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Abstract. We consider the three progressively more general sampling schemes
without replacement from a finite population: simple random sampling without re-
placement, Midzuno sampling and successive sampling. We (i) obtain a lower bound
on the expected sample coverage of a successive sample, (ii) show that the vector of
first order inclusion probabilities divided by the sample size is majorized by the vector
of selection probabilities of a successive sample, and (iii) partially order the vectors
of first order inclusion probabilities for the three sampling schemes by majorization.
We also show that the probability of an ordered successive sample enjoys the ar-
rangement increasing property and for sample size two the expected sample coverage
of a successive sample is Schur convex in its selection probabilities. We also study
the spacings of a simple random sample from a linearly ordered finite population and
characterize in several ways a simple random sample.
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1. Introduction

Consider a finite population Y = {1,...,N} of N distinct units. In this paper
we present some new results on sampling without replacement from this population.
There are a variety of such sampling schemes and the most general of them is successive
sampling. In successive sampling, draws are made with replacement one by one, and at
each draw a unit k has probability pg(>0),k=1,...,N, Zk_l pr = 1, of being chosen.
Draws are made until n distinct units are chosen, any repetitions bemg discarded. An
ordered sample 8 = (iy,...,%,) has probability

(1.1) P(s) = H (—Z’;‘iz——g—-)-
: =0 ¢

of being chosen. Here p;, = 0. The probability of an unordered sample § = {ki,...,kn}
is obtained by summing the probabilities of the n! ordered samples given by the n!
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permutations of the elements of §. That is,

4.2 -1 T

r j=1

where ) is taken over all permutations r = (i1, ...,4,) of the elements k;, k; € S. For
more details on successive sampling, we refer the interested reader to Hajek (1981). We
shall use upper case bold letters to denote unordered samples and lower case bold letters
for ordered samples.

An interesting case of successive sampling is that of probability proportional to
size without replacement (PPSWOR). In this case pr o< zx, T > 0, a size measure of
the k-th unit, for k =1,...,N. See Rao et al. (1991) for some interesting properties of
PPSWOR sampling. In case of a simple random sample without replacement (SRSWOR)
Pk = 1/N, for all k. Midzuno sampling, introduced by Midzuno (1950) is a cross between
successive sampling and SRSWOR. As in successive sampling, draws are made one by
one and with replacement. At the first draw a unit k has probability pi, k =1,...,N
with Z k=1 Pk = 1 of being chosen, but in subsequent draws has probability 1/N of bemg
chosen, any repetltlons being discarded. For Midzuno sampling it can be shown that
P(8) =3 kesPr/ ( )

In Section 2 we dlSCUSS some basic properties of successive sampling. We prove that
the probability P(8) of an ordered sample 8 is arrangement increasing, when p; > --- >
pn. We give a lower bound for E[}, opi], the so called ezpected sample coverage.
For sample size two, we show that the expected sample coverage is Schur convex in its
selection probabilities.

Throughout the paper we use the word “majorization” to mean a special partial
order relation among vectors (and not a component-wise partial order relation). For
an arbitrary set S of U let w(S) denote the probability of including § in the sample.
For S = {i}, n(8) will be denoted by 7; and ® = (my,...,7n) is called the vector of
first order inclusion probabilities. A major result of Section 3 is that o/n is majorized
by p = (p1,.--,Pn), the vector of selection probabilities in case of successive sampling.
Many important results previously discussed in the literature immediately follow from
this result. In this section we also compare the three sampling schemes by partially
ordering their vectors of first order inclusion probabilities by majorization.

In Section 4 we study spacings of a simple random sample without replacement
(SRSWOR) from a linearly ordered finite population. We show that the spacings are
exchangeable and the vector of spacings has multivariate increasing failure rate distribu-
tion. Section 5 contains some characterizations of a SRSWOR from a linearly ordered
population by the exchangeability of spacings.

2. Properties of successive sampling

In this section we discuss some basic properties of ordered and unordered successive
samples which will be used later on in the paper. We study the effect of changes in p,
the vector of selection probabilities on the vector m of inclusion probabilities.

The sample coverage for our problem is defined as A(S) = 3, _opr where S is a

successive sample. In case of PPSWOR, A(S) = >, g% /Z,Icvzl xy is the proportion
of the total measure captured by the sample. This quantity is of interest in many ap-
plications. Andreatta and Kaufman (1986) describe a situation of prospecting for oil.
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The successive sample consists of magnitudes of discovered deposits and the expected
proportion of total discovered deposits to the total (discovered and undiscovered) de-
posits is of interest. Below we obtain a lower bound on E[A(S)]. First we prove some
preliminary results.

«  Let S; and 82 be two unordered successive samples of the same size. One intuitively
feels that if §; has higher sample coverage probability than S5, then P(S;) > P(Ss).
The following example shows that this is not true in general.

Ezample 2.1. Let N =5 with p; = 1/26, p» = 3/26, ps = 10/26, py = p5 = 6/26.
Let $; = {1,2,3} and 83 = {1,4,5}. Then A(S:) = 14/26 while A(S;) = 13/26. Thus
A(S1) > A(S2) and yet P(S;) = .0217 < .023 = P(S5).

However, the following special case is true.

THEOREM 2.1. Let S, and S be two successive samples of the same size. Suppose
S and Sy have all but one unit in common, with the nonoverlapping units being i and
7, respectively. Then

P(81) 2 P(S2) if and only if p; > p;,
with equality holding if and only if p; = p;.

Its proof can be found in Rao et al. (1991) and it also follows from Lemma 3.1 of
Kochar and Korwar (1996).

It follows from the above discussion that, in general, it may not be possible to com-
pletely order all possible successive samples of same size according to their probabilities
of inclusion. The proof of the next corollary easily follows from the above theorem.

COROLLARY 2.1. In successive sampling, for i # j,
m; > 7 if and only if p; > pj,
with equality holding if and only if p; = p; fori,j=1,...,N.

A similar result holds for the second order inclusion probabilities 7(ij) that both 4
and j are in the successive sample.

COROLLARY 2.2. In successive sampling, fori # j, i # k,i,5,k=1,...,N,
n(ik) > 7(jk) if and only if p; > pj,
with equality holding if and only if p; =p; fori, j=1,...,N.

The next problem we consider is to see whether it is possible to rank all n! possible
ordered samples of the same set of n units according to their probabilities. To answer
this question we need the following concept of arrangement increasing functions.

Let £ = (21,...,%») and ¥y = (y1,...,Yn) be two vectors. We say that z is better
arranged than y (written as z>%y) if z can be obtained from y through successive pairwise
interchanges of its components, with each interchange resulting in an increasing order
of the two interchanged components; e.g. (4,1,5,3) =% (4,3,5,1) =% (4,5,3,1). Note
that =% ordering is only a partial ordering over n-tuples. A function g : R® — R that
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preserves the ordering > is called an arrangement increasing function and is denoted
by g € AT if x-%y = g(x) > g(y). See Marshall and Olkin ((1979), p. 158) for further
properties of such functions. .

We prove in the next theorem that the probability of an ordered sample 8 =
(t1,...,in) as given by (1.1) is arrangement increasing when the selection probabilities
p;’s are ordered from the largest to the smallest.

THEOREM 2.2. Letp; > --- > pn. Then the probability P(8) of an ordered sample
s is AT.

PrOOF. Let 8= (i1,...,%,) and 8’ = (¢},...,1,,) be two ordered samples such that
8’ contains exactly one inversion of a pair of coordinates which occur in the natural order
ins Letk<fand i} =1i;,j#k, j#L j=1,...,n; i =1ip, Gy = ig, ix < ip. Then
from (1.1),

—1
H?:l{l > ipi}

n k Jj—1
= | [P / {1 - pi,}
j=1 j =1

P(s) =

j=1 T
£ j—1 n j—1
x H 1"21)“ DPie H {I_szr}
F=k+1 r=1 j=£+1 r=1
r#k
J

j-1 n j—1
<| T $1-> pi —pa 11 {1—Zpi,}
j r=]1 r=1

J=£€+1
= P(s),

where in going over from equality to inequality above we used the fact that p;, < p;, .
This proves the required result.

For a successive sample of size n from a finite population of size N, let I(S,k) = 1,
if k € S and 0, otherwise. Then A(S) can be expressed as A(S) = Zszl prl(S,k). On
taking expectations, we get

N
(2.1) EAS)] = > pim,
i=1

= 4(p).

Now we establish an inequality for E[A(S)], the expected sample coverage. We shall be
using the following lemma to prove it.
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LEMMA 2.1. (CebySev’s inequality. Theorem 1, p. 36 of Mitrinovié (1970)) Let
a1 << a,and by <--- <b, be two increasing sequences of real numbers. Then

. ’I’LG: (Libi Z (zn: (11;) (Zn: bz) )
i=1 =1 i=1

with equality holding if, and only if a; =---=a, or by =-+- = by,.

THEOREM 2.3. Let § be a successive sample of size n from a finite population of
size N. Then n
(2.2) BIAS)] >

with equality holding if and only if S is a SRSWOR.

PROOF. Since for any sampling design with a fixed sample size n, Zfil I1(S,i) =n,
on taking expectations we get Z?_’__l T = 1.

Now observe from (2.1) that E[A(S)] = ¢(p) is symmetric in py’s and thus without
loss of generality, we assume that they are ordered from the largest to the smallest. Then
it follows from Corollary 2.1 that m’s are also ordered from the largest to the smallest,
the ordering being strict if the ordering of p;’s is strict. Applying Lemma 2.1, we get

(2:3) E[A(S)] > {sz} {Zm}/z\r-

Equality in (2.3) holds if, and only if n4’s are equal or pg’s are equal. By Corollary 2.1,
71’s are equal if and only if pg’s are equal, that is, if and only if S is a SRSWOR. O

The above result suggests that perhaps the expected sample coverage is greater
when the py’s are more dispersed. We need to introduce the concepts of majorization
among vectors and Schur convexity to make this statement more precise.

DEFINITION 2.1. Let z = (z1,...,zn) and y = (y1,...,yn) be two vectors in the
N-dimensional real space RY. Let {z{] > - -+ > z|n)} denote the decreasing arrangement
of the components of the vector z. Then the vector y is said to majorize vector & (written
as z<™y), if

i J N N
Zx[kJSZy[H, j———l,...,N—-l and Zx[k]=2y[kl.
=1 k=1 k=1

k=1

Observe that majorization as defined here is a partial order relation among vectors
as opposed to component-wise partial order relation.

DEFINITION 2.2. A real valued function ¢ defined on a set A C R™ is said to be
Schur convex (Schur concave) on A if z<™y = ¢(z) < (>)¢(y).

We conjecture that the expected sample coverage ¢(p) of a successive sample as
given by (2.1) is Schur convex in p for any sample size, but have a proof only for n = 2.
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THEOREM 2.4. Consider a successive sample of size n = 2 with selection proba-
bilities vector p. Then the expected sample coverage ¢(p) = E[A(S)] is Schur conver in

p.

Proor. Note that we can write 7 as
T = t(1, k) + £(2, k),
where
t(j,k) = P(unit k is the j-th distinct unit drawn), j=1,2; k=1,...,N.
Note that ¢(1,k) = pr and ¢(2,k) = pxI(k), where
N
I(k) =) {pj/(1 —pj)} —pe/(1—pi), k=1,...,N.
j=1
Hence
N N
6@ =D i+ > pil(k)
k=1 k=1
which can be written, after a bit of rearranging, as
N N
¢(@) = (N +1)+ [Zpﬁ—l] J—(N-2)> " ni,
k=1 k=1
where J = Zszl 1/(1 - pg). From this we get

8¢ By Yo il
oo Opa _Z{Pl—Pz}{Zl_pk—(N~2)}+{]§pi~l}

k=3

1 1 1 1
'{(1—171)2_(1—p2)2}+2{pl_p2}{1—pl+1—pz}
zg{pl_pZ}{i 1 _(N_z)}+(p1—p2)(2~p1—pz)
k=3

1—-pg (1-p1)?(1 - p2)?

N
X [Zpg —1+2(1-p)(1 ——pg)}
k=1

Yoo
S A S

k=3

N
2-n —p2) {Zpi +(p1 +p2 — 1)2}

(1 =p)?(A—p2)? |

which has the same sign as (p; —p2) since 1/(1—p;) > 1 for each i = 3,..., N. Thus ¢(p)
is Schur convex in pj,...,pn by Theorem A.4, page 57 of Marshall and Olkin (1979). O
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3. Some majorization results

Rao et al. (1991) proved that in case of successive sampling npa) < m) and np( Ny >
m(N), Where p(1y (m(1y) and p(ny(m(y)) are the minimum and the maximum of p;’s (m;’s).
Cochran ((1977), p. 259) considers the case n = 2 and asserts that m;/2’s are “always
closer to equality than the original p;’s ”. However, he does not make it clear in what
sense they are closer. We generalize these results in Theorem 3.1 to prove that the
vector 7 is majorized by the vector np. We also compare the three without replacement
sampling schemes by partially ordering the vectors of first order inclusion probabilities
by majorization. First we prove some preliminary results in the next two lemmas.

LEMMA 3.1. Letpy, > --- > pn be a set of probabilities and let

PR
(3.1) go =201 p=1,. N
Zj:l Dj

Then qi is a decreasing function of k.

PROOF. * We have, after a bit of simplification,

k k-+1 k
Pr+1 Y7
32) [Dopi ) [Dopi] ke — @l = ( ) Z p; | - T ) st
= = — Dk+1 = 1—p;

k . .

Now, 35 i{pi/(1 = p;)} = {1/(1 = pry1)} Sy pj, since (1 - p;) < (1= pryr), j =

., k, as p;’s are ordered. Thus, the right hand side of (3.2) is less than or equal to 0.
This completes the proof. O

For successive sampling from the finite population U/ with selection probabilities p;’s
and first order inclusion probabilities =;’s, let

t(j,£) = P(unit £ is the j-th distinct unit drawn), j=1,...,N; £¢=1,...,N.

Note that we have defined ¢(j,£) for j = 1,..., N. Although in practice we draw only
n distinct units, this extended definition will be useful for theoretical purposes later on.
Observe that t(1,£) = pg, £ = 1,..., N. Conditioning on the first (distinct) unit drawn
we have the following representation for (4, £) for other values of j,

N
(3.3) t(,0) =Y pt(i—1,4|i), j=2,...,N,

=
where for each ¢ (i = 1,...,N), t(j — 1,2 | ¢) is the conditional probability of drawing
unit £ as the j-th distinct unit drawn given that unit 7 was the first unit drawn. It turns
out that t(j — 1,£ | 4) is the probability of drawing unit £ as the (j — 1)-th distinct unit
in the sample from the truncated population 24(i) = {1,..., N} — {i} and with selection
probabilities p(¢ | i) = ps/(1 —p;), £ =1,...,N, £ # i. The corresponding first order
inclusion probabilities 7 (£ | ¢)’s satisfy the relation,

N
me=pe+ Y pim(l|i), £€=1,...,N.
7,
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This follows from the definitions of m, (¢ | 7) and the identity m = 373, (5, £).
Lemma 3.2 below, which is also of independent interest, leads to the main result of
this section.

LEMMA 3.2. Suppose that in a successive sample from a finite population of size
N, the selection probabilities p;’s are ordered from the largest to the smallest. Then for

i=1...,N—-1,
k

k
(3.4) Dt +1,0 <) t35,0, k=1,...,N.
=1

=1
In particular,
k k k
DGO <D L =) p, k=1,...,N.
£=1 =1 =1
ProoF. We will use induction on N to prove the result. From the definition of
t(j,£), we havefor k=1,..., N

k N k p2
; _ N e
(3.5) ;t(%f) = (pr) (Z - p; ) = 1—-pe

i=1

s () [0 (5%5) / (o)

(writing pe/(1 — pe) as — 1+ 1/(1 — pe))

k
(3.6) <> 1,8, k=1,...,N.

The last inequality follows since by Lemma 3.1,

() /(50) - Bts) [ £

In particular, for N = 2,

k k

(3.7) S ot2,0 <> (1,0, k=12

=1 =1

Inequality (3.7) represents the initial step in the proof by induction on N. Suppose now
that the result is true for N — 1. From (3.3) it follows at once that

k
St 0) = Zzpzt(a 1,]4)
£=1 =1 i=1
4L
N k
=Y " p ) t(i—1,¢]9)
=1 =1

0
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N k
<D om Y ti-2,L]4)
=g

k
: =Y t(j—14, j=3,..,N.
=1

This and (3.7) complete the proof. O

REMARK 3.1. Parts (i) and (ii) of Theorem 2.2 of Rao et al. (1991) follow as
immediate consequences of Lemma 3.2.

Now we prove the main result of this section.

THEOREM 3.1. Consider a successive sample of size n with selection probability
vector p and first order inclusion probability vector w. Then w<"np.

ProoOF. Let the p;’s be ordered from the largest to the smallest. Then by Corollary
2.1 the m;’s are also ordered the same way. We can write 7, as

n

(3.8) me =Y t(j,0),

j=1

where as in Lemmas 3.1 and 3.2, £(7,£) denotes the probability of including unit ¢ in
the sample as the j-th distinct unit drawn. To complete the proof, we sum the above
identity for m, from 1 to k, and use Lemma 3.2. Thus for k =1,..., N,

k k n
Z"ré == Ezt(.]ae)
=1 e=1 j=1
k

> t(5,4)

1

I
NE

w“
1
R
o~
If

(3.9) Pe

M=

<
I
-
Y
i

1

k
= 'nng.
£=1

(3.9) follows from (3.4) since t(1,£) = p, for all £. O

Our next result characterizes simple random sampling without replacement by the
result in Theorem 3.1.

PROPOSITION 3.1. Let § be a successive sample of size n from a finite population
of size N with selection probabilities p1,...,pn and first order inclusion probabilities
T1,...,TN. Thennp; =m, i=1,...,N if and only if, p; =1/N,i=1,...,N, that is,
if and only if, S is a SRSWOR.
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ProoF. “Only if” part. Let the p;’s be ordered from the largest to the smallest.
Let k be a nonnegative integer between 1 and N, both inclusive. Assume np; = 7; for
i=1,...,N. We then have by Lemma 3.2

k k k k k
HZPe = Z?fe < Zpe +(n - 1)Zt(273) < nZPe~
=1 =1 =1 =1 =1
Thus
k k
(3.10) dH2,0=>p, k=1,...,N.
=1

=1
This implies
t(2,k+1) =pgys, for k=0,...,N~-1.

That is,

(3.11) Pett{I™ — pr41/(1 — Pe+1)} = Doy, k=0,...,N—1

where I* = Z?’zl{pg/(l —p¢)}. From (3.11) we get
k et /{1 —prey1}=I"-1, k=0,...,N—-1

which yields the desired result, concluding the proof of the “only if” part.
Proof of “if part”. For a SRSWOR of size n, we have p, = 1/N, m, = n/N,
£=1,...,N. Thus, npy =mp, £=1,..., N, completing the proof of “if” part. O

Our last result of this section compares the vectors of first order inclusion proba-
bilities and the expected sample coverages for the three sampling designs—SRSWOR,
Midzuno sampling and successive sampling.

Note that since SRSWOR is a special case of successive sampling, the interpreta-
tion of ¢(p) (defined by the last equality in (2.1)) as the expected sample coverage for
SRSWOR makes perfect sense. In the case of Midzuno sampling, we define ¢(p) by the
same equality, the p;’s being the selection probabilities of the units for the first draw.

THEOREM 3.2. (a) Let nSRSWOR oM gnq 7158 be the vectors of first order inclu-
sion probabilities for SRSWOR, Midzuno sampling and successive sampling respectively.

Then

m m
SRSWOR_<7TM —<71‘SS

(b) Let ¢°FESWOR(p) ¢M(p) and ¢55(p) be the expected sample coverages for a
SRSWOR, a Midzuno sample and a successive sample, respectively. Then,

¢SRSWOR(p) < ¢>M(P) < ¢SS(p)‘

PROOF. (a) The result that 7™ majorizes m5BSWOR follows from the fact that
for any real numbers a;’s, (a1,...,ay) majorizes (@, ...,a), where @ = Zfil a;/N.

Now we prove the other part of the assertion of the theorem. From (3.8) and the
definition of ¢(j,£) , we have for successive sampling

k
(3.12) > x5S Zpe + Z Zt(J,
=1

=1 j=2
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and the inclusion probabilities for the Midzuno sampling are given by

(3.13) m = pe+ {1 —peH(n— /(N -1)}, £=1,...,N.
From (3.12) and (3.13) it follows that
’ k
(.14 S — )

=1

k n
S MG, - (k zpe) (- 1)/ 1),
=1 j=2

Now, the first term on the right hand side of (3.14) can be written as

E n n—1 k
(3.15) DD (5,0 sz DD otG,el i)
£=1 j=2 i=1  j=1 e;l

We now note that Z;:ll Zf:l,e#i t(4,£€ | 1) is the sum of the first & largest m,’s of
a successive sample of size n — 1 from the finite population consisting of all the original
N units except 4, and selection probabilities pr/{1 — p;}, ¥ = 1,...,N, k # 1. Since
((n—1)/(N~1),...,(n—1)/(N —1)) is majorized by any (N — 1)-vector of nonnegative
numbers adding to n — 1, it follows that

n—1 k
(3.16) zp,z}: J,e|z>>zpz —

E:;éz

Mz

..

~— i
=2

Sl

n-—1

I

(k - ﬁ:pe

Thus, (3.14), (3.15) and (3.16) complete the proof of the second assertion of (a).
(b) To prove the first inequality, we have from (3.13),

(3.17) o) = EZ:’{; ;pi i
N-ng 1\ n
- N—1,§(p’“_ﬁ> tN
> n/N
— ¢SRSWOR(p)_

To prove the second inequality, we have from (3.8) and the definition of ¢(j, k) that

N n—1
(3.18) TS =P+ > pid > (ki)
i=1 j=1
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N
=pi+ Y pim(k | 9).

ik
From this we get
N N
(3.19) ¢55() =D Pk + > p(1— 1) (| ),
k=1 =1

where ¢55(p | ©) is the function ¢(p) for the successive sample from U (i). Now the result
follows from applying Theorem 2.3 to ¢°°(p | i) and (3.17). O

Remark 3.2. Note that the lower bound ¢™(p) on ¢°°(p) is sharper than

SRSWOR(p) as provided by Theorem 3.2. However, unlike ¢ (p) which depends on

p;’s, pSESWOR(p) is a universal bound (the same for all successive samples of the same
size).

4. Spacings of a simple random sample without replacement

In this section we study some properties of spacings corresponding to a SRSWOR
from a linearly ordered finite population without multiplicities.

THEOREM 4.1. Let Xi,...,Xn be a SRSWOR from a linearly ordered finite popu-
lation without multiplicities and let X(1),...,X () be the corresponding order statistics.
Let D; = Xy — X(i-1), ¢ = 1,...,n be the spacings with X9y = 0. Then D;’s are
ezxchangeable.

Proor. We have

P(Di:Si,iZI,H.,‘n)

i
=P(X@ =) s5i=1,...,n)

=1

N

:1/(71)’ n<s;+-+-+8, <N, each s;>1. 0
COROLLARY 4.1.

= ) = — N_Z:;lsi N
(4.1) P(Dz——suz—l,...,k)_< R \
and )

N -5 ,

(4.2) P(Di>ti,i:1,_“,k):( %121&)/({:)‘

Proor. We have

i
P(D;=s,i=1,....,k) = P(X) =Y _sji=1,...,k)
j=1

- (") C)



SAMPLING FROM FINITE POPULATIONS 643
The proof of (4.2) follows by repeated application on (4.1) of the well-known identity,
m-1
m—k m—t
4.3 = .
= > (" )-(00) :

k=t41

2

THEOREM 4.2. The p.m.f. of D; is logconcave fori=1,...,n

Proor. From Corollary 4.1 it follows that

ro=ro=9=(21) /(7)-
&)/ f(s—1) = (f__f ) / (Nn_ °7 1)

__n-1
N—-s+1

Hence

Now 1 — (n —1)/(N — s + 1) is a decreasing function of s. This completes the proof. 0

Corollary 4.1 implies that each D; has an IFR (increasing failure rate) distribution.
We next prove a multivariate version of this result. First we give the definition of a
multivariate increasing failure rate (MIFR) distribution.

DEFINITION 4.1. A random vector (Xi,...,Xp,) with survival function
S{z1,...,%n) is said to have a multivariate increasing failure rate (MIFR) distribu-
tion if the marginal survival function S;, . ;, (s, ..,z ) of {Xi,,..., X, } satisfies the

condition that
S‘il,.‘.,ik (‘T"il + t’ Tty xik + t)

Silv--'yik (xiu ceey xik)

is decreasing in z;, for t > 0 for each subset {i1,...,ix} of {1,...,n}.

THEOREM 4.3. The vector of spacings D = (Dy,...,D,) has a Multivariate In-
creasing Failure Rate (MIFR) distribution.

Proor. From Corollary 4.1 we have, for 1 < k <n and z > 0, that

D>t+.’1)l—1 k“Di>ti,i=1,...,k)

Rl
ig{l-kw/ (-2}

which is decreasing in ¢;’s, since for each j, 1 — kz/(N — Zle t; — j) is decreasing in
t;’s. This completes the proof. O
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Our last result in this section shows that the spacings are negatively dependent in
the sense that the joint distribution of any pair of them is reverse regular of order 2
(RR3) (see Karlin and Rinott (1980)).

THEOREM 4.4. For 1 <i < j < n, the joint p.m.f. f(s,t) of D; and D; is reverse
reqular of order two (RRy). That is,

<0

d = f(s1,t1) fs1,2)
f(sz,tl) f(s2,t2)

for all 51 < 89 and t1 < to.

ProoF. From Corollary 4.1 it follows that
N2 _ N—Sl—-t1 N-—Sz——tz
n B n—2 n—2

which is < 0 for s; < s2 and ¢; < to, since ("}*)("}?) is Schur concave in m; and mo.

This completes the proof. O

5. Characterizations of SRSWOR by exchangeability of spacings

In this section we use exchangeability of the spacings to characterize SRSWOR.

Let 8§ be a Midzuno sample from a linearly ordered finite population without mul-
tiplicities, and with initial selection probability vector p. Then the spacings D;’s have
the joint p.m.f. given by

(5.1) P(D;=s;i=1,...,n) = P | Xy =) sji=1,...,n
j=1
= P(S)
_ﬁ | N -1
_izlp(z;ﬂsj) n—-1)’
where
(5.2) §=3>"si=1,...,n
j=1

THEOREM 5.1. Let § be a Midzuno sample of size n from a linearly ordered finite
population without multiplicities, and with initial selection probabilities p1,...,pn. Let
pN = 1/N. Then the spacings are exchangeable if, and only if S is a SRSWOR.

PrOOF. “If” part. Suppose S is a SRSWOR. Then it follows from Theorem 4.1
that the D;’s are exchangeable.
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“Only if” part. Let D;’s be exchangeable. Then interchanging s; and s;_1( =
2,...,n) in (5.1), we have P(S) = P(S*), where

(5.3) 5% =(s%,...,s%),

3

with s} = Zf;:l Skyj=1,...,n,j#i-1,8 = 22;21 sk +s; and S is given by (5.2).
Now, § and §* differ in only one element. Hence we have, by Theorem 2.1, that
(5.4) pz;;i s; pz:: sj+si”
Putting, for L< k<N -n+1
3_7':17 j=1,...,n, .77&7') s; =k,

we have
Di-1 =Pi—24k, 1SE<N-n+1, 2<i<n.

Thus, finally, we have
pr=---=pn-1={1l-pn}/(N~1)=1/N,

the last equality following from the assumption that py = 1/N. This completes the
proof of the “if only” part, and in turn that of the theorem. O

Now let 8§ be a successive sample of size n from a linearly ordered population without

multiplicities, and selection probabilities py, ..., px. Then, as in the case of the Midzuno
sample
(5.5) P(D,ZS“’I,:].,,TL)ZP(S)

where S is given by (5.2) and P(S) by (1.2) (with appropriate notational changes).

THEOREM 5.2. Let S be a successive sample of size n from a linearly ordered finite
population without multiplicities, and selection probabilities py,...,pn. Let py = 1/N.
Then the spacings D;’s are exchangeable if and only if S is a SRSWOR.

Proor. “If” part. This is Theorem 4.1.

“Only if” part. Let D;’s be exchangeable. Then, interchanging s; and s;_; in (5.5),
we get P(S) = P(8"), where § and S* are given by (5.2) and (5.3) respectively. Now,
8 and S* differ only in one element and hence from Theorem 2.1, (5.4) must hold. The
proof from this point on is exactly the same as that of Theorem 5.2. This completes the
proof of the theorem. 1
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