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Abstract. This is a continuing paper of the authors (1998, Ann. Inst. Statist.
Math., 50, 361-377). In the Wicksell corpuscle problem, the maximum size of random
spheres in a volume part is to be predicted from the sectional circular distribution
of spheres cut by a plane. The size of the spheres is assumed to follow the three-
parameter generalized gamma. distribution. Prediction methods based on the moment
estimation are proposed and their performances are evaluated by simulation. For a
practically probable case, one of these prediction methods is as good as a method
previously proposed by the authors where the two shape parameters are assumed to
be known.

Key words and phrases: Extreme value theory, generalized gamma distribution,
Gumbel distribution, metal fatigue, stereology.

1. Introduction

This is a continuing paper of Takahashi and Sibuya (1998). In that paper, the
authors studied the prediction of the maximum size of the random spheres in a given
volume in the Wicksell’s corpuscle problem (see Wicksell (1925) and Sibuya (1999)).
Assuming the size distribution of random spheres to be generalized gamma with known
shape parameters, Takahashi and Sibuya (1998) proposed a prediction method based
on the r largest sizes and total number of the sectional circles on the sectional plane.
Simulation results show that the performance of this method is satisfactory.

In this paper, we consider the case that the shape parameters are unknown. First,
all three parameters are assumed to be unknown, and next, one shape parameter is as-
sumed to be known. Prediction methods based on the moment estimation are proposed.
Estimation methods based on three types of moments are considered, and are evaluated
by simulation and their asymptotic variance-covariance matrices.

In Section 2, the Wicksell transform is summarized, and the prediction method in
Takahashi and Sibuya (1996) is reviewed. In Section 3, we consider moment estimation
methods, and in Section 4 we evaluate their performance by simulation. In Section 5,
the asymptotic variance-covariance matrices of the estimates in Section 3 are evaluated
to support the simulation in Section 4. For a practically probable case, the moment esti-
mation method using the first two moments of the square root of the data is satisfactory.
In the final Section 6, we show a property of the Wicksell transform.
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2. A parametric model of Wicksell's corpuscle problem

2.1 Wicksell’s corpuscle problem
In this paper, we use the framework and notation in Takahashi and Sibuya (1998)
Av and )4 are intensities of the spheres in a space and the circles in a sectional plane,
respectively. Sy and S¢ are the areas of the great circles of sphere in a space and
sphere crossing the sectional plane, and S, is the area of sectional circle. The p.d.f.’s
(probability density functions) of S,, are denoted by f.,(s), w = V, C and A, respectively.
It is known that

(2.1) Av = VTAa/(2p),  po = E(V/Sy),

(2.2) fe(s) = Vsfy(s)/uwe, 0<s<oo, 8Sa=38c(1- U2)7
1

(23) £a9) = [ fols/vg =

and

(2.4) Fu(s) = —Fy (s + w)dw,

2E(\/_)/ Vu

where U is the uniform random variable on (0,1) and which is independent of S¢.

2.2 Generalized gamma model and prediction problem
Let the generalized gamma distribution with the p.d.f.

1
(2.5) ) gzya:a"’ le=@/"10<z < 00], ,7,€>0,

be denoted by Ga(a,7y,&). Suppose the area Sy of the great circle of the sphere to follow
Ga(a,,£). The parameters o, 7, £ and the intensity of the sphere Ay are unknown. We
observe the areas S, of the circle in k parts of identical area A of the sectional plane.
The distribution of S4 is denoted by WGa(e,~,£), whose p.d.f. is the expression (5.6).
The number N4 of the circles in a part of area A is the Poisson variable with mean A4 A.
We will consider the following prediction problem:

(V) Predict the square root of the maximum area, /Wy, of the great circles of the
spheres in a part of volume V. The expected number of spheres in the part is Ay V.

2.3 Basis of prediction method
Our prediction methods are based on the following facts.

PROPOSITION 2.1. Assume Sy to follow Ga(a, 7, &).
(1) The area Sc follows Ga(a + 51;,'7, £).

2r+1
e e )
Y

(3) If AvV — oo, then the distribution of the square root of the mazimum area
Wy is approzimated by the Gumbel distribution A((t — by)/av), where the scale and

@)
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the location parameters are determined as follows:

av/\VE= 7'3/2’7"1/27, v = log(AvV),
by /VE =1/* +av((a—1)logry — logT'(a))/V/Z,
where A(z) = exp(—exp(—z)).
Remark that

vV 2 1 2 1
Tv———TA-I—lOgZ—-(S, 6=10g(%) =§10g§+10g{ﬁ1‘(a+%>/I‘(a)},

where 74 = log(A4 A).

Based on these facts, we predict /Wy as follows. First, we estimate unknown
parameters in WGa(a,7v,€) and 74 from the data. Further, from these estimates we
estimate 8, v, ay and by. Finally, we estimate the mean and quantiles of /Wy by
linear expressions .

(2.6) bv + ¢ av,
where the coeflicient is; for the mean ¢ = 0.5772..., Euler’s constant, and for the p-
quantile ¢ = —log(— log p).

The case where the two shape parameters o and v are known was considered by
Takahashi and Sibuya (1998). In that case, the data in k parts of area A are combined,
and the prediction method PM3 based on the r largest areas and the total number N of
the sectional circles within the part of area kA is satisfactory. The following values of r
were recommended

rm=[VN+05], ro=[4xlog(N)+0.5] and r3=[0.5x (logN)?+0.5],

where [z] denotes the integer part of z. The PM3 using these r’s have approximately
the same mean square errors. The prediction method PM3 with r; is denoted by PM31.

3. Estimation methods

In this section, we investigate some methods for estimating the parameters ¢, 7, €
and 74. The area Sy follows Ga(e, 7, £), and the distribution of S4 in k parts of common
area A of the sectional plane follows WGa(a,,£). The parameter 74 is estimated by
7a = log N4, where Ny = Z;’zl Naj/k, Naj is the number of the circles in a part of
area A. So we consider only the estimation of the parameters a, v and £.

The mle’s are asymptotically efficient. To obtain the maximum likelihood equations,
however, we have to evaluate numerically the integration (5.6), which is troublesome,
and the Newton-Raphson method does not work well in the present case. So we consider
instead the moment estimation method.

3.1 The case where o, v, £ are unknouwn
We consider an estimation method based on the moments of log S4 (see Stacy and
Mihram (1965)). The moment-generating function of T = log(S4/£) is

V7 T(t+1) F(“*%*%)

2 T(t+3/2) I‘(a+—2}->
v

E(e™) = E[(Sa/€)'] =
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Fig. 1. p.d.f.’s of WGa(e,1/2,1) for &= 0.8,1,1.2,1.5.

Hence the cumulant generating function and the cumulant of T" are

logT(a* +t/v) —logT(a*) + log I'(t + 1) — log T'(t + 3/2) + log(v/7/2),
fr(T) =7y D) ¢, r=12,...

where o = a +1/(27), ¢ = $"V(1) — $D(3/2), Y(y) = (d/dy)logI'(y) and
¥ (y) = (d/dy)"™(y) are poly-gamma functions. So we have the estimating equation

pws—cs _ _P"(a”)
(w2 — )32 ['(a*)]3/?’
(3.1) _ (p2 — c2)¥"(a”)

7= (s = ca)i(a®)
£ =explpy — a1 — v (a®)],

where y) = E(log Sa), po = Var(log Sa), ps = E(logSa — p})®. Replace population
moments in the above equations by sample moments, and obtain successively o*, v, &
and a. The first nonlinear equation of (3.1) has a unique solution, because its right hand
side decreasing in a*.

The prediction methods based on this estimate is denoted by PLM. Unfortunately,
its error is rather large as will be shown in Section 4.

3.2 The case where vy, £ are unknown

The p.d.f. of S4 following WGa(a, 1/2,1) with & = 0.8, 1, 1.2 and 1.5 are numerically
computed and shown in Fig. 1. If S4 follows WGa(1,1/2,1) then the diameter of the
sphere, /Sy, follows the exponential distribution and the parameter value (a,v) =
(1,1/2) is practically probable. The p.d.f.’s for these values of a are so close and this
fact makes the estimation of « difficult. Attraction to the exponential distribution of the
Wicksell transformed distribution occurs (see Section 6 and Takahashi et al., (1996)).
Hence, we consider the case where a is known.
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If the moments of S}{ > and S 4 are used, then we have the equations

( 1 3
E(S4) _2F<“+2‘&>F(“+E§)

P p(erl)

3r (a + 5%) E(S4)

€=
)

If the two moments of S and S% are used, then we have the equations

1 5
E(S%) _gr(”ﬂ)r(“ﬂ)
P05 m(art)
27

. ar (a + %) E(S4)

r (a + —3—>
\ 2y

Replacing population moments in these equations by sample moments, we have the
estimates. The first nonlinear equation of (3.2) has a unique solution, because its right
hand side decreasing in y. The same thing holds for the first nonlinear equation of (3.3).
The prediction methods based on (3.2) and (3.3) are denoted by PAKM and PAKM’,
respectively.

The estimation method based on the first two cumulants of log S4 is less accurate
than PAKM (see Subsection 5.3).

(3.2) 4

r

(3.3) | {

4. Simulation results

The methods described in Section 3 were examined by simulation using S-Plus. The
parameter were set to the following practically probable values (see Murakami (1993)).
The area Sy of the great circle of the sphere follows Ga(1,1/2,1), that is the diameter of
the sphere follows the exponential distribution, and V/A = 200,000, A4 A = 10. Fig. 2
shows the p.d.f.’s of fy, fo and fa in this case. Since ay < 1 and v < 1, Fy is a
decreasing failure rate distribution (see Sibuya (1984)). Thus, by Proposition 6.1, F4 is
stochastically larger than Fy. The prediction was repeated 1,000 times.

Simulation results for prediction of the expectation E(1/Wy) are summarized in
Table 1 and Fig. 3. PAKM' is less accurate than PAKM, so we omit its simulation
result. PLM(k = 700), PAKM(k = 150) and PM31(k = 40) have the similar mean
square errors of prediction of E(v/Wy). It is found that PLM is more accurate than
those prediction methods based on the moments of S% with r =1/2, 1, 3/2, or r = 1,
2, 3. But PLM needs larger &k and it is not practical. In Subsection 5.3 we confirm the
above fact by calculating the asymptotic variance-covariance matrices (a.v.c.m.’s) of the
related moment estimators.

The p.d.f.’s of WGa(a, 1/2, 1) are similar for close o values as remarked in Subsection
3.2, so we examine the robustness of the PAKM. Table 2 shows simulation results of the
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Fig. 2. p.d.f’s fv, fc and f4 for (a,v,€) = (1,1/2,1).

Table 1. Errors of PM31, PAKM and PLM in predicting E(~/Wy). AaA = 10.

Parameters «a Y £ v E( \/W_V)
Methods True 1.000 0.500 1.000 14.388 14.965
PM31 (k = 40) Bias -0.018 0.020 —0.256
a, v known S. D. 0.057 0.076 0.796
M.S.E. 0.004 0.006 0.700
PM31 (k = 80) Bias —0.022 0.026 —0.311
a, v known S. D. 0.045 0.059 0.634
M.S.E. 0.003 0.004 0.498
PAKM (k = 100) Bias 0.001 0.006 0.001 —0.001
a known S. D. 0.021 0.131 0.058 0.936
M.S.E. 0.000 0.017 0.003 0.877
PAKM (k = 150) Bias 0.001 0.004 0.000 -0.012
a known S.D. 0.017 0.106 0.050 0.756
M.S.E. 0.000 0.011 0.002 0.572
PAKM (k = 200) Bias ' 0.001 0.003 -0.000 -0.017
a known S. D. 0.016 0.096 0.041 0.669
M.S.E. 0.000 0.009 0.002 0.448
PLM (k = 700) Bias 0.038 -0.000 0.058 0.002 0.031
S.D. 0.251 0.048 0.511 0.033 0.862
M.S.E. 0.064 0.002 0.265 0.001 0.743

prediction of E(y/Wy) by PM31 misspecifying (a,7) as (1,1/2) (see Takahashi and
Sibuya (1998), Table 3), and PAKM misspecifying o as 1. It shows that PM31 and
PAKM are robust if (c,7) is close to (1,1/2). PAKM needs larger k£ than PM31, but it
is more accurate than PM31 if y departs from 1/2.

We did the simulation work for (a,7), @« = 0.5,1.5,2,7 = 0.3,0.5,1,1.5,2. In these
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Fig. 3. Boxplots of PM31, PAKM and PLM in predicting E(~/Wy ). AsA = 10.

cases, PAKM is relatively good except v = 0.3.

It is known that the log-normal distribution is a limit of the generalized gamma
distribution (Lawless (1980)). That is, as o — 00, Ga(a, 1/+/@,1/aV®) approaches the
standard log-normal distribution. We had done the simulation work for the case /Sy ~
Ga(a, 1/+/a,1/aV®). In this case, v = 1/+/a is too small for large o and the performance
of PAKM is worse.

5. Asymptotic variances
In this section, the size of a random sample is always n.

5.1 Fisher Information of Ga(a,7,¢&)
The Fisher Information matrix for (a,~,£) of the generalized gamma distribution

Ga(a,7v,&) is
¥'(a) ~P(a) /v 8743
(5.1) ~p(@)/y  Do/7? —loap(a) +1]/€ |,
/¢ —lod(a) +1]/6  ay?/€?
where Do = ap/(a +1) + afp(a+ 1)]* +1 = o/ (a) + a[t(a)]? + 2¢(a) + 1. And the
a.v.c.m.’s of mle (&,%,&) and (¥,£), a known, are

. D;iy Dyy D3
(5.2) wD; D1a Dy Dys |,
Dy3 Da3 Dss
and
(5.3) RN ay? lap(a) + 1]
‘ nDy \ Elayp(a) +1]  €2Do/~? ’

where Dy = o?[¢'(a)]* — ¢'(a) — 1, Dy = o*¢'(@) + @ — 1, D1y = o' (a) + a — 1,
D1y = —7, D1z = —{[ap (@) +49(e)+1]/7, Doz = 7|y’ (@) —1], Dag = £{¢' (@) [ep() +
1] = 9¥(a)}, D33 = £{9'() Do — [()}?} /+?, respectively. See Hager and Bain (1970).
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Table 2. Robustness of PM31 and PAKM in predicting E(v/Wy ). Three numbers in each
entry show (1) the true values of E(vWv'), (2) m.s.e. of PM31 (k = 40) misspecifying (o,7) as
(1,0.5), (3) m.s.e. of PAKM (b = 150) misspecifing o as 1. A4 A4 = 10,

vy \ « 0.7 0.8 0.9 1.0 1.1 1.2 1.3
46.626
0.35 190.023
11.330
28.606 29.120 29.614
0.4 39.024 35.041 31.817

3.674 3.407 3.457

19.463 19.806 20.135 20.453 20.760

0.45 8.040 6.797 5.504 4.529 3.785

1.916 1.426 1.330 1.435 1.485
17.654 17.977 18.287 18.586 18.874 19.153 19.422
0.4625 6.273 5.121 4.194 3.396 2.651 2.054 1.601
1.778 1.383 1.241 1.153 1.106 1.155 1.364
16.378 16.672 16.954 17.227 17.489 17.743 17.988
0.475 3.999 3.255 2.530 1.875 1.446 1.100 0.979
1.530 1.194 0.994 0.872 0.934 1.030 1.058
15.252  15.521  15.779 16.028 16.268 16.500 16.725
0.4875 2.435 1.806 1.461 1.080 0.875 0.783 0.839
1.279 0.999 0.876 0.782 0.764 0.862 0.977
14.254 14.500 14.737 14.965 15.186 15.399 15.605
0.5 1.493 1.135 0.871 0.700 0.697 0.773 1.603
1.165 0.862 0.738 0.572 0.635 0.741 0.811
12.567 12.777 12.978 13.173 13.361 13.542 13.718
0.525 0.563 0.476 0.529 0.661 0.913 1.215 1.698
0.872 0.648 0.494 0.466 0.480 0.493 0.630

11.387 11.560 11.728 11.890  12.047

0.55 0.572 0.819 1.102 1.552 2.007

0.468 0.365 0.335 0.343 0.388

9.438 9.567 9.691

0.6 1.972 2.494 3.074
0.226 0.186 0.204
: 8.049
0.65 3.761
0.114

The nxa.v.c.m.’s of mle (&, 7, £€) and (¥, £), a is known, calculated for Ga(1,1/2,1),
are given by

27.02 —8.21 —67.93
(5.4) -8.21 2.65 2091 ],
—67.93 20.91 175.22
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and
0.15 0.26
(5.5) )
0.26 4.43
respectively. This is to be compared with the numerical values of the next section.

5.2 Fisher Information of WGa(a, 7, &)
By (2.3) and Proposition 2.1 (1), the p.d.f. f4 of WGa(a,,&) is

s v
e peol-()),
0

(5.6) fa(s) = o (a N %> gart/2 wertl/2 /T — ¢ v s>0

Hence,

(5.7) log fa(s) = logy+ (ay — 1/2)logs — log2 — log T’ (a + %)
—(ay+1/2)1log€ +log I,

where

s v
3
I=1I(c,7,6) = /0 e

The Fisher Information matrix for (a,7,£) of WGa(a, 7, £) is

Waa Way Wat
(5.8) Wory Wyy Wyg |

Wae Wyg Weg
where

Waa =P (0*) + €aa,  Way = —{9'(a*)/(27?) + P(a*) /7 + ¥(1) — ¥(3/2)} + €ar,
Wag = V/E+ €ag,  Wyy = {¥'()/(47%) + (@) /7 + 1}/7° + ey,
Cwag =afften, wge=—(arv+1/2)/8 ey, o =oa+ %
and

2
eée:E[ 9

Isl, — Is.I .
T

72 I, b,e€{a,¢&}

9
] ) I5 - %17 I5€

The nxa.v.c.m.’s of mle (&w, 9w, EW) and (4w, fw), a is known, calculated for WGa
(1,1/2,1), are given by

170.7 —32.2 —354.0
(5.9) ~322 65 69.0 |,
~354.0 69.0 749.1

and
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0.39 219
(5.10)

2.19 14.82
respectively. For numerical integration of ese, 8, € € {a, 7, £}, we use the Double
Exponential Formula (Takahasi and Mori (1974)).

The a.v.c.m. of mle of (e, 7, &) of WGa(1,1/2,1) are very large compared with those

of the generalized gamma distribution Ga(l,1/2,1). If (a,7) is close to (1,1/2), then
the same thing holds.

It is observed by numerical experience that the asymptotic variances of the mle
(&,%) depend on (,y) but not on £.

5.3 Asymptotic variance-covariance matric of the moment estimation method
The following result is easily obtained (see, for example, Rao (1973), Chapter 6).

PROPOSITION 5.1. Let © be an open subset of RF, and let X1, Xo,..., X, be in-
dependent and identically distributed random variables with the p.d.f. f(z | 8), 8 € ©.
If the p.d.f. f(z | 6) has the 2k-th moment, then the moment estimator Orrr, is an
asymptotically normal estimator for 0 :

(5.11) Vi (Oum — 0) 25 N0,Z2(0)), as n— oo,

where Xp(0) = M(0)D(O) M (9)',

MO) = (50) 1 WO = (a(6)..... 0,

1 (0) is the j-th moment, and D(8) is the k x k variance-covariance matriz of f(x | 0).

Suppose that S4 follows WGa(a, v, £) and put

_JE I+ gr(“*z‘l&*%)
2 T(r +3/2) F(a+%) ’

vr = vp(a,7,€) = BE(S) = r>0.

- If the moments of 52/2, S4 and 53/2 are used, then 8 = (o, 7, &), uy (8) = (vi/2,v1,v3/2)

and the nxa.v.cm., Xy1/01,3/2} = Y{1/2,1,3/2}(0), is obtained as follows:
S(1/2,1,3/2 = M1(0)D1(0) My (6)',
where D1(0) = (V(i45)/2 — Vi/2Vj/2)i,5=1,2,3 and

81/1/2 51/1/2 81/1/2

da oy ¢
_ 61/1 81/1 61/1
M) =1 34 oy Ot

Ovzsg Ovgjy Ovssa
5o By o¢
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(

onfoor2) o (ar )] 2 [w(“%)-w(“%)_]

Viy2
272 ‘ 2¢
n
272 3
31/3 /2
2y? 2¢

657

Suppose a to be known, then 8 = (,£)’. If the moments of 5'}4/ % and S, are used,
then p,(0) = (v1/2,11) and the nxa.v.cm., Xy1/2,1} = X(1/2,13(8), is obtained as follows:

Y1723 = M2(6)D2(0) M2 (0)',

where Dy () = (V(sr4)/2 — VijaVis2)ig=1,2, and

1 0 1 -1
Vi/2 V (“*5;) - ¢(“+;)} v

alplars)-s(er3)]
292 €

If the moments of S4, S% and S are used, then 8 = (a,7,&)’, u3(0) = (v1,v2,v3)

and the nxa.v.c.m., Xy 233 = X1,2,33(f), is obtained as follows:
1,233 = M3(0) D3 (0) M3(6)',

where D3(9) :‘ (Vi+j — I/«il/j)i,]’=1ygy3, and

. 1 5N
v :ﬂ’(a—f— %) —1P(a+ —2};) 2 -1/) (a+5—f;>27—;3¢(a+§>_

M3(0) =

e 2) s oo 22 E) e E)

v 2 2 272

o [o (o L) -9 (ar L) o v (atg;) - (et g)|

2 22

Suppose a to be known, then @ = (v,£)’. If the moments of S4 and S% are used,
then p,(0) = (v1,v2) and the nxa.v.cm., B 9y = Xyy 23(0) is obtained as follows:

Y12y = My(0)D4(0) M4(6),
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where Dy(0) = (Vi-}-j - ViVj)i,jzl,Za and

n (¢

1 3 -1
(a+a5) - (=+3)] o

M4(0) =

ve |

272 13

1 5
(“é‘&)‘f"”(“*a)] 2,

272 13

For estimating 8 = (a,7,£)’ we use the first three cumulants of log S4 (see Subsec-
tion 3.1), the nxa.v.cm., Xf; 5 33 = XJ; 5 5,(f), of this estimation method is obtained

by the & method :

Sl1,2,3 = (H3 (0)Ms(9)Hs(6)) D5 (9)(Hz (0) M5 (6) Hs (),

where Ds(0) = (piy; — ik} )ij=1,2,3

8/&)1
Oy
8&2
Ol
6/\”,3
opi
6!61
da*
3/632
Jda*
6&?3
da*
oo
da*
Ay
da*
43
da*

Hs(0) =

M5(0) =

H;3(0) =

8K1
£
6/{,2
£
8&3
Oy
8/431
EX
3&2
£
8/‘53
Ay
Oa
3
oy
o
%3
oy

Bm \
Ous 1 0 0
)
° —3uh + 6 —3u4 1
Orsg
B,ufo))
O\ et (e 1)
23 v 2 ¢
Q,—i‘% _ '(,b"(a*) _2,4)!(&*) O
ot ¥2 ok ’
Qfﬁ ,(plll(a*) —31,0”((1*) 0
o€ / o vt
da
)
¢ 1 Lo
oy | 22
|01 o0}
o 0
o€

w; = E(log S 4)? and k; is the j-th cumulant of log S4. The relations between moments
and cumulants are given in Stuart and Ord (1987).

Assume « to be known. For estimating 8 = (v, &)’ we use the first two cumulants of
log S4, then the nxa.v.c.m., E’{‘m} = 2?1)2} (), of this estimation method is obtained:

(1,2 = (Me(6)He(6)) Ds(0) (M5 (6) Hs (9))',
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where Dg(0) = (uﬁﬂ- - )U';/“;')i,jzl,%
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Suppose S4 follows WGa(1,1/2,1) then we have the following nxa.v.c.m.’s:

609.7 —107.8 —1223.0

0.48 2.74
(512) Z 1/2.1.3/213 = —107.8 19.5 2186 3 2 1/2,1} = 8 s
~1223.0 2186 2469.5 ‘ s
17117.6 —2422.7 —30464.6 &7 1180
(5.13) Sgyoay = | —24227 3441 43191 |, Sy =| Sel
(1,23} 2=\ 1180 7721
~30464.6 4319.1 54266.8 ' '
and
380.3 —77.4 —817.1 060 3.6
(5.14) =1 —774 162 1687 |, o= SR P
{1,2,3} {1.2} 3.62 21.67
—817.1 168.7 1772.0

If we have to estimate (c,7,£), then the estimation method using the first three
cumulants is the best among the above three methods. If « is known, then the moment
estimation method based on the moments S}a/ > and S 4 is the best among the above
three methods. By (5.9) and (5.12), the asymptotic relative efficiencies of this method

are

9-'39———‘—-0.81 and 14.82

0.48 18.00 = 8%

respectively. So we recommend to use moments Si{ % and S for the estimation of (v, £).
If (o, ) is close to (1,1/2) then the same thing holds.

6. Supplement
In this section, we show a property of the Wicksell transform:

PROPOSITION 6.1. If the function — log Fy(s) is super-additive (or sub-additive)
the Wicksell transform Fa of Fy is stochastically smaller (or larger) than Fy .
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PROOF. From (2.4),
= R ®© 1
Fa(s) = A \/—Q-UFV(S + w)dw//o ﬁFv(w)dw,
s0, F4(s) < Fy(s) is equivalent to
© 1 _ _
/0 (P (s +) = By () Fy (w))dw <0
The condition of the proposition is sufficient for the inequality. O
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