sequence, and the automatic windowing estimates gave
similar results. The computing times required to obtain the time series in Figs. 1 and 2
are approximately the same, but the asymptotic variance is 4.8 times bigger for MH.

We have also generated a ST chain where the basic updates are replaced by regen-
eration steps at the hottest temperature, that is, if the ST chain reaches a state (X, 1),
the point pattern X is replaced by a completely new point pattern generated from the
Poisson process density g;. Then the segments of the Markov chain sample path between
regeneration times are independent, and this is useful for obtaining estimators for Monte
Carlo errors as explained in Geyer and Thompson (1995). The estimated standard error
based on the independent segments is 0.10, which is similar to the estimated standard
error 0.09 computed using the initial positive sequence estimate.

The expected time use for a regeneration update is approximately the expected
number of points for density g; times the time use of one of the basic updates. The
computing time for obtaining the ST chain with regeneration is in the present example
around five times bigger than when only basic updates are used, so the introduction
of regeneration is here not advantageous in terms of computational efficiency since the
standard error is not reduced.

4. Results obtained with simulated tempering

In the following we report on simulated results for the area fraction and a number
of spatial characteristics for the planar pure hard core Gibbs process considered in the
previous section. For each considered value of z we used the ST algorithm for the grand
canonical ensemble (i.e. all p; > 0) in the simulation study of the area fraction, while
for the other characteristics we used the less computer intensive method of ST for the
canonjcal ensemble (i.e. all p; = 0).

4.1 Area fraction

By (3.1) and the periodic boundary condition, we estimate the area fraction by

oy '/TDQN(Z)
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Fig. 3. Estimated values of n(z) using simulated tempering (solid line) and Padé approximation
(broken line).
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Fig. 4. Estimated pair correlation functions for 7 = 0.65 (dashed line) and n = 0.735 (solid line).

where N(z) is the observed mean number of discs in the cold chain.

For G = [0,10]2, D = 1 and logz, between 3 and 14 we obtained for 7(z) the
increasing curve shown in Fig. 3. For each considered value of z, we generated a ST
chain of length between 5 x 108 and 10'°. The calculation of N(z) is based on a sample
for the cold chain of length between 2x 107 and 108; here we used an appropriate burn-in
(about 10% of the sample).

Figure 3 shows that for a wide range of z values the curve of () nearly coincides
with the curve obtained by a Padé approximation for area fraction (see Appendix C).
This indicates that for values of logz < 9 (corresponding to n < 0.65) both the Padé
formula and our simulations yield good approximations of n(z). But notice the change
in the 7(z) curve at values close to the freezing point 77 = 0.69 and the melting point
7 = 0.716; in particular, this indicates a jump in the curve at the melting point.

4.2 Other spatial characteristics
For the other spatial characteristics considered in the sequel we used canonical
simulations with G = [0,20]?, D = 1 and determined the number N of points for every
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value of area fraction n = 0.65, 0.67, 0.69, 0.696, 0.701, 0.707, 0.71, 0.715, 0.721, 0.735,
so that n = 7D2N/(4|G|) in accordance with (3.1). Hence N is ranging from 331 to 374.
For the estimation of each considered statistic (pair correlation function, hexagonality
number, and so on) we used subsamples of 100 point patterns of the cold chain obtained
from long runs of the ST chain. A spacing of at least 10Nn between the subsampled
point patterns was used due to high autocorrelation in the coldest chain.

4.3 Pair correlation function

The pair correlation function pcf(r) is a well-known characteristic for point pro-
cesses, see e.g. Stoyan and Stoyan (1994), Stoyan et al. (1995) and Truskett et al.
(1998). In R?, assuming stationarity and isotropy of the hard core Gibbs point pro-
cess, p(z)?pcf(r)(762)? can be interpreted as the probability of observing a point in each
of two infinitesimally small discs of radius § and with arbitrary but fixed centers located
in distance r > 0 from each other. Under the target model (3.2), when the number
of points is fixed and G is identified with a torus, (N/|G|)2?pcf(r)(n6%)? has a simi-
lar interpretation (using the periodic boundary condition when calculating inter-point
distances).

The pair correlation functions were estimated by non-parametric kernel methods as
described in Stoyan and Stoyan (1994) apart from a few modifications: the intensity p
was replaced with N/|G| (since the number of points is fixed). Furthermore, because of
the high number of points per sample and since we averaged over 100 samples, we used a
very small band width in the kernel (of value 0.03, compare with the remarks in Stoyan
and Stoyan (1994), p. 285). Reducing the band width reduces the bias in the estimator
and by the averaging we still obtain a smooth curve. Furthermore, because of averaging,
the variance in the estimator is substantially reduced.

Estimated pair correlation functions corresponding to n = 0.65 and n = 0.735 are
shown in Fig. 4. As expected, with increasing n the pair correlation function reflects
more order. The peaks of the estimated pair correlation functions can be compared with
the modes at r = 1,4/3,2,... for the pair correlation function of the limiting regular
triangular lattice pattern of hard discs with diameter D = 1. Clearly the curve for
7 = 0.735 is in better agreement with the limiting case than the curve for n = 0.65. In
particular, the second mode for the curve with = 0.735 shows the beginning of splitting
towards two modes at 7 = 1 and r = /3.

Figure 4 is in agreement with results in Truskett et al. (1998) obtained by the
molecular dynamics method.
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Fig. 6. Estimated hexagonality number H(1.3) versus area fraction.

4.4 Alignment function

The alignment function zg(r) is a kind of third-order characteristic, which is well
adapted to show if there are linear chains of points as for lattice-like point patterns
(Stoyan and Stoyan (1994)). For r > 0, consider any r € R? with ||r|| = 7 and let B,
be a square centered at r/2 and of side length ar, where one side is parallel to 7 and
0 < a < 1 is a user-specified parameter. In R?, assuming stationarity and isotropy of the
hard core Gibbs point process, p(z)|B.|2p(r) can be interpreted as the mean number of
points in B, under the condition that there is a point in each of the locations o = (0,0)
and r. The scaling of zg(r) is so that for a stationary Poisson point process we have that
zp = 1, while if e.g. 2p(r) > 1, then B, contains on the average more points than an
arbitrarily placed rectangle of the same area. Large or small values of zg(r) for suitable
r may thus indicate a tendency of alignment in the point pattern. For the hard core
Gibbs process and small o one may expect zg(2) to be an increasing function of 5 with
limit 0.2165/a2 obtained at the maximal area fraction 5 = 0.907. )

The statistical estimation of zp(r) follows Stoyan and Stoyan ((1994), p. 294) ex-
cept that we again replace p(z) with N/|G| and use the torus convention. After some
experimentation ‘we decided to use & = 0.1.

Simulations show as expected that z5(2) increases with increasing 7; but it is
zp(2) = 1.83 for n = 0.735 and this is yet far from the expected maximum value 21.65
for n = 0.907. The alignment of the point patterns is more apparent for slightly in-
creased 7, e.g. 1 = 2.2. Figure 5 shows estimates of 2p(2.2) and 25(3) as functions of
n. Also zp(2.2) is an increasing function of 7 which is steepest for values of 7 between
the freezing and melting points. The value 14.96 of z5(2.2) for n = 0.735 is not very far
from the upper bound 17.89 obtained by assuming that p(z)|B.|2p(r) < 1 (which holds
as z — 00). However the curve of zp(3) decreases nearly linearly and slowly towards 0;
perhaps surprisingly, this curve does not show any change at the freezing and melting
points.

4.5 Hezagonality number

The idea behind any hexagonality characteristic is to look for deviations from the
triangular lattice arrangement of hard discs in the plane.

A first possibility is to use Ripley’s K function (Ripley (1976), Stoyan and Stoyan
(1994)). In R?, assuming stationarity, p(z)K(r) is the mean number of points in a disc
of radius r centered at the typical point (which is not counted). It vanishes for r < 1
and takes the value 6 for values of r a bit larger than 1 in the case of an equilateral
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Fig. 7. Estimated hexagonality statistic ¥(1.3) versus area fraction.

triangular lattice with side length 1. Thus, for the hard core Gibbs point process when r
is a bit larger than 1, one should expect an abrupt change of the values of K(r) for 7 in
the phase transition region. This, however, was not observed in our simulations, where
we observed a continuous and nearly linear dependence of K(r) on 7.

Quite different is the behavior of the ‘hexagonality number’ H(r), the probability
that a disc of radius r centered at the typical point contains exactly 6 other points.
Figure 6 shows the estimated H(1.3) as an increasing function of 5. The curve is steepest
when 7 is between the freezing and melting points.

Weber et al. (1995) consider another characteristic 1 (r) defined as the norm of the
mean of the following sum taken over all points of the hard core Gibbs point process
contained in a disc of radius r centered at a typical point:

Z £81%;
J

where 7 denotes the imaginary unit and ¢; is the angle between the z-axis and the line
through the typical point and the j-th point contained in the disc. Figure 7, which shows
the estimated ¥(1.3) as a function of 7, again indicates the changes in point distribution
between 1 = 0.65 and 0.72.
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Appendix A

Monotonicity and limit for the intensity of a hard core Gibbs point process
Let @ denote the stationary Poisson point process in R? with unit intensity. For z,
8 >0, P& P and a potential ¢ define
1. Energy density
®(P) = lim — / H,dP.

n—oo U ’I’L
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This limit always exists. It is finite or equal to +0c0, see Georgii (1994).
2. Negative entropy density

(A1) 1(P) = lim —I(Pu;Q,),

where P, (resp. @) is the restriction of P (resp. @) to A,, and I(P,;Q,,) is the relative

entropy given by
I(P,;Q ):/10 —— | dP
s n g lQ n

if P, < @,, and defined to be 4-00 otherwise. The negative entropy density always exists
and belongs to (—oo, +00], see Georgii (1994).
3. Pressure

(A2) p(z,0) = — min(I(P) + f2(P) — p(P)log z], z,6>0,

where I(P) + p®(P) — p(P)log z is the free energy density. The pressure exists if ¢
is regular and superstable, and the function f(a) = p(e®, ) is convex on (—o0,+00)
(Georgii (1995)). In the literature, the pressure is sometimes alternatively defined as
B~'p(z, B).

4. FExcess free energy density

(A3) I 5(P) = I(P) + B®(P) — p(P)log z + p(z, B).

Note that 0 < I, g < oo from A.2.

Throughout this appendix it is assumed that ¢ is regular and superstable. A cru-
cial result in the following is the so-called Gibbs variational principle (Georgii (1995),
Theorem 3.4),
(A4) I, 3(P) =0 if and only if P € G(z,[)

that is, the excess free energy density is minimized by the Gibbs measures in G(z, 3).

PROOF OF PROPOSITION 1. Let P, g denote an arbitrary element in G(z, 8). The
definition (A.2) and the ‘if’ part of the variational principle (A.4) implies
fb) - f(a) fle) - £(b)
c —_—

——— = < p(Per s

b—a if a<b<e

whereby
(A.5) FL(®) < p(Pes g) < f1.(b).

Monotonicity now follows from standard results on the left-hand derivative f/ and the
right-hand derivative f} of the convex function f: (a) f_ and f} always exists and are
non-decreasing, (b) f. (b) = f (b) = f'(b) except for at most a countable number of b’s,
and (¢) f-(a) £ fy(a) < f_(b) if a < b, see Bourbaki (1958). Thus, for each 3 > 0,
p(P-,p) is increasing in z. To verify strict monotonicity assume that p(P, g) = p(Py, g)
for all z €]z0, 21|, where zg < z;. This implies I, g(P,,,3) = 0 for all z €]zg, 2], s0
P, s € G(z,0) by the ‘only if’ part of the characterization (A.4). On the other hand, by
definition P, g € G(z0,) and G(z, ) NG(z0,8) = 0 as z # zy. Thereby a contradiction
is obtained. O
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Notice that we have in fact shown that p(z, ) = 20p(z, 3)/8z. We now proceed by
verifying Proposition 2, which follows by combining Lemmas A.1 and A.2 below.

LEMMA Al. Suppose that ¢ is regular and hard core with hard core distance 1
and that for each sufficiently small € > 0 there exists a stationary first-order probability
measure Pe such that p(Pe) > p™ — ¢ and both I(P.) and ®(P.) are finite. Let p(z, )
be as in Proposition 1. Then

i ple, ) = 5

ProoF. From the definition of the pressure (A.2) we have —f(a) < I(P.) +
B®(Pc)— p(Pc)a which for a > 0 implies p(P.) < % [I(P.) + S2(P )]+—(‘—Q Since f(a) is
convex, the limit lim,_, o f(a)/a exists and belongs to | — o0, +00], and hma_,oo f(a)/a=
lim, oo fL(a) = limg_o0 f4 (a), see Bourbaki (1958). Combining this with A.5 yields
limg .00 p(€%) = limgo0 fa)/a > p™3* — e. Trivially, p(e®) < p™@* so the result fol-
lows. 1

Fix a sufficiently small € > 0. Let B denote the d-dimensional open ball with unit
diameter and center at the origin. By Lemma A.3 below, there exist numbers m, k, and
aset £ = {z1,...,25} C A(m) such that

kfvm > p™ —€,  2;+eBCAm), |z—z|>1+2ifi#7, 4,5=1,...,k

Fori=1,...,k and s € Z%, let Y;; be independent random variables uniform on B,
respectively, and independent of the uniform random variable H on A,,. Define the
stationary point process X = {z: + (2m +1)s+Y,+H:1<i<ksc Zd} with
distribution P. Since Na, (X) = k, P is first-order and its intensity p(P) is equal to
kjvm > p™2* —e.

LEMMA A.2. The negative entropy density I ( ) is finite. The energy density <I>(P)
is finite if the condition (2.3) is satisfied.

PRrOOF. For a sufficiently small € > 0 and n € Ny, construct m, k, £, and X as
above. Let {F1,...,Fx}, K = k(2n + 3)¢, be an enumeration of {¢B + z + (2m + 1)s :
1<i<ksc€ Zd N[-n-1,n+1]% and let P, and @, denote the restrictions of P
and @ to B, = Am+(2m+1)n Let further é = |A,,|7!|eB|™¥ denote the normalizing
constant of the joint density of H and Vs, 1 <i <k, s € Z%n [-n —1,n+1]¢, and let
g:CN B, — Ry be a nonnegative measurable function. After some manipulations we
get

(A.6) / gdP = / dh /F el i+ REO B

= 1B |ZT'/ ))g((@):)d(@),

where

K-—r
Y(2),) = el Bl / (;,;z. ~he Fp) [] 1(Fr + B\Ba K" dh
A =1

™ (o, 7)EE,



676 S. MASE ET AL.
and =, denotes the set of all (01,...,0/,71,...,Tk—r) € {1,..., K}¥ with 71 < 13 <
e < TR —p and {0'1’___ ,o',r} = {1,,K} \ {7'17.-~,TK——1°}- In particular, Pn <K Qn'
Since >-(, ez, [liz1 1(zi — h € Fy,) < 1, we obtain that
((z)r) < elBl|eBIE~T|Ap|E < elBrl|eB| K.

Hence

i 1
IPi@) = <213 | (@) log((@nd(o),
r=0 =

IA

K
1
e 1815 = [ ((@),) log(e®!|eB|F)d(z), = |Ba| + K log|eB| ™.
—0 rl Br

n

The limit I(P) = limp,— 0 I(Pr;Q,,)/|Bn| is thus finite. i
For simplicity, let N =m+ (2m+ 1)n and Wi = 2, + 2m + 1)s + Y. On(P) is
seen to be dominated by

1
5 E > b+ (Wis — Wi)1(Wys + H € An, Wy + H € Ay).
N s,te[-n—1,n+1]%Nz¢

1<4,5 <k:(5,)#£,8)
On conditional on W;; = w,
1
E > b4 (w— W)l (W + H € Ay) < [B| ¢4 (z)dz,
te[-n~—1,n+1]4n2¢ jz|>1
15 <k:(4,6)#(1,8)

since the expectation of the ¢j-th summand is dominated by the integral of ¢, over a
subset A C {|z| > 1} where the A;;’s are mutually disjoint. Hence we have

dn(P) < K

= 2un[eB| Jigps1 d+(e)de.

Therefore ®(P) = limp_,o0 ®x(P) is finite. O

LEMMA A.3. For any dimension d > 1,

sup Ny, /v, = im N, /v,,.
n n

PRrOOF. For each € > 0, there exists an m with N, /v, > p™* —¢ and for n > m
there exist a € N and 0 < b < 2m such that 2n + 1 = a(2m + 1) + b. The hypercube A,
contains at least a? mutually disjoint hypercubes which are congruent to A,,. Therefore,

N, _ a®N, on+1-b\*
e > > max. __
- - ( 2n+1 ) (o )

Un Un

so that Ny /v, > p™** — 2¢ for n large enough. Hence, p™** = lim, N, /v,. O
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Appendix B

Geometric ergodicity of the simulated tempering algorithm

Recall that for the i-th MH algorithm in the ST algorithm described in Subsec-
tion 3.2, we have that p; € [0,1/2] and b(¢,-), d(&,-), m(£\ {z},z,-) are uniform on
‘G, &, Sz, respectively, where G = [0, a]? is wrapped on a torus and Sz, is a square on
the torus of side length 2 X ¢; centered in z (see Subsection 3.1). Under these conditions
and setting p, = min; p; and p* = max; p; we verify below the following proposition.

ProrosiTioN B.1. If p, > 0, then the ST chain defined on the state space
supp(g) = {(&,4) : g:(€) > O} is ergodic and satisfies a geometric drift condition which
ensures geometric fast convergence towards the unique invariant distribution specified by
g, that is the chain is geometric ergodic. If p* = 0 and we have fized the number of
points to be m < 0o, then setting g, (£,7) = §(&€,%)1[#€ = m], the ST chain restricted to
supp(J|m) s uniformly ergodic with unique invariant distribution specified by Gjm-

PrOOF. The proof is much inspired by proofs in Geyer and Mgller (1994), Mgller
(1999) and particularly Geyer ((1999), Propositions 2 and 3). For background material
on the theory of Markov chains we refer to Meyn and Tweedie (1993).

Consider first the case p, > 0. Notice that each of the densities g; is locally stable
in the sense that there exists a constant K; > 0 so that g;(§ U {z}) < K;g;(¢) for all
¢ € C(G) and z € G. Choose any number K so that K > max; K; and (for convenience
later on) K > 1 and K|G| > 1. Then for the Hastings ratio r(£,£¢' | i) in the i-th MH
chain we have an upper bound for births,

g:(€U {z)IG| _ KI[C|
GO +1) = Fe+ 1

and similarly a lower bound for deaths,

reufah | = SEHEEL S BEEL it (cu (o)) € unn(e).

Since z;-1 < z; and ;1 < 7; we further get that

#E 4
r(i,i—ltf)z(zi‘l) G s,

Z; 2@2',.1

r(g,Eufz} i) = if (¢,4) € supp(g),

so for each £ > 1 we can find a 6 > 0 with (4,5 — 1 | £) > 6 for all (¢,1) € supp(§)
with #£ < k and i > 1.

Let ¢ be the measure on supp(g) defined by ¢(A4) = 1[(0,1) € A] and let P* denote
the k-step transition kernel for the ST chain. Suppose (£,7) € supp(g) and ¢(4) > 0.
Further, for ease of presentation, assume that & < 2& (this is indeed the case in our
applications where & < é41, i = 1,...,m —1). Then r(1,2 | 0) = & /(26) €]0,1].
Choose any integer k > #¢ and set py = min(6g,1 — (1,2 | §). Then

(B.1) Pmax(m) (¢,3), A) > PR#E-D (£, 4), {(0,1)})
.Pmax(k,n)—max(#g,i_l)((m, 1, {(0, )}
> (pupi/(2|GK))mex@#ei=1)
(p1(1 = r(1,2 | §)))mex(kin)—max(#&,i=1)
> (popr/ (2IGIK))™xEm) g 4) > 0.
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From this we get that the ST chain is ¢-irreducible and hence §-irreducible with unique
invariant distribution specified by §. Since aperiodicity follows from

P((@, 1), {((b’ D= p(l-r(1,2] 0)) >0

we can also conclude that the ST chain is ergodic. From (B.1) we furthermore get that
Cr = {(£,1) € supp(g) : #€ < k} is a so-called small set (see Meyn and Tweedie (1993))
for every k > 1.

We turn next to the geometric drift condition (Meyn and Tweedie (1993), Theorem
15.0.1):
(B.2) E[V(X1, 1) | Xo = &,To = i] < BV(£,3) + b1[(&,5) € C]

for all states (£,4) € supp(g), where § < 1 and b < oo are constants, V > 1 is a
measurable real function, and C is a small set.

If #¢ > K|G)|, (¢,1) € supp(§), and we condition on that (Xo,Io) = (&,4), then for
the MH algorithm used for generating X; we have that: a birth is proposed and accepted
with probability at most p,-—gé—lf——‘l (since K|G| > 1); a birth is proposed but rejected with
probability at most p;; a death is proposed (and hence accepted since #£ > K|G|) with
probability at most p;; and a move is proposed and accepted with probability at most
1 — 2p;. Consequently
K2|G| 1
1 tx% +1> + (1 —2p;).

If we choose N > K|G| such that K2|G|/(N + 1) = € < 1 — 1/K (recall that K > 1),
we see that (B.2) holds with 8 = 1+ p*(e + 1/K — 1), V(£,i) = K#¢, C = Cn_1 and
b=KN+L

Finally consider the case p* = 0. Since on supp(§jm), inf §jm > 0 and sup g, <
o0, we obtain the following lower bounds of the Hastings ratios: For any (£,i) €
supp(Jim), ' € {max(i — 1,1),min(é + 1,n)}, and & = (£\ z) U {y} with z € £ and
y € NP, S;,:, we have that

BIR#G# | Xo = £, 1) = 1] < py (

inf gm S

= 0.
SUp gim

r(€,¢ i) >6 and r(i,i'|&)>6/2 with §=
Furthermore, ¢; > 0 for all ¢ < n. It is then not difficult to see that the state space

supp(gjm) is a small set; this is equivalent to uniform ergodicity (Meyn and Tweedie
(1993), Theorem 16.0.2). O

Appendix C

The Padé approximation
Combining the following Padé approximation from Hoover and Ree (1969),

%———logp—l—i—bp

1 — 0.28bp + 0.006b%p?
1 — 0.67bp + 0.09b2p?

(here 3, F, N denote physical parameters) with the following relation from Hansen and

McDonald (1986),
| 8BF/N  BF
op + N

logz=p
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yields

4 4n — 6.04n% + 3. 3_0. 440 5
log z = log —1_ 4. 41 6.04n? + 3.19367° — 0.596167* + 0.034567 .
nD? (1~ 1.34n 4 0.3672)2
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