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Abstract. Let {Z.,n > 1} be a time-homogeneous {0, 1}-valued Markov chain,
and let N, be a random variable denoting the number of runs of “1” of length k in
the first n trials. In this article we conduct a systematic study of N, by establishing
formulae for the evaluation of its probability generating function, probability mass
functior and moments. This is done in three different enumeration schemes for
counting runs of length k, the “non-overlapping”, the “overlapping” and the “at
least” scheme. In the special case of i.i.d. trials several new results are established.

Key words and phrases: Binomial/negative binomial distribution of order k, suc-
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1. Introduction

The concept of runs has been used in various areas of statistical analysis as a rea-
sonable criterion for detecting changes in sequences involving experimental trials with
two possible outcomes. In the early 1940s it was used in the area of hypothesis test-
ing (run-test) by Mood (1940) and in statistical quality control problems by Mosteller
(1941). Recently, it has been successfully employed in many other areas such as reliabil-
ity (see Chao et al. (1995)), start-up demonstration tests (Balakrishnan et al. (1995)),
DNA sequence matching (Goldstein (1990)), analysis of the “maximum drawdown” in
stochastic finance (Binswager and Embrechts (1994)), psychology, ecology, radar astron-
omy (Schwager (1983)), etc.

We note, however, that there can be different ways of counting runs. It depends on
the statistical problem which way of counting should be adopted. Let {Z,,n > 1} be a
sequence of repeated trials with two possible outcomes, success (1) and failure (0). Any
uninterrupted sequence of k consecutive successes will be called success run of length
k (k is a positive integer). The classical scheme for enumerating runs of length k is
the one proposed by Feller (1968). According to this, we start counting from scratch
each time a succession of k consecutive successes is observed (non-overlapping counting).
Ling (1988) proposed an alternative enumeration scheme in which a success run of length
m > k accounts for m — k + 1 runs (overlapping counting). Finally, a third scheme can
be initiated by counting a succession of at least k successes as a single run (see, e.g.
Goldstein (1990)). We mention the following illustrative example to fix the distinction
between the aforementioned enumeration schemes: for the sequence 11101111011 and
k = 2 we have that it contains 4, 6, 3 non-overlapping, overlapping and “at least” runs
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of length 2, respectively.

The distributions of the number of success runs of length & in a fixed number of
trials have been termed as binomial distributions of order k, while the corresponding
waiting time distributions until the first, or in general the r-th occurrence of a success
run of length k, as geometric and negative binomial distributions of order k, respectively,
and this is due to the work of Philippou et al. (1983) which initiated the systematic study
of these distributions. The combination of enumeration schemes of counting runs along
with the probabilistic behaviour of the sequence {Z,,n > 1} (i.i.d. trials, non i.i.d. tri-
als, Markov dependent trials, etc.), resulted in a number of papers dealing with binomial
distributions of order k. We mention Philippou and Makri (1986), Ling (1988), Aki
and Hirano (1988, 1993), Godbole (1990, 1992), Hirano and Aki (1993), Chryssaphinou
et al. (1993), Mohanty (1994), Koutras and Alexandrou (1995), Koutras (1997a), and
references therein. The main effort of the aforementioned authors was to establish for-
mulae for the evaluation of the probability mass function (p.m.f.) and of the probability
generating function (p.g.f.) of the binomial distributions of order k. The formulae ob-
tained were usually complicated, and there is an absence of results regarding higher order
moments of these distributions.

In the present manuscript we systematically develop formulae for the study of the
‘binomial distributions of order k (viz., N,) in the case of {Z,,n > 1} being a time ho-
mogeneous two-state Markov chain in all three aforementioned enumeration schemes. To
achieve this goal we shall make use of a result of Koutras (1997a), where the double p.g.f.
of N, is expressed in terms of the p.g.f. of the distribution of the waiting times. More
specifically, the present paper is organized as follows. In Section 2, some preliminary
results and the necessary notations are introduced. In Section 3, we present recursive
schemes and/or exact formulae for the evaluation of the p.g.f. and the p.m.f. of N,. In
Section 4, we develop formulae for the evaluation of the (descending) factorial moments
and moments about zero of N,. In the special case of the i.i.d. framework several new
results are also established.

2. Preliminary results and notation

The waiting time for the r-th occurrence of a success run of length & (r, k positive

integers) in a sequence of repeated trials with two possible outcomes will be denoted by

,ga) , with the superscript pointing out the enumeration scheme employed; a = I indi-

cates the “non-overlapping” counting scheme, a = I indicates the “at least” counting
scheme, and a = II] indicates the “overlapping” one. Let

R (m) = P[TY =m], m=12,...,

be the p.m.f. of T'*. By imposing the convention A{*(0) = 6r0, where 6;; is the
Kronecker’s delta function, Al (m) becomes meaningful for all non-negative integers r
and m. Let

o0
H9(z) = Z R (m)z™,  r >0,
m=0

be the p.g.f. of T'%.
The distribution of the numbers of success runs of length & in n trials (n positive
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integer) will be denoted by N$¥. Let
9\(z) = PIN{M =a], z=0,1,...,

be the p.m.f. of N{¥. By imposing the convention g(()a)(:c) = 640 the p.m.f. of N
becomes meaningful for n = 0. Let

(21) GP(w) =" gl ()w®, n>0,
z=0

and

G (z,w) = i i 9\ (z)w®2",

n=0x=0

be its single and double p.g.f.
Suppose that successive occurrences of success runs of length k constitute a delayed
recurrent event (see Feller (1968)), and therefore

(2.2) | H®(2) = HO@)AD @, 1> 1,
where H(®) () and A(®)(z) are proper p.g.fs. In this case, Koutras (1997a) showed that

1—wA@(2) — (1 —w)H®)(2)

(2.3) G (z,w) = (1= 2)[1 - wA@(2)]

Now, let {Z,,,n > 1} be a time homogeneous two-state Markov chain with transition
probabilities defined by

sz:P(Zn+1:]IZn:Z), ’I’Lzl, DSZ7JS11

and initial probabilities p; = P(Z; = j), j = 0,1. Under this framework and for k > 2,
we have that Hg)(z), H,SH)(Z) and H{'TD (z) obey relation (2.2), with

rH(I)(z) _ H(”)(z) — H(I”)(z) = Sg;, and
_ RW(y) _ poz RUID(2)
(2.4) 1 476 = Q@) (Ifjjl)(z) - 1“1;112' Qz)
o RuInG)
i A([I[)(z) = p112 + _Q(Z_j__,
where

( P(z) = [Plz + (popo1 —p1pog)z2} (pr1z)k1,
Q(2) = (1 = p112) ™' [1 — (poo + p11)z + (p11 — Po1)2?
+ (po12)(p107)(pr12)* 1],
RD(2) = [p112 + (po1 — p11)2?)(p112)*1,
RUD(z) = (po12)(p112)*~1,
| RUID(2) = (po12) (p1o2) (p112)F~ L.

The p.g.fs Hy(-H)(Z) and H,SI”)(z) are consistent with the ones derived by Koutras
(1997b). An extra factor z appearing here in the p.g.fs reflects the different set-up used

(2.5) q
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for the evolution of the Markov dependent trials. The formula of D (2) coincides with
the respective one in Antzoulakos (1999) and it is different to the one derived by Koutras
(1997b). The difference appears in the formula of AY)(z). Both Koutras (1997b) and
Antzoulakos (1999) concluded that the p.g.f. of AZ)(2) may be obtained from H()(z) by
modifying properly the initial probability vector [po, p1]. The methodology employed by
Koutras (1997b) yielded the vector [1,0], while the methodology of Antzoulakos (1999)
yielded the vector [pi1o,p11], as one would expected. Analogues p.g.fs may be found in
Aki and Hirano (1993), Balasubramanian et al. (1993), Hirano and Aki (1993), Mohanty
(1994) and Uchida and Aki (1995). Obviously, for p; = po1 = p11 = p, the above p.g.fs
reduce to respective ones regarding the case of i.i.d. trials with success probability p.
Also, we mention here that when no confusion is likely to arise, formulae encompassing
all three enumeration schemes will be presented without the use of superscripts I, I]
and [I1.

3. Probability generating functions and probability mass functions

In this section we establish recursive schemes for the evaluation of the p.g.f. and

paf. of N, a = I,II,ITII. Additionally, the p.gf. and p.m.f. of the r.v. N3 is
expressed in terms of binomial coefficients. In the special case of i.i.d. trials several new
results are established.

3.1 Non-overlapping scheme
(a) Markov dependent trials
Relations (2.3) and (2.4) imply that the double p.g.f. of N, is given by

Q(z) —wR(2) — (1 —w)P(z)
(1-2)[Q(z) —wR(z)]

Multiplying both numerator and denominator of G(z,w) by (1 — p112), using relation
(2.5), and carrying out some elementary but involved algebra, we obtain that

G(z,w) =

1— a1z — a22® — (B + a3)2* + (Bp11 — v — aa)zF ! + (yp11 — as)2F*2

G =
(z,w) (1 = 2)(1 — a12 — 4222 — agzk — agzktl — a52k+2) ’
where
a1 = poo + P11, ay=1-a1, az= wP’fh
as = —[porproply (1 — w) + arag), a5 = az(as - 1),

B=Q1-wppfi', 7= (1-w)(popor — Prpoo)pii -

The numerator of G(z,w) may be written as (1—z)[1+a22— (8+a3z)z* — (yp11 —as)2*+1],
and therefore

Gi(z,w)  1+azz— (B+ as)z" — (yp11 — a5)2"*!

(3.1) Glzw) = Go(z,w) 1 — a1z — agz? — azzk — ag2k+l — ggzk+2’

In the following theorem we derive a recursive scheme for the evaluation of G, (w).
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THEOREM 3.1. The p.g.f. Gn(w) of the r.v. N, satisfies the following recursive
scheme:

Gn(w) =1, for 0<n<k, Gplw)=1-8, Gey1(w)=1- 1+ pow)—",
" Gp(w) = a1Gp—1(w) + a2Gp—a(w)
+a3Gnk (W) + a4Gr-p—1(w) + asGr_g_2(w), for n>k+2.

Proor. It follows by equating the coefficients of 2™ on both sides of

Ga(z,w) Z Gr(w)z" = G1(z,w),

n=0

where G;(z,w), i = 1,2 are given by (3.1). O

An efficient recursive scheme for the evaluation of the p.m.f. of N,, can be obtained
on manipulating over Theorem’s 3.1 outcome. More specifically we have the next.

THEOREM 3.2. The p.m.f. gn(x) of the r.v. N, satisfies the following relations:

gn(z) =0, for <0 or z> [7—;—],

9n(x) =650, for 0<n<k,
g(0) =1-ppiit,  ge(l) =pipli"s ge(2) =0 forz > 2,
gk1(0) =1 — (p1 + popor)PiT ", gk41(1) = (p1 + popor )P,
ge+1(z) =0, forz >2,
In(%) = a19n-1(2) + a2gn-2(z)

+ P [gn-k(2 — 1) = a19n—1—1(z — 1) — G2gnk-2(z — 1)]

~ po1P10P ] Mon-k-1(2) = gn-p_1(z = 1)], for n>k+2.

PRrROOF. The proof may be established by replacing G, (w), m > 0, in Theorem 3.1
with its expansion provided by relation (2.1), and then equating the coefficients of w®
on both sides of the resulting equalities. [J

(b) Li.d. trials
In the case of i.i.d. trials (p1 = po1 = P11 = P,Po = Poo = pro =g and p+q = 1)
the double p.g.f. of N, may be easily deduced from relation (3.1) and it is given by

1 — (p2)*
1~z — w(pz)* + pF(q + wp)2k+l’

(3.2) G(z,w) =

In the following proposition we derive an exact formula of G,,(w) in terms of binomial
coefficients.

PROPOSITION 3.1. The p.g.f. Gn(w) of the r.v. N, is given by

(n/k]u(0) v(0) [n/k]—1u(k) v(k)

Galw)=>_ 3" > 0w - > Y > ks,

=0 r=0 s=max{0,z~7} =0 r=0 s=max{0,z—r}
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where for i =0,k

N rf8+T r n—k(s—l—r)—i—s—i r+s—z, k{s+r)+E—s+i
(@) = (-1) ( T )(x—s>( s+r )q P ’

u(3) = min { [Z—;—;—] n—kz — z} ., (i) = min {a: {”——-’g_—z] - r} .

ProoF. Using relation (3.2) and the multinomial theorem we get

G(z,w) = [1 - (p2) k:] Z Z (m + ny +n3) (wpk)m
n=0ni+ns+ng=n N1, N2, M3

_[_pk(q + wp)]’na Zn1+kn2+(k+1)n3

L COND DD (",f Z;J;:B) (wp®)™

n=0n;+kno+(k+1)nz=n
[—p*(q + wp)|™ 2"

Equating the coefficients of z" on both sides of the above relation we obtain that
the p.g.f. of N, is given by

Grn(w) = po(w) — pFr(w),

where

ny +nz +n3 .
piw) = Z ( n1,N2, N3 ) (wpk)nz[_pk(q +wp)|™, =0k
ni1+kno+(k+1)ng=n—i ’ ’

Next, we observe that

[n/(k+1)] [(n—(k+1)7) /K]
)= 33 (1)f(s+’") ("“’“(3””3)(wp'ﬂf[pk(qu)r
=0 s=0

s+r
[n/(k+1)} [(n—(k+1)r) /K]
_ Z Z (—1)" (s+r) (n—k(s+r)+s>pk(s+r)
r=0 §=0 r s+T
s+r r
. T+S—x, T—8,, T
,,Zzs (x 3 3) ¢

[n/(k+D)] [(n—7)/k]-T s4r

=X 2 2o

r=0 =3
Interchanging the order of summations we get

[n/(k+1)] [(n—7)/k] v(0) [n/k] u(0) ¥(0)

polw)= D 3 X wOwF=3 > > pOw”

r=0 z=0 s=max{0,$-—r} z=0 r=0 s_ma_x{O T— 'r}
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Working as above for p®pr(w) we obtain that

((n—k)/(k+1}] [(n—r—k)/k]—T s4r [n/k]-1u(k) v(k)
Prosw) = ) 2 2 vlet= ) D 3wk
. r=0 s=0 z=0 r=0 s=max{0,z—r}

and this completes the proof of the proposition. 0

A direct inspection in Proposition 3.1 implies the following formula for the p.m.f.
of N,.

PROPOSITION 3.2. The p.m.f. gn(z) of the r.v. N, is given by

u(0) v(0) u(k) v(k) n
W@=3 Y vO-Y > ¥k, o<az<[7]-1L
r=0 s=max{0,z—7} r=0 s=max{0,z—7}
and
u(0) v(0)

W@ =3 > w0, ==[7]

r=0 s=max{0,z—71}
where u(t), v(i) and (i) (¢ = 0,k) are as in Proposition 3.1.

An alternative formula of g,(z) in terms of binomial coefficients can be found in
Godbole (1990), which was his main result and it was derived by combinatorial methods.
Also, efficient recursive schemes for the evaluation of G,,(w) and g, (z) follow immediately
from Theorem 3.1 and Theorem 3.2, respectively, which are simpler compared with
respective recursive schemes obtained by Aki and Hirano (1988).

3.2 At least scheme
Relations (2.3) and (2.4) imply that the double p.g.f. of N, is given by

(1 = p112)Q(2) — w(po2)R(z) — (1 —w)(1 — puz)P(z)
(1~ 2)[(1 - p112)Q(2) — w(pioz)R(2)]

Using relation (2.5) and carrying out some algebra we get

G(z,w) =

1—biz —bo2? — Bz2F + (Bp11 — v — b3) 2P+ + ypy 2P H2

Glz,w) = (L= 2)(1 = b1z — 522 — byoh™0) !

where 8 and +y are as in Subsection 3.1, and
_ — - k-1
b =poo +p11, ba=1-b1, bz=—(1—-w)porpiopy; -

The numerator of G(z,w) may be written as (1 — 2)(1 + bz — B2F — ypy12#+1), and
therefore

— Ak _ k+1
(3.3) G(z,w) = Gi(z,w) 1+byz— Bz° —ypnz

GQ(Z,'UJ) - 1-— blz — b222 — bgzk+1 ’
Using relation (3.3) and the multinomial theorem, we arrive at the following theo-
rem.
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THEOREM 3.3. The p.g.f. Go(w) of the r.v. N, is given by

Gr(w) = po(w) + bapr (w) — Bipr(w) — YP11Pk+1(w),

where

os(w) = Z (nln—*—'rm +n3)bvlz1bgzbgs’ i=0,1,kk+1.
) 1,72, 13
ni+2n2+(k+1)ns=n—i

An expansion of G(w) in terms of binomial coefficients is given in the following
theorem. The proof may be established using the methodology of the proof of Proposi-
tion 3.1.

THEOREM 3.4. The p.g.f. G,(w) of the r.v. N, is given by

[n/{k+1}] u(0) »(0) [(n—1)/(k+1)] u(1) v(1)

Gp(w) = Z ZZ( )1/)(0 w® + Z ZZ(pOI p11) (;) P(Lw”
r=g s=0 r=x s=0
[(n+1)/(k+1)] u(k) v(k) ra1
- Z Z Zplpu ( ) P(k)w®
=0 r=max{0,x—1} s=0
[n/(k+1)]  uw(k+l)  v(k+1) 1
- Z Z Z (Popo1 — P1Poo) PH ( ) Pk + 1)w®,
z=0 r=max{0,z—1} s=0

where fori=0,1,k,k+ 1, we have that u(i) = oy ] v(i) = [P—:f#ﬂ], and
N yrta (ST (n—kr—s—1
v = e (T (TR
(oo + p11)" " EFIT=2=0 (o, — p11)° (porproptT )"

A careful look in Theorem 3.4 reveals the following formula for the p.m.f. of N,,.

THEOREM 3.5. Forz =0,1,...,[2E}], the p.m.f. gn(z) of the r.v. N, is given by

k+1
u(0) ¥(0) u(1) v(1) .
ZZ( >¢(0)+ZZ(P01 —Pn)(x) (1)
r=z s=0 r=x $=0
u(k) v(k)

- > et (TH)uw

r=max{0,5—1} §=0

u{k+1) v(k-+1) (

- Z Z (Popor — P1P00)p11

r=max{0,z—1} s=0

i,

where u(i), v(i) and ¥(i) (i =0,1,k,k+ 1) are as in Theorem 3.4.
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In the following two theorems we present effective recursive schemes for the eval-
uation of the p.g.f. and p.m.f. of N,,. Equating the coefficients of 2™ on both sides
of

[e.¢]
, Ga(z,w) Z Gn(w)z" = G1(z,w),
n=0
where G;(z,w), i = 1,2 are given by (3.3), we obtain the following theorem.

THEOREM 3.6. The p.g.f. of the r.v. N, satisfies the following recursive scheme:

Gn('w) = 1, fDT‘ 0<n< k, Gk(w) =1- ﬁ, Gk“(w) =1- ,3(1 +p00) e )
Gn(w) = bIGn—l (w) + bZGn——2(w) + b3Gn—k:—-1(w): fO’f‘ nz> k+2.

Replacing Gr,(w), m > 0, in Theorem 3.6 with its expansion provided by relation
(2.1), and then equating the coefficients of w® on both sides of the resulting equalities
we obtain the following theorem.

THEOREM 3.7. The p.m.f. gn(x) of the r.v. N, satisfies the following recursive
scheme:

n+1
gn(z) =0, for <0 or z> [k_—}—l}’
gn(z) = b1gn—1(x) + bogn_o(z) — P01p101”f1—1[9n—k—1($) = gn—k-1(z — 1)],
for n>k+2,

with initial conditions for g,(x) for 0 <n <k + 1 as those in Theorem 3.2.

The results of this paragraph may be instantly adjusted (by a proper modification
of the initial distribution of the Markov dependent trials) in order to cover the set-up
for the evolution of the Markov dependent trials used by Hirano and Aki (1993). Also,
the results of this paragraph may be reduced to ones covering the case of i.i.d. trials.

3.3 Overlapping scheme
(a) Markov dependent trials
Relations (2.3) and (2.4) imply that the double p.g.f. of N, is given by

(1 — wp112)Q(2) — wR(z) — (1 — w)P(2)
(1-2)[(1 —wpn2)Q(z) —wR(2)]

Multiplying both numerator and denominator of G(z,w) by (1 — p1;2), using relation
(2.5) and carrying out some algebra, we get

G(z,w) =

1—c1z — 2% — 323 — B2F + (Bp11 — 7 — €a) 2P + ypy 2P T2

G =
(2, w) (1 =2)(1 —c12 — co2? — 323 — ¢4z 1)

?

where 8 and ~y are as in Subsection 3.1, and

c1 = (1 +w)p11 + poo, ¢2 = por — pu1 — wp11(Poo + p11)
ez = wpii(pi1 —po1), ca=—(1- w)pmpmplfflo
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The numerator of G(z,w) may be written as (1—2)[1+(1—¢1)z+cs2? — B2% —ypy1 251,

and therefore

1+(1— 2 _ Bak _ ~py, gkt
(3.4) G(z,w) = + (1 —a)z+cs2” — B2" —ypuz .

1~ c1z — 2% — 328 — ¢p20 1
Using relation (3.4) we arrive at the following recursive scheme which permits the
evaluation of Gy, (w).

THEOREM 3.8. The p.g.f. Go(w) of the r.v. N, satisfies the following recursive
scheme:
Go(w)=1, for 0<n<k, Gglw)=1-5,

Git1(w) =1 = B(1 + poo + wp11) — 7,
Gn(w) = c1Gn-1(w) + c2Gn—2(w) + c3Gp-3(w) + caGpr—g-1(w), for n>k+2.

Theorem 3.8 implies the following recursive scheme satisfied by g,(z).

THEOREM 3.9. The p.m.f. go(z) of the r.v. N, satisfies the following recursive
scheme:
gn(z) =0, for z<0orz>n—k+1, go(z)=208z0, for 0<n<Ek,
g(0) =1—-pipf7?,  ge() =pipfi', gi(z) =0, forz>2,
gk+1(0) =1~ (p1 + popor)Pi ', gk41(1) = (p1p1o + popor)pii
gk+1(2) =p1ofy,  ge4r(x) =0, for z>3,
9n.(2) = (poo + P11)[gn—1(2) — p11gn-2(z — 1)] + (o1 — P11)[gn—2(%) — P11gn—3(z — 1)]
+P119n-1(z — 1) — porp1005y Hgn—k-1(2) — Gn—t—1(z — 1)},
for n>k+2

(b) Li.d. trials
The double p.g.f. of N, follows directly from relation (3.4) and it is given by
1 — wpz — (1 — w)(pz)*
1 — (1 4+ wp)z +wpz? + (1 — w)gpkzk+1’
In the following proposition we give a formula for the p.g.f. of N, in terms of binomial
coefficients. First, we give a lemma which is important for our derivations.

(3.5) G(z,w) =

LEMMA 3.1. For any integers n and m such that n < m it holds that

min{g—n}(—l)s (ms_ s) (Tz:is) =1.

s=0

PRrROOF. Using relation (12.15) on page 65 in Feller (1968), we have that

min{%ﬂ_n}(_l)s m— S m — 28
poard 8 n—s

min{n,m—n}

= o )=(nn)

5=0
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which completes the proof of the lemma. O

PROPOSITION 3.3. The p.g.f. Gn(w) of the r.v. N, is given by

n—k4+1 p(0) min{z,n—kr—z} min{z—s,r}
—(k -
sw= 33 x B () (M o

z=0 7r=0 s=0 y=max{0,h}

- n—k+1p(1) min{z—1,n—kr—z} min{z—s—1,r} r n—1— (k n 1)7‘ — 9 .

-l ) > T T e
r=1 7r=0 y=max{0,h} Y y

-2

=0 r=0 5=0 y=max{0,h+k}

_(n—k (k+ 1)r — ) I

n—k+1 p(k) min{z,n—k(r+1)—z+1} min{z—s,r+1} . (T’ + 1)
p
Y

rZ—85—y

where

W(i) = (=1)*++v (s —:: r) (n — i,:_]j:r — s) I i=0,1 0k,

o] [} r-nel 5 )
p(k)zmin{[’;;ﬂ,{”“”‘";k“]}, h=x—[n—(k+1)r—sl.

PROOF. Using relation (3.5) and the multinomial theorem we obtain that the p.g.f.
Grn(w) of the r.v. N, is given by

Gn(w) = wo(w) — wpp1(2) — (1 — w)pPpr(w),
where for ¢ = 0, 1, k, we have that
n1 + ng + ng o n
- > (™ ) G0 )™ ()1 - T
. 1,M2,N3
ni+2no+(k+1)nz=n—1i

Next, using the identity

s+r+n  min{z—s,r} r n
5(1 —w)™(1 n = \ —1)¥ r—8s—y, T
wa-warwr= Y > o (0) (0 )
z=3 y=max{0,xz—s—n}
we get

G ) uX(O:) u}(_%) n—i'r:——s min{gjs,r} ( ; ) (n — ikfslzry— 23) H(0)w?

r=0s=0 =5 y=max{0,h}

u(1) ¥(1) n—kr—s min{z—s—1,r}
1 (k
Yy () (T E T e

r=0 3=0 z=s+1 yzma,x{ﬂ,h}

u(k) v(k) n—k(r+1)—s+1 min{z—s,r+1}
r+1 n—k—(k+1)r—2s
IR SR SHE (M | G A 02
Y r—s—Yy

r=0 s=0 y=max{0,h+k}
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u(i) = [,’j;f] ) = [” “’i —(kt ”’"} =01k

Interchanging the order of summations we obtain

w9 e = 5TETT I () (o2

where

=0 r=0 y=max{0,h}
n p(1) min{z—-1,n—kr—z} min{z—s-1,r} r _1_ (k + 1)7‘
D3 SEED SRS DA (4 ] (ol P70
z=1r=0 s=0 y=max{0,h} y

n—k+1 p(k) min{z,n—k(r+1)—z2+1} min{z—s,r+1}
1 —k—(k+1)r—
: (17 () o

z=0 r=0 s=0 y=max{0,h+k}
Relation (3.6) implies the existence of &;(w,z) and &(w,z) such that G,(w) can be
written in the form

n—k+1

Z &1(w, x) + Z &a(w, z).

z=n—k+2

But for n—k+2 < z < n we observe that [%Z] = 0, which implies that p(0) = p(1) = 0,
and therefore

> awa- Y P”w“”mm%w}(—lf(n;s) (Zf)

z=n—k+2 z=n—k+2 s=0
n min{z—1,n—xz}
> e () (),
—" 5=0 8 r=s=

Using Lemma 3.1 we get that > .., &(w,z) = 0, which clearly implies that the
upper limits of z in relation (3.6) may be restricted to z < n—k+ 1, and this completes
the proof of the proposition. [1

Proposition 3.3 reveals the following formula for the p.m.f. of N,,.

PROPOSITION 3.4. For 0 <z <n-—k-+1, the p.m.f. g.(x) of the r.v. N, is given

by
p(0) min{z,n—kr—z} min{z—s,r}
r\ (n—(k+1)r—2s
we=> > > (T )

=0 =0 y=max{0,h} y y
p(1) min{z—1,n—kr—z} min{x—s—1,r} r n—1-— (k n 1)7‘ _ 9

-> > 2 |y D Y
=0 s=0 y=max{0,h} y

p(k) min{z,n—k(r+1)—z+1} min{z—s,r+1} pk (T’ n 1>

IR 2

$=0 y=max{0,h+k} y
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n—k—(k+1)r—2s

( T—s—y )¢(k)a
and [n/(k+1)] [((n—k)/(k+1)]

n/{k+ n— -+

F{n—kr\ . n—k(r+1)\ , xer
. gn(0) = Z (1) ( > pkr* Z (__1)7"( fn ))q pk( +l)’
r=0

gn(n—k+1)—

where h, p(i) and (i) (i =0,1,k) are as in Proposition 3.3.

Proor. Using Proposition 3.3 we may easily derive g,(z) for 0 <z <n-—k+1,
by collecting the coefficients of w” in G,(w). For £ =n — k + 1, we observe that

min{n—k+1,k-1} n—s n—9s
_ — pn—k+1 __1\s - -
guln—k+1) = p > (") (LG

5=0

min{n—k,k-1}
sfn—1-—s n—1-—2s n
S g (v )(n_k_s)}ﬂo.

n—k+1

Lemma 3.1 implies that the coefficient of p in the above equality is zero, and this

completes the proof of the proposition. O

Alternative formulae for g,(z) have been obtained by Godbole (1992) and Char-
alambides (1997). In the special case of i.i.d. trials, the results of Theorems 3.8 and 3.9
reduce to the ones derived by Chryssaphinou et al. (1993).

4. Evaluation of moments

Let fin (m) = E[Np(Np — 1) -+ (Ny —m+1)] and i m = E[(N,)™] denote, respec-
tively, the m-th factorial moment and the m-th order moment about zero (m > 1) of the
r.v. Ny, with pi,, [0 = ptn,0 = 1. In this section we establish simple recursive formulae for
the evaluation of i, () and pnm via the p.g.fs derived in Section 3. Also, several new
results regarding the case of i.i.d. trials are also established.

4.1 Non-overlapping scheme
(a) Markov dependent trials
For n > k+ 2 and for any integer m > 1, Theorem 3.1 implies that

GEM(w) = G (W) + 2Gr (w) + phy w6 (w) + mGI (w)
+asG_ (w )+mp1f (porp10 — a1p11)GITR D, (w)
~aapfy[wG 5 (w) +mGT D (w)]
where G&) (w) denotes the s-th order derivative of G, (w) at w. Evaluating also the

m-th order derivative of G,(w), 0 < n < k + 1, on both sides of the initial relations of
Theorem 3.1 and then setting w = 1, we get the following theorem.



612 DEMETRIOS L. ANTZOULAKOS AND STATHIS CHADJICONSTANTINIDIS

THEOREM 4.1. The m-th factorial moment iy [m), m > 1, of the r.v. Ny, satisfies
the following recursive scheme:

Pnm) =0, for 0<n<k,
Hi,f1] = pipii Uk, m) =0, for m>2,
prt1,1) = (P2 ‘*‘POPOI)PIfl_l, Brsim) =0, for m2>2,
M [m] = @1ln—1[m] + @2ln—2,[m] + % (Bt frm] + Mk frmt])
— a1P}1 fn—k—1,{m] + MP51 (P01P10 — 81P11 ) in—k~1,[m—1]
- azplfl(“n—k—2,{m] +Mplp—k—2,jm-1y), for n>k+2.
Let M, (w) be the m.g.f. of the r.v. N,,. Since M,(w) = Gp(e¥), it follows from

Theorem 3.1 that for n > k + 2 and for any m > 1, the m-th order derivative of M, (w)
at w satisfies the recursive relation

Mr(lm)(w) = alM(m) (w) + @M, 2(,w) + ewp Z ( )M,(LTEJ)(U))

—[(1 — €)por1proply ! + ale%u]M,?:’L-I(m

+e*piy (Porpio — a1p11 Z ( )M(mk ) (w)

m
—a2e"pfy Y ( ')M(mk b(w).
=0 \J

Using the above relation and taking also the m-th order derivative of My (w), 0 <
n < k+ 1, on both sides of the initial relations of Theorem 3.1 (with w replaced by e},
we obtain the following theorem.

THEOREM 4.2. The m-th order moment tn m, m > 1, of the r.v. Ny satisfies the
following recursive scheme:

Hnm = 0, for 0<n <k,

k-1 _ k-1
Ukm =D1D71 »  Bk+l,m = (P14 Popo1)Pii »
nm = G1lin—1m + Q2lin—2m — 0105 nk—1,m

+p11 Z ( > [lf'n k,m—j a2/-1'n—k:——2,m—j]

m

_ m
+P’f1 1(17011010 — a1p11) Z ( j ) Hn—k—1,m—j, for n>k+2.
Jj=1

PRrROPOSITION 4.1. The mean w, of the r.v. Ny, satisfies the following recursive
scheme:
n=0, for 0<n<k, u=ppt,
= (1~ poo — p11) (PF7  ten—k1 = pin—1)
+ P¥y pn—k + [P1p10 + o1 + (R — k= Vpouprolpfy !, for n>k+1.
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Proor. Theorem 4.1 (and/or Theorem 4.2) for m = 1 and n > k+ 2, implies that

pin—pin—1 = G2 (tn—2— 1) +0% (tn—k—tn—k—1) 020 (n—k—1—Hn—k-2)+Porpropf] '

from which by setting n = k+ 2,k + 3,..., and then adding all the resulting relations
we get

P = g1 — @2 (ftn—-1 — Hn—k) +p’f1ﬂn—k + azplf1ltn—k—1 +(n—k- 1)Po1ploplff1~

Using the initial conditions p, = 0, for 0 < n < k, ugp = pipiy! and pge1 = (p1 +
popm)p’fl_ ! we easily arrive at the required recursion by observing that it is also valid
forn=k+1.0

(b) Lid. trials

Theorems 4.1 and 4.2 provide recursive schemes for the evaluation of the m-th
factorial and the m-th order moments of the r.v. N,, by replacing p;, po1 and p1; by p.
Proposition 4.1 reduces to the following recursive scheme regarding the mean u, of the
rv. N,

pn =0, for 0<n<k, i = D[ttt + 1 + (n — k)q], for n >k,

which easily leads to the exact relation for p,, given in Proposition 2.4 by Aki and
Hirano (1988).
In the following theorem we derive an exact formula for py, ().

THEOREM 4.3. The m-th factorial moment pi, (m), m > 1, of the r.v. N, is given

by
Pnjm) =0, for 0<n<km
min{n—km,m} m
Bn,[m) = m|pkm Z (_1)j (] )pjd(n —km — ja ’ITL), fOT‘ n > kma
=0
where

[n/k] . .
m+i—1 m+n—ki ;

=0

Proor. Let

,wm

fu(w) = Z :U/n,[m]m and  f(z,w) = z fr(w)2".

m=0 n=0

Since f,(w) = Gnp(w + 1), it follows that f(z,w) = G(z,w+ 1), and thus from relation
(3.2) we get

_ 1— pkzk
T&w) = G T =) — wl = p)pa*
B __1_ ' (1- pz)pkz’“w
T 1l-z [l + (1 —2)(1 — pk2k) —w(l -pz)p’“z’“]
_ 1 + (1 — pz)p*zFw [ ¢ — pz)pFzFw }_
1-z (1-2)%(1 - pkek) (1 - 2)(1L - pkz¥)
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Expanding the RHS of the above equality in powers of w, we get
1 (1-pz - (1-pz " m+1
f(z’w)_l +(1——z)21—pkz’“)z[(l—z(l—pz’“) v

_ (1 _ pz km km
=127 Z (- z)m+1(1 pkzk)mwm'

Consider now the following generating function of the moments iy, ()

Ow™

> n 0"G(z,w
Mim)(2) = Y pn 2" = [—( )] :
— w=1

‘We have that

f(Z,’U) ZZMn[m Z “ZMm]

n=0m=0

and hence the aforementioned expansion of f(z,w) yields that

m'(l _ pz)mpkmzkm

_ -1 —
Migj(2z) = (1 - 2) and  Mpy(z) = = )i (i = phak)m’ m > 1.
Since
[o,0] . oS .
o —(mH1) _ m+i\ ; ok ky—m _ m+i—1Y\ g g
(1-2) ;(Z)z and (1 -p"2%) ;( ; P,
it is true that -
(1 — 2)~(m+D (1 _ phky—m — Z d(n,m)z".
n=0
Therefore, the expression for M|, (2), m > 1, becomes
Mimy(2) = mlpF™ Z Z( 1)) ( > pid(n, m)z"Hemts
=0 n=0
= m!pkmz Z (—1) (T]n) pld(n — km — j,m)z™.

§=0 n=km+j

The proof of the theorem then follows by collecting the coefficient of 2™ in the RHS of
the last equality. [

Setting d(n,m) = 0 for all n < 0, we have that Theorem 4.3 provides the following
exact formula for the mean u,, n > 0,

((n—k)/K] [(n—-k—-1)/k]

pa=0"¢ Y In+1-kG+1DY - D [n-k(G+ 1)
Jj=0 j=0
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4.2 At least scheme

(a) Markov dependent trials

Using Theorem 3.6 in order to evaluate the m-th order derivative of G, (w) at w = 1,
we led to the following theorem.

1

THEOREM 4.4. The m-th factorial moment pip, [m), ™ > 1, of the r.v. N, satisfies
the following recursive scheme:

Pnjm] =0, for 0<n <k,

k1] = pipirt, Bk [m) =0, for m >2,

Het1,[1] = (m +popo1)plff1, Pry1jm) =0, for m2>2,

P m] = b1fn—1,jm] + D2tbn—2,(m] + MPOI1DPIODY] *Hn—k-1,fm—1], fOr n>k+2.

Now, let M, (w) be the m.g.f of the r.v. N,,. Usiﬁg Theorem 3.6 along with the fact
that M, (w) = G,(e?), and evaluating the m-th order derivative of M, (w) at w = 0 we
obtain the following theorem.

THEOREM 4.5. The m-th order moment tin,m, M > 1, of the r.v. N, satisfies the
following recursive scheme:

Mn,m=0, for 0<n<k,
N _ k-1
Bkym = P1P11 > Bk+lm = (P11 + Popo1)Piy

m

- m
Bnm = b1bn—1,m + babin—2,m + Po1Props T D <j ) Pn—k-1,m-j,  for m2k+2.
. =1

PRroproSITION 4.2. The mean uy, of the r.v. N, is given by

I’LTL D) Jai U <— ”’<‘;)
p +

1 - (p1 — por)™ ¥
P1o +Po1 . ( )

fin = pi ! {Pl(Pu — po)"

+(£)i%1_)5 [(n —k - 1) - ('n - k)(pu - pm) + (pu - pm)n—k] } ’
for n>k.

ProoF. Using Theorem 4.4 (and/or Theorem 4.5) and working as in the proof of
Proposition 4.1 we obtain that

(4.1) pn=0, for 0<n<k, pm=ppiit,
' pin = —bapin_1 + P¥T [p1p1o + po1 + (n — k — L)po1pro], for n>k+1.
It can be shown by induction that for n > &k + 1 it is true that

i (pip1o + Por)
1 — (p11 — po1)

n—k]

Un = (pu - pm)n_kll»k + [1 - (pu — po1)

n—k—2

+p§7 ' po1p10 Z (n—k—1-i)(pu — por)*.
i=0
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Now, using the identity

L .y xi_(r+1)f(r+2)m+mr+2
g( +1)z* = ey ,

the proof of the proposition may be easily established. [

A similar formula for u, has been obtained by Koutras (1997a). He also derived a
recurrence relation for the evaluation of u, but the one given above in (4.1) is simpler.
(b) Lid. trials
Proposition 4.2 reduces to the following exact formula for the mean p, of the r.v.
Nn
pn =0, for 0<n<k, pu,=p"[l+(n-k)g|, forn>k,

which has also been obtained by Goldstein (1990) (see, also Hirano and Aki (1993) and

Koutras (1997a)).
In the following proposition we obtain a simple exact formula for the evaluation of

Haq,[m]-

PROPOSITION 4.3. The m-th factorial moment piy, [m), m > 1, of the r.v. Ny is

given by
" — mlgm=1pkm n—km+1\ p n —km
m{m] ) m m '

ProOF. The double p.g.f. G(z,w) of the r.v. N, follows from relation (3.3), and
it is given by
1-(1—w)(pz)
— z+ (1 — w)gpkzrtl’

G(z,w) = 1

Expanding G(z,w) in powers of z we obtain that

[/ (k-+1)] ~
@ e = 3 @ (") w-y
r=0

[((n—k)/(k+1)]

+ Y Pt (n ks 1)) (w— 1)+

r
r=0

The proof of the proposition then follows by evaluating the m-th order derivative
of Gp(w) atw=1.0

Using relation (4.2) along with the fact that M, (w) = G,(e"), and evaluating the
m-th order derivative of M,(w) at w = 0, we obtain the following proposition.

PROPOSITION 4.4. The m-th order moment pin m, m > 1, of the r.v. Ny is given

by
:m el kr (M1 n—kr+1\ (n—kr
Hn,m ;r.q p (r—l){( r p r .
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4.3 Owverlapping scheme

(a) Markov dependent trials

Using Theorem 3.8, and evaluating the m-th order derivative of G, (w) at w = 1,
we obtain the following theorem.

1

THEOREM 4.6. The m-th factorial moment pi, [m), m > 1, of the r.v. N, satisfies
the following recursive scheme:

Bnm} =0, for 0<n< k,

P[] = PIPT Y, Hkefm) =0, for m>2,

prsrpy = [Pr(L+p11) + poporlpfT Y, tksnge = 2P1PF0,  Mkaim =0, form >3,

Pnfm) = (2P11 + D00)ln—1,jm] + [Po1 — P11(1 + Poo + P11)|in—2,im]
+ p11(P11 = Po1)ln—3,[m] + MP11#n—-1,fm—1] — MP11{Po0 + P11)ln—2,im—1]
+mp11 (P11 — Po1)fn—3,fm—1) + mpo1p10p’f1_lﬂn-k—1,{m—1}, for n>k+2.

The m-th order moments fip, m, of the r.v. N, can be obtained on manipulating over
Theorem’s 3.8 outcome. More specifically we have the next.

THEOREM 4.7. The m-th order moment pinm, m > 1, of the r.v. N, satisfies the
following recursive scheme:

Unm =0, for 0<n<k,
Pk,m = ppfTY, Mksnm = [P1(P1o + 2™p11) + popor 1P%T Y,

m
m —
Hnm = P11 E ( j > [un—1,m—j - (Poo +p11),un—2,m—j +p01p10p]f1 2Nn—k—1,m—j]
j=1 .

m
m
+ p11(poo + p11) E ( j ) Prn—3,m—j + (211 + Poo)tin—1,m
=0

+ [poo — P11(1 + poo + p11)|kn—2m, for n>k+2.

Using Theorem 4.6 (and/or Theorem 4.7) and working as in the proof of Proposi-
tion 4.1 we obtain the following Proposition.

PROPOSITION 4.5. The mean u, of the r.v. N, satisfies the following recursive
scheme

pn =0, for 0<n<k, ﬂk:plpllci—la
bn = (2P11 — Po1)n—1 + P11(Po1 — P11)ln—2
+ 057 [p1p1o + Por + (0 — k — Vpor1pio],  for n>k+1.

We mention that Koutras (1997a) obtained an exact formula for the evaluation of
HKn-

(b) Li.d. trials

Theorems 4.6 and 4.7 provide recursive schemes for the evaluation of the m-th
factorial and the m-th order moments of the r.v. N, by replacing pi,po1,p11 by p.
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Proposition 4.5 reduces to the following recursive scheme for the evaluation of the mean
thn, Of the r.v. N,

pn =0, for 0<n<k, pp=ppn-+p*[l+(n—k)q, forn>k.

Furthermore, following the methodology of the proof of Theorem 4.3 we may obtain
an exact formula for the evaluation of puy, [,}, which is

n—ki+l , . S
j—2 n—kit+i—j7+1 it i
ﬂn,[m]_mlz(z_J S (I (rE I g,

j=m
m>1, n>k,

where s = min{m, [(n — m + 1)/k]}. An explicit proof of the above result may be found
in Charalambides (1997).
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