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Abstract. Consider a multivariate mixture model where the random variables
Xi,...,Xpn given (O1,...,0,), are conditionally independent. Conditions are ob-
tained under which different kinds of positive dependence hold among X;’s. The
results obtained are applied to a variety of problems including the concomitants of
order statistics and of record values; and to frailty models.
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1. Introduction

Let X3,..., X, be n random variables such that they are conditionally independent
given some random vector © = (0;,...,0,,). It is of interest to know which kind
of dependence arises among X;’s when © is unknown. If Fi(- | 0y,...,6,,) denotes the
conditional distribution function of X; given © = (61,...,60,,) and G(6y,...,0,,) denotes
the joint distribution function of ©, then the joint distribution function of X is given by

n
F(w)=/R 1 Fi(mi | 61,...,00)dGC(01,. .., 0m).
™ =1

If Fi(- | 61,...,0m) is absolutely continuous with respect to the Lebesgue measure on
R for each (6,...,0y) in the support of © with a density function f;(- | 01,...,60m),
then the joint distribution of Xji,..., X, is absolutely continuous with respect to the
Lebesgue measure on R™ and is given by

(1.1) flx) = /R T fi@i |61, 0m)dG (61, . .., Om).
™ =1
Such a model is known as a mizture model. An interesting special case of this model is,
n
(1.2) flx) = /R I fi(zi | 0:)dG (61, . .., 0n).
" i=1

In this case m = n and the conditional distribution of X; given © depends on © only
through ©; for ¢ = 1,...,n. In Section 3, we give several examples of such models.
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Variants of the multivariate mixture model as given by (1.1) and (1.2) have been studied
in the literature by many researchers including Shaked (1977), Jogdeo (1978), Lee (1985),
Marshall and Olkin (1988,1991) and Shaked and Spizzichino (1998), beside others.

There are several notions of positive and negative dependence among random vari-
‘ables with varying degree of strength and these have been discussed in detail in
Yanagimoto (1972), Barlow and Proschan (1975), Shaked (1977), Karlin and Rinott
(19804,1980b), Lee (1985) and Kimeldorf and Sampson (1989), among others. In this
paper we identify conditions on F;’s and G under which the X,’s possess positive depen-
dence properties of various types. First we introduce some notations and review some
of the concepts that will be used later in this paper.

DeFINITION 1.1. (Karlin (1968)) We say that a function h(z,y) is Sign-Regular
of order 2 (SRy) if e1h(z,y) > 0 and

h(z1,y1) h{z1,72)

(1.3) 2 hMza,y1) h(z2,y2)

whenever 1 < 22 , 31 < y2 for 1 and &3 equal to +1 or —1.

If the above relations hold with £; = +1 and 5 = +1, then A is said to be Totally
Positive of order 2 (TP,); and if they hold with &; = +1 and €2 = —1 then h is said to
be Reverse Regular of order 2 (RRy).

Let Xi,...,X, be random variables with joint distribution function F' and density
f. For k > 0, let v(¥)(t) be defined as follows:

_J (=) if t<O,
7(k)(t)_{ : if t>0.

Define n fold integral ¥, ,... k. (Z1,-..,Zn) by

+oo +oo 1
¢k1,...,kn(x17---7$n) - / / H’Y(kt)(xz _tz)dF(tb)tn)
-0 0 =1

and define v, o(z1,-..,Zn) = f(Z1,...,Zn). Also define o, 0.k.p1,....kn (T1s-- ., Zn) tO
‘be (n — 1) fold integral

+o0
. / TT 7®) (a5 — t)0s(o e 2)dF it | 31,0

=i+l

where g; is joint demsity of (Xi,...,X;) and F(ti41,...,tn | 21,...,%;) is the condi-
tional distribution function of (X;y1,...,Xn) given X3 = z1,...,X; = x;, for kipq >

., kn > 0. Similarly we can define ¢, . k. (21,...,%,) with any subset of k1, ..., kn
consisting of zeros.

DEFINITION 1.2. (Shaked (1977), Lee (1985)) A random vector (Xi,..., X,) is
said to be dependent by total positivity with degree (k1,. .., kn), denoted by DT P(ky, ...,
kn), if Yky . ko (T1, - .- Zn) is TPy in pairs of {z1,..., 2}
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Fig. 1. Implications among notions of positive dependence.

We explain the concept of DT'P(ky,...,k,) for the bivariate case. As observed in
Shaked (1977), two random variables X and Y are likelihood ratio (or T'P;) dependent
if and only if X and Y are DT'P(0,0) dependent. (X,Y’) are DT P(1,0) dependent if the
function F(z | y) = P[X > 2 |Y = y| is TP;. In this case the conditional hazard rate of
X given Y =y, r(z | y), is decreasing in y. The random variables X and Y are also said
to be right corner set increasing (RCSI) if they are DTP(1,1) dependent. The random
variables X and Y are DT P(2,0) dependent if the conditional mean residual life function
of X givenY =y, u(z | Y =y) = E[X —z | X > z,Y =y, is increasing in y. We say
that X is stochastically increasing in Y (denoted by SI(X | Y)) if P[X >z | Y = y]
is increasing in y for all z. Two random variables X and Y are said to be associated
(denoted by A(X,Y)) if Cov(u(X,Y),v(X,Y)) > 0 for all increasing functions v and v.
Figure 1 shows the chain of implications that hold among the above notions of positive
dependence. See Lee (1985) for interpretation of DT'P(ky, ..., k,) distributions for other
values of n.

One of the notions of positive dependence in multivariate setting is that of mul-
tivariate total positivity of order 2 (denoted by MTP,). A function ¥ : R® — [0, 00)
is said to be MTP, if y(x)Y(y) < ¥(z Ay)Y(z V y) for every z and y in R™, where
z Ay = (min(z1,91),...,min(z,,y,)) and £Vy = (max(z1,y1), ..., max(z,,¥,)). Ran-
dom variables (X1, ..., X,) are said to be MT P, dependent if their joint density function
is MTP,. If a set of random variables is MT P, dependent, then they are TP, in pairs
(i.e. DTP(0,...,0)) and the converse is true if X has a lattice support. See Karlin and
Rinott (1980a) for this observation and for other properties of MT P functions.

The corresponding concept of negative dependence for the case n = 2 is given in
Shaked (1977).

DEFINITION 1.3. We say that (X,Y’) is dependent by reverse regular rule of degree
ki and ko, denoted by DRR(ki,k2), if Y, k,(z,vy) is RR,.

Lee (1985) considered the model (1.2) when © is a continuous univariate random
variable. She proved that if (X;,©) is DT'P(k;,0) for i =1,...,n, then (X;,...,X,) is
DT P(ky,...,k,). In this paper we extend this problem to the case when 8 is a random

vector with joint density g(61,...,6,). We also consider the case when X; and ©; are
negatively dependent for 4 = 1,...,n. In particular, we prove that if g is TP, in pairs
and if either (X;,®;) are all DT'P(k;,0) or are all DRR(k;,0), then (X3,...,X,) are
DTP(ky,... kn)-

Jogdeo (1978) and Shaked and Spizzichino (1998) studied the dependence properties
of a random vector X satisfying the general mixture model (1.1). Jogdeo (1978) proved
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that if X, is stochastically increasing (decreasing) in © for i = 1,...,n; and G is asso-
ciated, then the random variables Xj,..., X, are associated. Shaked and Spizzichino
(1998) proved that if fi(z | 61,...,0n) is MT P, in (z,6y,...,0n,) fori=1,...,n and if
© is MTP,, then X is MTP,. We prove in the next section that if fi(z | 61,...,0,) is
'RRy(TP;) in (z,6;) and is TP, in (0;,0) for j,k € {1,...,m}; and if g is TP, in pairs
then the joint density function f(z) of X is TP, in pairs.

In Section 3 we give several applications of the results obtained in Section 2. In
particular, we apply these results to study dependence among concomitants of order
statistics and of record values for continuous bivariate distributions. An example con-
cerning frailty models is also given. Throughout this paper we assume that expectations,
whenever they are defined, exist and we can interchange the order of integration in mul-
tiple integrals.

2. Main Results

We shall need the following four lemmas to prove Theorem 2.1 which gives a general
composition result for SRy functions. Lemmas 2.1 and 2.2 are due to Karlin (1968) and
Lemma 2.3 has been proved recently in Khaledi and Kochar (2000). We state Lemmas
2.1-2.3 and prove Lemma, 2.4 which may also be of independent interest. In the following
i represents a o-finite measure.

LEMMA 2.1. Let A, B and C be subsets of the real line and let L(z,z) be SRy for
T € A, z€ B and M(z,y) be SRy for z € B,y € C. Then K(z,y) = [L(z,2)M(2,y)
du(z) is SRy forx € A, y € C and g;(K) = &;(L) x &;(M) Vi =1,2.

LEMMA 2.2. Suppose X, z,( traverse the ordered sets A, X and Z, respectively and
consider the functions f(\, z,() and g(A, () satisfying the following conditions,

(a) f(\z,0) >0 and f is TP, in each pairs of variables when the third variable is
held fized; and

(b) g(\, Q) is TPs. Then the function

Bv) = [ 10,0000 Odu(o),
defined on A x X is TPy in (A, z).

LEMMA 2.3. Suppose A, x,( traverse the ordered sets A, X and Z, respectively and
consider the function f(\, z,() satisfying the following conditions,

(a) f(\z,¢) >0 and f is TP, in (A, ),

(b) f(A,z,{) is RRy in (A, () as well as in (z,().
Then the function

h(\z) = /Z £z, Q)d(),

defined on A x X is TPy in (A, ).

LEMMA 2.4. Suppose A, z,( traverse the ordered sets A, X and Z, respectively and
consider the functions f(A, z,¢) and g(\,{) satisfying the following conditions,
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(a) f(A\z,) >0, f and g are TP, in (), ().
(b) f(\z,¢) is RRy in (A, z) and (z,().
Then the function

hva) = [ FOua, Qg du(),
defined on A x X is RRy in (A, x).
Proor. We have to prove that for Ay < Ay and 1 < 29,
(2.1) h(A2, z2)h(A1,z1) — h(A2, z1)R(A1, z2) < 0.
Karlin ((1968), p. 123) showed that the L. H. S. in (2.1) is equal to,

oo O F(2,20,0)  f(A1,T2,u)
eaf [ { e fOoum } (£, 21,u)g0u, 1) f O, 21,0900, €)

—f(Xe, z1,w)g(A2, u) f (A1, 21,¢)g(A1, ¢) ap(u)du(C)
TS [ f002,0)  fOLZ,Q) | fQ2,m,u)  F(M,T2,u)
~ +./—-oo /_oo {f(/\z,ith) F(A1,21,¢) * f(Xo,z1,u) f(/\l,ﬂfl:u)}
X f(A2, 1, u)g( A2, w) f (A1, 21, Q) g( A1, ) dp(w)du(().

The first expression in (2.2) is non-positive since f is RRy in (A, z) and in (z, ().
The second expression in the first integral is non-negative since g and f both are TP,
in (), ). Hence the first double integral in (2.2) is non-positive. The second integral is
non-positive since f is RRp in (A, z). This proves the required result. O

With the help of the above lemmas we prove Theorem 2.1 which is a mathematical
tool used to prove dependence properties of mixtures of the type (1.1) and (1.2) in
Theorems 2.2 and 2.3.

THEOREM 2.1. Consider

(2.3) d)(x):/ {Hhi(a:i,el,...,Hm)}g(el,...,Om)HdOi.
B Li=1 i=1

Suppose that g(01, . ..,0n) is TPy in pairs and for each i € {1,...,n}, hi(zi,01,...,04)
is TPy in (0;,0k) for 5,k € {1,...,m}. If hi(zi,6h,...,0m) is either

(a) RRy in (z;,0;) foralli€ {1,...,n} and j € {1,...,m}; or

(b) TP, in (x;,0;) forallie {1,...,n} and j € {1,...,m},
then ¢(x) is TPy in pairs.

ProoF. (a) Let I ={1,...,n} and J; ={j,...,m} for j =1,... ,m. Define

n
gl(:L'l, N ,xn,eg, .o ,Om) = / {H h,-(xi,Ol, .. ,Hm)} g(61, ‘e ,Om)del.
R \i=1
By Lemma 2.1, gy is TP in (23, ), i,j € I and it is TP, in (6;,6%), j, k € J, by Lemma
2.2. For fixed i € I and j € J; let

z(:ci,Oj,Gl) = hi(ZL'i,gl, .. .,Gj, . ,Om)
and
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n

w(fy,05) = [] hil@, 00,605, ,0m) 3 9(B1,- .-, 65, ..., 0m).
g=1
i

"The function 2 defined above is RR; in (z;,60;), RRy in (x,6,) and TP, in (61,6;). The
function w is TP, in (61,6;). Hence by Lemma 2.4 the function

9z, ..., Tn,02,...,0m) =/ 2(z3,05,01)w(61,0;)dby
R
is RR2 in (xz,ﬂj) Define
gi(fL'ly .. -a$n79i+1; e ,Om) = / gi—1($1, ie ,a:n,Oi, Caa ,Hm)de for i= 2, s ,m—l.
R

We prove the required result by induction. Suppose g;—; is TP, in (zk,z;) , TP in
(0p,0;) and RR; in (z4,0,) for k,j € I and p,l € J;. By Lemma 2.3, g; is TP, in
(zx,z;), and by Lemma, 2.2, it is TP, in (6p,6;) for p,l € J;y1. From Lemma 2.4, g; is
RRj in (zk,0y), k € I and p € Jiyy. Thus grm_1(21,-..,%n,0pm) is TP, in (z4,z;) and
RRy in (z;,0r,) for k,j € I. Using Lemma 2.3 we find that,

¢($1,...,mn)=/gm,l(:cl,...,xn,ﬁm)d6’m
R

is T'P, in pairs of its arguments.
(b) The proof follows from Lemmas 2.1 and 2.2 and using arguments similar to
those used for proving part (a). O

In the next theorem we prove that for the mixture model (1.2), under appropriate
conditions, both positive as well as negative monotone dependence between X; and ©;,
i=1,...,n, imply positive dependence among Xji,...,X,.

THEOREM 2.2. Consider the mizture model (1.2) and suppose that the density
function g is TPy in pairs. If either

(a) (Xi,©;) is DRR(k;,0) foralli=1,...,n; or

(b) (Xi,©;) is DT P(k;,0) foralli=1,...,n,
then Xi,...,X, is DTP(ky,..., ky).

PROOF. (a) By definition, for k; > 0 we have

" n
Vhyyookn (T1y -+ o3 Tn) = / HW(’“)(% —ti)f(t1,. .. tn) Hdtz‘
R0 i=1

= /n/n {}f[l'y(ki)(wi —t3) fi(ts | 91)}

xg(91, ey On) InI dgz ﬁ dti
i=1 i=1

— : K (. — £ YA | Ot - )
/Rn {1;[1/}27 (z; tz)fz(tz]ﬁz)dtz}g(ﬂl,...,en)gd@.
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Since (X;,©;) being DRR(k;,0) is equivalent to |, R k) (g — ti) fi(t; | 6;)dt; being RRy
in (z;,6;), taking m = n and replacing the function h;(z;, 6, . ..,0r) by this function in
Theorem 2.1 (a), it follows that ¥, .. k. (T1,...,2,) is TPy in palrs

Let us now consider the case when k; =0 for each 7. In this case the function

’QbO,...,O(xl’ v 7'7'.71,) = f(ajly ey xn)
= / {Hfz(aczwz)}g(el,,On)HdBZ
B™ =1 i=1

is clearly seen to be DT'P(0,...,0). The proof follows from Theorem 2.1 (a) on replacing
hi(z;, 01, ..,0m) with fi(z; | 6;) and taking m = n.

(b) In this case, by assumption, the function [, v*9)(z; — ;) fi(t; | 0:)dt; is TP
in (z;,0;) for each i. The required result follows on the same lines using part (b) of
Theorem 2.1. O

The following results are immediate consequences of the above theorem.

COROLLARY 2.1. Suppose that the density function g in the mizture model (1.2)
is TPy in pairs. Then if
(1) X; and ©; are either all TP, or all RRy dependent, then the joint density of
(X1,...,Xn) is TPy in pairs;
(ii) the conditional hazard rate of X; given ©; = 0; is nondecreasing (nonincreas-
ing) in 0;, for i = 1,...,n; then the random variables (X1,...,X,) are DTP(1,...,1).
In particular X; and X; are RCSI fori# j € {1,...,n} in this case.

Remarks. 1. Shaked and Spizzichino (1998) established a different type of depen-
dence result among (X;,...,X,) when 6; =0 = --- = 6,,,. They proved that if either
all (X;,©) are DT P(1,0) or all are DRR(1,0), then (X, ...,X,) is WBF (weakened by
failure) dependent. It is not clear whether there is any relation between DT P(1,...,1)
and W BF dependence.

2. Marshall and Olkin (1991) proved a related result that if each fi(z; | 6;) in
(1.2) is TP, in (z;,6;) and g is MT Py, then the function f(z1,...,z,) is MTP,.

For the general model (1.1), Shaked and Spizzichino (1998) proved that if © is
MTP, and for each 7 € {1,...,n}, fi(z | 61,...,0n) is MTP, in (z,0y,...,60,), then
the random vector X is MTP,. In Theorem 2.3 below we extend this result to prove
positive dependence among X, ..., X, when X; and ©; are even RR; dependent for all
ie{l,...,n}and j€{l1,...,m}.

THEOREM 2.3. Let X1,...,X, follow the mizture model (1.1). Suppose g, the joint
density function of © is TPy in pairs. Then forie€ {1,...,n} and j,k € {1,...m},

(a) fi(z | 61,--.,0m) being RRo(T'P,) in (z,0;) and TP, in (0;,0r) implies that
f(z1,-..,zn) is TPy in pairs,

(b) Fi(z | 61,...,0m) being RRo(T'P,) in (z,0;) and TP in (0;,0) implies that
F(zy,...,z,) is TPy in pairs.

Proor. The results follow immediately from Theorem 2.1.
As mentioned earlier model (1.2) is a special case of model (1.1) when the conditional
distribution of X; given © depends on © only through ©; for ¢ =1,...,n. Theorem 2.3
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establishes DT'P type results for the general mixture model (1.1) only for £k = 0 and 1
whereas Theorem 2.2 gives more general results for the restricted model (1.2). O

3. Examples and applications

*

Application 3.1. Dependence among concomitants of record values: Let {(X;,Y:),
i > 1} be a sequence of independent and identically distributed random variables from
a continuous bivariate distribution. X, is called a (upper) record value of the sequence
{Xi,i>1}if X, > X, fori =1,...,n—1. By convention X is a record value. The serial
numbers at which record values occur are given by the {T,,,n > 1}, defined recursively by
Ty =1,T, =min {k; kE>Tho1,Xk > XTn_l}, n > 2. the sequence {T},,n > 1} is called
the sequence of (upper) record times and {Xr,,n > 1} the sequence of (upper) record
values corresponding to {X,,n > 1}. For convenience of notation we shall denote X7,
by R, so that {R,,n > 1} is the sequence of record values. The Y-variate associated
with R,, is denoted by Y}, and is called the concomitant of the n-th record value. That
is, the sequence {Y[;,% > 1} is the sequence of concomitants of {R,,n>1}.

As discussed in Ahsanullah (1994) the joint pdf of the n record values (Ri,..., Ry),
is

fi,om(1, .0, 20) = I:I{f(mz)/ﬁ‘(xl)}f(xn), for z; < -+- < zn,.
i=1

From this we obtain the joint pdf of the concomitants (Y{y,...,Y}y)) as

+o00  pxn 2] n n
Pt o) = [ [ | {Hf(yi | m}fl,...,n<x1,...,xn>ﬂdx,- ,
=00 J oo — \i=1 i=1

which can also be written as

n n
. H k(xs, ziy1) del?i
=1 i=1

where
1 ife<y

) wen) = {4 fast

and T,41 = +oo. Since the function k in (3.1) is TP, in (z,y), it follows that the
function

n n—1
(32) [T E@i,mirn) [ [{ () /F ()} f(za)
i=1 i=1

is TP, in pairs. By replacing the function g in Theorem 2.2 by the one given by
(3.2) and assuming that X and Y are DTP(0,k) or DRR(0,k) dependent we find
that (Yjy,...,Y}s)), the concomitants of record values, are DT P(k,...,k) dependent.
In particular if

(i) X and Y are either TP, or RRy dependent, then the joint density of (Y[y,...,
Y|n), the concomitants of records, is T'P; in pairs.
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(ii)) X and Y are DT'P(0,1) or DRR(0,1), then the concomitants of record values
are dependent according to DT P(1,...,1) criteria.

Remark. Similar results can be obtained for dependence among concomitants of
order statistics. It can be proved that if (X,Y) are DTP(0, k) or DRR(0, k), then the
concomitants of order statistics are DT P(k, ..., k). See Khaledi and Kochar (2000) for
details.

Application 3.2. The frailty model: Marshall and Olkin (1988) studied the family
of multivariate distributions generated by mixture in which marginals were considered
as parameters. Suppose that Hi, ..., H, are univariate survival functions and let G be
an n-variate distribution function such that G(0,...,0) = 1 with univariate marginals
G;, it =1,...,n. Denote the Laplace transforms of G and G; by ¢ and ¢;, respectively.
Let for each 4, F;(z) = exp[—¢; ' H;(z)], where the function ¢; ! is inverse of ¢;, then

(3.3) Hza, ... @) = /R K@), F (@n))AG -, 00),

is an n-variate survival function with marginals survival functions Hi,..., H,. Here K
denotes the distribution function of an n-dimensional vector with marginals as uniform
(0,1) distributions. Different choices of K and G lead to a variety of distributions with
marginals as specified parameters. If K is the joint distribution function of n inde-
pendent uniform (0,1) random variables and ¢ is the density function corresponding to
distribution function G, then H in (3.3) can be written as,

(3.4) FI(ml,...,xn):/ {HFf"(zi)}g(Gl,...,On)ﬁdﬁi,
B™ {i=1 i=1

with density function as

(3.5) h(.’El,...,CCn) = / {Heiﬁ‘fi_l(xi)fi(wi)}g(@l,...,en)ﬁd&,
R {i=1 i=1

which is of the form (1.2). It is easy to see that the function 9,-1:"{)"_1(351-) fi(z;) is RRy
in (=, 6;) for i = 1,...,n. Using Theorem 2.2 with k; = 0,7 = 1,...,n, it follows that
if g is TP, in pairs, then the joint density of X is TP, in pairs.

The model described in (3.4), for n = 2 is known as a bivariate frailty model and it
has been studied intensively in the literature. See Oakes (1989) for more details. If we
assume that © is univariate in this, then h(z) in (3.5) is always TP, in pairs, a result
which is stronger than the result of Marshall and Olkin (1988) who proved that X is
DTP(1,...,1) under the given conditions.

Ezample 3.3. Let Z = (Z4,...,Zy) be a random vector of independent compo-
nents and let © = (04,...,0,) be a random vector with joint pdf g. Let X = Z+© and
assume Z and © are independent. Karlin and Rinott (1980a) showed that if the joint
pdf of © is MT P, and if Z; has log-concave density f; for ¢ = 1,...,n, then the random
vector X is MTP,. Recall that the MT P, property implies T'P» in pairs property. We
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show here that the joint pdf ¢ of X is TP, in pairs when Z;’s have log-convex densities
and the function g is TP, in pairs. The joint pdf of X is

n

$or,eszn) = [ T]Alwi=009(6r,...,0) T[ a0
R™ =1

i=1

which is of the form (1.2). By replacing the function h; in Theorem 2.1 with f; and using
this fact that fi(z; — 0;) is RRs in (z;,6;) if f; is log-convex for i = 1,...,n, it follows
that joint pdf of X is TP, in each pairs of its arguments.

Ezample 3.4. Let X;,X»,..., X, have the joint density function given by (1.2)
with

1 1
fi(r|0)=<ﬁ+5>exp{—2\/_—% , x>0, for i=1,2,...,n,

where the random variable © is univariate and positive. The corresponding hazard rate

functions are given by
1 1

(z]16) = — + =
for i = 1,2,...,n. Clearly, ri(z | 8) is decreasing in 0 for all z > 0, i = 1,2,...,n.
On the other hand, f;(z | 8) is neither TP, nor RR,. It follows from Theorem 2.2 (b)
(X1,...,Xn) is DTP(1,...,1).

There are other interesting applications and examples given in Shaked and
Spizzichino (1998) to which the results of Section 2 can be applied.
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