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Abstract. Abstract. In this article we consider infinite sequences of Bernoulli tri-
als and study the exact and asymptotic distribution of the number of failures and
the number of successes observed before the r-th appearance of a pair of successes
separated by a pre-specified number of failures. Several formulae are provided for the
_probability mass function, probability generating function and moments of the dis-
tribution along with some asymptotic results and a Poisson limit theorem. A number
of interesting applications in various areas of applied science are also discussed.
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1. Introduction

The motivation of the present paper stems from several areas of applied science
such as actuarial science, educational psychology, quality control, engineering etc. Many
problems encountered in these areas can be described through dichotomous (binary)
variables X;, Xs, ... taking on the values 1 (success, S) or 0 (failure,F’) and the interest
focuses on random variables related to the time a predetermined criterion is satisfied
(stopping rule).

As an example, let us consider the following model which is of special importance for
educational transfer and learning studies. Assume that a subject is asked to try finishing
several tasks one after the other and each time he manages to complete successfully two
tasks separated by at most two unsuccessful trials (i.e. he achieves an outcome of the
form SS, SFS or SFF'S) he gains one point. The test terminates when the total number
of points collected by the subject reaches a predetermined level ». Two variables that are
significant in such a model are the number of successfully and unsuccessfully completed
tasks by the end of the test. Thus, if we denote these variables by Y (1), Y respectively
and assume that the subject is awarded a mark a, —b for a successful, unsuccessful task
the total score achieved at the time of termination of the test equals aY'(!) 4- (—-b)Y(©® .

The aforementioned model can be accommodated in the following general set-up
which will be the subject of this paper. Let X, Xo... be an infinite sequence of binary
outcomes (success, S-failure, F') and denote by T}, the waiting time for the r-th occur-
rence of two successes which lie at most k places apart from each other, i.e. they are
separated by at most k — 2 failures. Clearly, T} 1 counts the number of trials required to
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observe for the first time one of the patterns

k—2
pp———
(1.1) S8,SFS,...,SF...FS;

these patterns will be refered hereafter as ”detection patterns”. It should be stressed
that the enumeration scheme employed here is the non-overlapping one, i.e. once a de-
tection pattern is registered the sequence of outcomes ending up with this pattern is
disregarded and we start our search for a new pattern from scratch. In the present
paper we shall proceed to a systematic study of the number Y( ) of failures and Yk(lr)
of successes appearing among X3, X,..., X7, . To make the above definitions trans-
parent to the reader we mention by way of example that, for the sequence of outcomes
SFFFSFSSSFFSFES we have

T1=7, Y =4, Yi)=3, T3,2 =9, Va9 =4, i} =
T3a=14, Y9=7 Yviy=

For r =1, k > 2 the random variable T} ; is a special case of a scan statistic, see
e.g. Glaz (1983, 1989), Glaz and Naus (1991), Greenberg (1970), Saperstein (1973) and
Chen and Glaz (1997) for a review. For r > 1, k > 2, since we are looking at multiple
occurrences of a scan statistic we could make use of the term multiple scan statistic.

Note that, for £ = 2 we are in fact enumerating success runs of length k& = 2 and
T3, 1o, follow a geometric distribution of order k and a negative binomial distribu-
tion of order k respectively; the interested reader may consult the upcoming book by
Balakrishnan and Koutras (2000) for a lucid and elaborate account of developments
relating to waiting times for runs.

The distribution of the number of failures and successes until the first occurrence of a
success run of length & was recently studied by Aki and Hirano (1994) and Balakrishnan
(1997). Similar problems have been addressed by Antzoulakos and Philippou (1996) for
the more general case where the stopping rule is associated with the r-th occurrence of
success runs (non-overlapping and overlapping schemes).

In the present paper we conduct a systematic study of the distribution of numbers
of successes and failures until the r-th occurrence of a detection pattern. Section 2
introduces the necessary definitions and notations. In Section 3 we consider the case
r = 1 (first appearance of a detection pattern) and establish recurrence relations and
non-recursive formulae for the probability mass function of the number of successes and
failures until T . Recursive schemes for the moments and explicit expressions for the
probability generating functions are also provided. Section 4 deals with the general case
(r > 1) and presents recurrence schemes and alternative expressions through appropri-
ately defined sequences of numbers and polynomials. In Section 5 we accomplish several
asymptotic results, whereas Section 6 discusses in brief several interesting applications
in actuarial science, reliability engineering and sampling inspection.

2. Definitions and notations
Let Xi, Xa,... be a sequence of (independent and identical) Bernoulli trials with

success probabilities p = Pr(X; = 1), and failure probabilities ¢ = Pr(X; = 0) (p+¢q =
,0<p<1). Ifk>2,r > 1 are two positive integers, we shall denote by Ty the
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waiting time for the r-th occurrence of “two successes which lie at most k places apart”,

(i.e. two successes separated by at most k — 2 failures) by Yk(o) the number of failures

among X, Xo,..., X7, ., and Yk(’lr) the number of successes among X1, Xo,..., X1, ,.
For a € {0,1} , let

(a) (m,n) = Pr(Yk(j,) =m, Tk, = n), (a)(z t) = Z Z @) (1, n)z™"
m=0n=0

denote the joint probability mass function and the joint probability generating function
of (Y,S),Tk +); moreover, let

ginm) = Pr(Yyy =m),  G{)(2) = Z g m)="
be the marginal probability mass function and proba,blhty generatmg function of

v,
When no confusion is likely to arise we shall suppress the indices k, r using T, Y (@),
F@), 3@, (@, G instead of Tiy, Y5, fi7, @4, 95, G and T;,, V', f,, @V,

§“),_G1(ra) instead of Tk, Y, ,c(‘:), f,ga,?, <I>§ca7),, g,(caz, Gg:i, respectively.

3. Distributions of the numbers of successes and failures until the first appearance of a
detection pattern

3.1 Number of failures

In this subsection we study the number Y(©) of failures until the first appearance
of a detection pattern. The exact distribution of Y(?) is examined in some detail and
several interesting properties of it are given.

Let us start with the development of an effective recursive scheme for the evaluation
of the joint probability mass function of (Y, T) .

THEOREM 3.1. The joint probability mass function f@(m,n) = Pr(Y©® =m,T =
n) of the (bivariate) random variable (Y(©),T), satisfies the recurrence relation

(3.1) fOm,n) =q¢fOm-1,n-1)+pd fOm—k+1,n—k), n>k,
m>k-1

with initial conditions

(3.2) FO(m,n) = {(”—1)1’2‘1"” 2sn<k m=n-2

0, otherwise.

ProOOF. The derivation of the initial condition is straightforward. Assume next
that n > k, m > k — 1. Manifestly

fOm,n) =Pr(Y®O =m,T=n,X; =0) + Pr(Y®) =m, T =n, X; = 1)
with the first term in the RHS taking on the form

Pr(Y® =m,T=n,X, =0) = Pr(X; =0)Pr(Y® =m, T =n| X; =0)
= qfO(m—-1,n-1).
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In order to evaluate the second summand of the RHS observe that the event {Y(0) =
m,T = n,X1 = 1} can be alternatively expressed as {Y(® = m,T = n} N A , where
A={X;=1and X; =0foralli=2,3,...,k}, and therefore

Pr(YO =m,T=n,X; =1) = Pr(A) Pr(Y® =m, T =n| 4)
=pg" 1 fO(m - k+1,n-k).

In the special case k = 2, formulae (3.1) and (3.2) reduce to
fO(m,n) =gfOm—~1,n 1) +pgfOm—-1,n-2), n>2 m21,

with initial conditions

2
(0) _Jp, n=2,m=0
F(m,n) { 0, otherwise ’

These are in concordance with a special case of formula (2.1) in Aki and Hirano (1994).
The evaluation of the joint probability generating function of (Y{%, T) can be easily
established by exploiting Theorem 3.1. More specifically, we have the next.

THEOREM 3.2. The joint probability generating function of (Y(O),T)

00 (z,1) = f: if(o)(m, n)z"mt"

m=0n=0
is given by
2t2 A(z2t)
. 3O (5, ¢) = P <1 <
(33) ()= =S, <L <1
where

. .Tk 1
Alz) = Z(qm Il )

1—qzx

ProoF. For 2 <n <k, m=mn— 2, the initial condition (3.2) is equivalent to
(3.4) FO(m,n) = ¢fO(m —1,n - 1) + p’q™
Writing &) (z,t) as
oo k 00 oo
2Oz, 1) =" Y fO>m,n)zmtm+ > > FO(m,n)2me
m=0n=2 m=0n=k+1
and replacing f(®) (m,n) by the aid of (3.4) and (3.1) respectively, we deduce

k k
3O (2,t) = Z afOn —3,n—1)z""4" + 2:172152(qzt)““2

00 0 00 00
+ > Y ¢fOm-1,n-12""+pg*t > Y fOm—k41,n—k)z™
m=k—1n=k+1 m=k—1 n=k+1
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Observe next that

k o [e5)
Z fOn—-3,n-1)2""%" + Z Z fO@m —1,n-1)zm"
n=2 m=k—1n=k+1
>0 o0
= Z Zf(o)(m —1,n—1)2"t"
m=1n=2

and substitute in the previous expression to get
3O (2,1) = p? 2 A(2t) + qzt®O (2, 1) + pgF12F PO (2, 1).
This completes the proof.

It is worth mentioning that the computation of @(0)(2, t) can also be accomplished
by direct generating function arguments. To this end, we observe first that a typical
sequence of outcomes ending up with the first occurrence of a detection pattern is given
by

FF..FSF...FS..SF..FSF...FS.
L L
>0 times  2k—1 >k—1 <k-2

J/

1-2 times,!1>2
i>0 times
- . * .
Clearly, the contribution of FF...F S is

A
zzztz-l—l p
qu 1— gzt gzt

i<k—2

N
whereas the contribution of the last part F'...F S is

k—2 k-2
Z pgtZtt = pt Z(qzt)i = ptA(zt).
i=0 i=0

i>k—1
—— .
Each of the  — 2 terms F'... F'S contributes to the typical sequence by

k- 1zk—1tk

0o
ztt+1 = pt t pq —_—
> it =g S (@ = P

i=k—1 i=k—1
and the overall contribution of the sequence to the probability generating function is

computed as
t pgt—1 k1R -2
tA(zt).
1—qzt( 1—gqzt ) ptA(zt)

Summing up the above expression for all possible values of [, i.e. for [ = 2,3,..., we
obtain the probability generating function of (Y, T) as

3O (5, 1) = PAG) i (qu—l zk-ltk>z—z

1—qzt e 1—qzt
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which reestablishes formula (3.3). The direct algebraic method used here was first sug-
gested by Balakrishnan (1997), (see also Koutras and Balakrishnan (1999)), who ex-
ploited it to establish joint generating functions for run-related problems. It is interest-
ing to note that, after some trivial modifications in the arguments presented above, the
" direct algebraic method could be used to capture the respective generating functions for
dependent sequences of binary outcomes, e.g. for Markov dependent trials or for binary
sequences of order k (c.f. Aki (1985)). _
Setting ¢t = 1 in (3.3) we may easily gain the probability generating function of Y(%
as described in the next corollary.

COROLLARY 3.1. The probability generating function G (z2) of YO is given by
P*A(2)

. GO(z) = <1.
(35) () = o st
For the special case k = 2, (3.3) and (3.5) reduce to
2t2 p2
3O )=—-P"  gOy=— P
(1) 1 — gzt — pgat?’ (2) 1-(1-p?)z

respectively (compare with Proposition 2.1 and Corollary 2.1 in Aki and Hirano (1994)).
From the form of the probability generating function G(© (2) it is clear that Y(®)
follows a geometric distribution with parameter p?.
The probability generating function of the random variable T" can be easily confered
from expression (3.3) by setting . This yields the formula

PP A(1)
—qt — qu—ltk’

o0
> Pr(T =n)t" = - [t <1
=0

which coincides with the one established by Koutras (1996) and Leslie (1967).

The next corollary provides an efficient recursive scheme for the evaluation of the
probability mass function g(® (m) of V(9. Its proof is easily carried out by multiplying
both sides of (3.5) by 1 — gz — pg*~'2*~1 and picking up the coefficients of 2™ in the
resulting power series.

COROLLARY 3.2. The probability mass function ¢©(m) = Pr(Y(® = m) of YO
_salisfies the recurrence relations

© ¢y — | (m+1)p?g™, if 0<m<k-2
(36) g7 (m) {qg(o)(m——1)+qu“lg(°)(m—-k+1), i om koL

Corollary 3.2 can be used to prove that the distribution of Y9 is unimodal. For
1 <m < k—2, we have g(®(m) = (m + 1)p?>¢™ and therefore

§9m)  (m+1)q
gO(m-1) m

which ascertains that

gOm) > gOm—-1) for m< g—, 9Om) < gm—-1) for m>

p

B I
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For m > k — 1, it is not difficult to verify that ¢ (m — 1) > ¢*1¢g©(m — k + 1) and
since g0 (m) — g (m — 1) = p[gF~ g (m — k + 1) — g(O (m — 1)] we may state that

dOm) < gO(m—-1) forall m>k—1.

The aforementioned inequalities guarantee that the distribution of Y© is unimodal, at-
taining its maximum value for mo = min{k—2, [¢/p|} +1 . Moreover, using Corollary 3.2
for k > 3 we conclude that

4 2m 1< <k-—3
(g (m)* = g (m — 1)g(m +1) = {p D1 4 g(k~2), m= k2

therefore g(°) (m) satisfies the strong unimodality condition (characterization) of Keilson
and Gerber (1971)
GO m))? 2 g (m —1)g O (m + 1)

for the range 1 < m < k — 2, k > 3. However, for m = k — 1, the inequality is reversed
and thus the distribution of Y'(?) is not strongly unimodal, for k£ > 3 ; as a consequence,
its convolution with other unimodal distributions is not necessarily unimodal. It goes
without saying that for k = 2 the distribution of Y9 is strongly unimodal (in this case,
the last inequality holds true as an equality). This is not surprising since in this special
case, the distribution of Y(© is an (ordinary) geometric distribution.

Let us now proceed to the development of non-recursive formulae for the probability
mass function g{®)(m) . The following theorem provides an exact formula for ¢(® (m) in
terms of binomial coefficients.

THEOREM 3.3. The probability mass function of Y9 is given by

min{k—2 m}

37)  ¢O(m)=p’q" Z Z( _Z—m(k 2)>p, m>0, k>2.

Proor. For |2/ <1,0<qg< 1, k>2wehave |gz + pg®* 1251 < g+ pgF~! < 1,
and expanding G(%(z) of (3.5) in a geometric series we may write

o0
GO(z) = p?A(2) Y (g2 +pgF~ 21w
y=0
Recalling the binomial formula we get
GO = Z<qz)z S5 (V) sty
y=05=0

and the result follows immediately by straightforward algebraic manipulation.

In the next corollary, formula (3.7) is further simplified by replacing the double
summation involved therein by a single sum.
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COROLLARY 3.3. The probability mass function of Y© can be written as

09 o0 tgn 3 g { (MDY (oDl

. =0
m > 0; k>2

where u(z,m) = min{min(k - 2,m),m — z(k - 1)}, z > 0.

PrOOF. Interchanging the order of summation in (3.7) we get

0 - 3 S5 {(m D)

=0

and the desired result follows immediately by making use of the well known combinatorial

identity
i a—i\ f(a+1 _(a—n
‘ z )] \z+1 z+1/)"
=0
Note, that for 0 < m < k — 2, the above formula leads to (c.f. Corollary 3.2)

g9 (m) = p’q™(w(0,m) + 1) = (m + 1)p*g™

In the sequel we turn our attention to the problem of evaluating the moments of
Y(©). To begin with, let us write down two expressions for the mean and variance of Y@,
which follow immediately from Corollary 3.1 by considering the first two derivatives of
GO(z)at z=1.

COROLLARY 3.4. The mean and variance of Y'(©) are given by

[(2k — 3)p + 2]
P2(1 — gF-1)2

q2—¢" 1)

p(l— g~y

p=E[Y®O®] = 0?2 = Var[Y ] =

Since the evaluation of higher order moments of Y(?) via the derivatives of G(9(z)
at z = 1 becomes rather cumbersome, we shall proceed to the development of effectlve
recursive schemes for both factorial moments and moments about zero.

THEOREM 3.4. The s-th (descending) factorial moments of the random variable
YO namely

poy = EYOXY©® 1) . (v® —541)], s>1 poy =1

satisfy the recurrence relation
)

W) = ‘(_“17'“17{ *2 Do d +sqll + (b~ Dpa"Jugs)

i=s
min{s,k—1}

+ ; (j)(k—l)a)ﬂ(s—i)}a

where (a)s) = a(a—1)---(a—s+1), (a)) = 1 (Convention: Z?:a f(i) =0 for b < a).
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Proor. Differentiating the equality (which results immediately from (3.5))
GO(2) = p®A(2) + ¢zG O (2) + pg* 1 2F1GO ()
s-times and applying Leibnitz’s formula, we obtain

&*(G9(2)) - pEAE) | ‘IZ (8> Pz d*I(GO()

H

dzs dz : dzi  dz*d
g=0
il oo J(G“’) (2) _ ds ’>
k 1 2
5 ()57 SR
j= k() i==s
45 (GO (z 1 (GO (2 -
i [z (dzs( 8 +s d(zs 1( ))] +pe”
L (GO () ¢#(GOR)
N 1 (G (2) -0\ &)
{Z dz® + S(k 1) dzs— —1
+min{sz,:k—1} s dj(zk~1) . dS—j(G(O)(z))
2 \j) ded dze=i |

The proof is now easily concluded by setting 2 = 1 and taking into account that

o[£

It is well known that the factorial moments of a random variable can be expressed
in terms of its moments about 0 and vice versa as (see e.g. Johnson et al. (1992))

(3.9) pay =800, p=_ 86 j)uy)
j=0

=0

where s(i, j) and S(i, j) are the Stirling numbers of the first and second kind respectively.
Consequently the evaluation of the s-th order moments about zero of Y{(® could be
performed by a combined use of Theorem 3.4 and the second of the above identities.
An alternative scheme is offered by the next theorem which establishes direct recurrence
relations for p, s =1,2,....

THEOREM 3.5. The s-th order moments about zero of YO
we=E[(Y®)], s>0

satisfy the recurrence relation

T m{ QstqmeqZ( ) 1+pq’“‘2(k—1)s"ilﬂé}, s> 1.
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PROOF. Note first that (3.6) can be restated as

0 for m<0
g(O)(m) ={ qgO(m — 1) + p?¢™ for 0<m<k-2
a9 O(m —1) +pg*gO(m -k +1) for m>k—1

3

and implug it in the obvious formula

k-2 00
U= m¢O(m)+ Y m°g®O(m)
m=1 ) m=k-1

to gain the expression

k—2 o0 oo
pe=0" Yy mq"+q) mgO(m—-1)+p" Y m*gO(m—k+1)
m=1 m=1 m=k—1

Taking into account that

i(me 1)°%9'9(m) = i ZS: (f) mig©(m) = ZSI (f) pi,  and

m=0 m=01=0 =0

> (m+ k= 16 (m) = i }: (5) mte—1)"="gO m) = Z GICE ™
m=0 m=0 i=0 i

we may write
k-2 s—1 s s—1 s ‘
po=p"Y mq +q) (Z ) i+ oY (2) (k= 1)°7'uf + (g + pd* )it
m=1 i=0 i=0

and the desired result is easily deduced by solving the last formula with respect to p.

Closing this subsection, we shall discuss in brief the problem of estimating the
unknown parameter p. More precisely, we shall examine how the moment estimator and
the maximum likelihood estimator (MLE) of p can be computed.

We shall prove first that the mean of Y{? is a monotonically decreasing function in
p. To this end write = u(q) = E[Y®] as (c.f. Corollary 3.4)

g(2—¢* 1)

MO = =)

and observe that
du(q) hi(q)

dg ~ (1- (- g~ 1)
where hi(q) =2+ (k — 4)¢* ! — (k — 1)g* + ¢**-1), Since

hi(q) > 2+ (k—4)¢* 1 — (k- 1)g" 1 + P2*D = (¢F 1 —1)(¢*1 -2) >0

(for 0 < ¢ < 1, k > 1) it follows that p(q) is monotonically increasing in q. Therefore,
E[Y©)] is a monotonically decreasing function of p, with

lim EY @] =+c0 and lim E[Y©®]=0.

p—0 p—1
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Let now YI(O), Y2(O),. . .,Y,S,O) be a random sample from the distribution of Y(©® .
Then

1 N
17(0) — N Z}{L(O) >0
i=1

and the equation x(q) = Y(® will have a unique admissible root, which is the moment
estimator p of p.

Regarding the MLE of p, the loglikelihood function, for a realization y§°) , yg)), ce o yg,))
of the random sample, can be easily evaluated through Corollary 3.3. Indeed, on intro-
ducing the notation

o m) = (m —z(k —2) + 1) B (m—x(k —2) —u(m,m)) ,
z+1 T+1

the loglikelihood function will be given by

N N W? /(k-1)]
0 —
InL(p) = > (g ")) =2NInp+ Ng@In(1-p)+ > | Y pa(z,y”)
i=1 =1 =0

and the computation of its first and second derivatives (with respect to p) is straight-
forward. In general, no explicit analytic solution for the MLE equation d1n L(p)/dp = 0
can be computed and the calculation of the MLE of p has to be done numerically. The
details are left to the reader.

It is worth mentioning that Corollary 3.2 offers an efficient scheme for computing
the probability mass function ¢(¥’(m) and its derivatives with respect to p (direct dif-
ferentiation on (3.6) will initiate computationally powerful recursive schemes for them
as well). Therefore one could resort to them and solve the MLE equation by the aid of
an iterative algorithm (e.g. Newton-Raphson) instead of working with Corollary 3.3 as
described earlier.

3.2 Number of successes

Here, we study the distribution of the number Y1) of successes until the first oc-
currence of a detection pattern.

As in Subsection 3.1, our analysis commences with an effective recursive scheme for
the evaluation of the joint probability distribution function of (Y1), T).

THEOREM 3.6. The joint probability mass function f0) (m,n) = Pr(YV) = m, T =
n) of (Y, T), satisfies the following recurrence relation

fO(m,n) =gfD(m,n-1)+pF fOm—-1,n-k), n>k m>1
with initial conditions

@) _fn-1)pmg" 2, 2<n<k, m=2
fm;m) {0, otherwise.
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PROOF. The derivation of the initial conditions is straightforward. Assume now
that n > k, m > 1. Following an exact parallel of the arguments employed in the proof
of Theorem 3.1, we write f()(m,n) as :

fOm,n) =Pr(YD =m,T=n,X; =0)+Pr(YV =m,T=n, X; = 1)

and use once more the event A = {X; =1 and X; =0 for all ¢ = 2,3,...,k} to capture
the expressions

Pr(Y) =m,T=n,X; =0) =Pr(X; = 0) Pr(YV =m, T =n | X; = 0)

= q.f(l)(man - 1)a
Pr(Y®) =m, T =n,X; =1) = Pr(4) Pr(YD) =m, T = n | A)
=pg*  fD(m—1,n - k).

This completes the proof.

The joint probability generating function of (Y1), T") can now be easily calculated
by the aid of Theorem 3.6. This is described in the next theorem.

THEOREM 3.7. The joint probability generating function

20z = 33 £, n)min

m=0n=0

of YU, T) is given by

1 _ (p=t)®At)
W (z,1) = ot —paF o 2| <1, [t <1

Proor. By virtue of Theorem 3.6 we may write

W (z,t) = Zf(l)(2 n)2%t™ + q Z Z fO(m,n— 1)z

m=1n=k+1
qu"l Z Z f(l)(m —1,n—k)z™t".
m=1 n=k+1

Observe next that, for 2 <n <k, m =2, the initial conditions of Theorem 3.6 can be
alternatively expressed as f() = (m,n) = ¢fM(m,n — 1) + p™¢"~2 and therefore the
first summand of the RHS of ®(1)(2,t) reads

Zf(l)(Q TL 224 _qz Zf(l)(m n— 1 mtn+Zp2qn 2,24n
m=1n=2

It is now immediate that ®(*)(z,t) takes on the form

®W(z,1) = (pat) z:(qt)1 +4q Z Zf(l)(m n—1)zm"

m=1n=2

pg*~! Z Z FP(m—1,n - k)2,

m=1 n=k+1
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which yields
k-2

oM (2,1) = (pzt)? Y _(gt)" + qt®M (2, 8) + pg* 2" 0 M (2, 1)
=2

and the proof is completed by solving the last equation in terms of <I>(1)(z, t) .

It goes without saying that, a direct algebraic proof similar to the one presented
after Theorem 3.2, can be used here as well to accomplish the outcome of Theorem 3.7.
The details are left to the reader.

The next corollary is an immediate by-product of Theorem 3.7.

COROLLARY 3.5. The probability generating function GV (z) of YU | 4s given by

21— g

G(I)(z) = 1z

, |z| < 1.

Corollary 3.5 indicates that Y1) follows a geometric distribution with parameter
1 — ¢*~! shifted to the support {2,3,4,...} . Due to this we shall not proceed to a
detailed examination of the distribution of Y1) as we did for Y'(©).

For the special case k = 2 , Theorem 3.7 and Corollary 3.5 yield

(pZt)2 G(l)(z) - pz2 — p(l — pz)z2
1

oW (5, f) = — PZ° .
(z,%) 1—gt(1+ pzt)’ —qz 1—2z+pgz?

Since for this case the detection pattern is a run of length 2, the second formula results
also as a special case of Aki and Hirano’s (1994) Proposition 2.4 pertaining to number
of successes until a success run of specified length is obtained.

4. Distribution of the number of failures until the ~th appearance of a detection pattern

In this section we focus on the distribution of the total number of failures until the
r-th occurrence of two successes separated by at most k — 2 failures. The enumeration
scheme used here is the non-overlapping one, i.e. each time a detection pattern occurs
(and is counted) the observed sequence is disregarded and we start from scratch. As a
consequence, if 14y denotes the number of failures until the first appearance of a detection
pattern, v» the number of failures until the next appearance and so on, the total number

of failures, say Yr(o) = Yég) , until the r-th occurrence can be expressed as
(4.1) YT(O) =v+vet- U

Therefore, the random variable E(O) can be decomposed in a sum of identical and inde-
pendently distributed (iid) random variables v; , 1 <% < r , each with probability mass
function ¢(® . This fact, in conjunction with Corollary 3.1, yields the next theorem.

THEOREM 4.1. The probability generating function Gﬁo)(z) =Y 592 (m)z™ of
Y}(O) , s given by

?A(2) "
©0)(z) = P
Gr (Z) - I:]_ —qz _qu—lzk~1] ? |Zl S L
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Manipulating on Theorem’s 4.1 outcome, we can easily accomplish a recursive
scheme for the numerical evaluation of the probability distribution function gﬁo) of YT(O).
More precisely, we have the following

+ COROLLARY 4.1. The probability mass function g(o) (m) = Pr(Yr(O) =m) of VAR
satisfies the recurrence relations

0
9, (0) = p*g{9(0)

m
g (m) =gl (m~1) +p* Y gO(m —i)g, 1<m<k-2

i=0
. k-2 ‘
gD (m) = agi% (m — 1) + pg* (% (m — ki + 1) + p? > 9 9m—i)g, mxk-1
i=0
for any integer r > 1 .
PROOF. It is clear that
42) GO, (2) = GO (2)GO(2)
and making use of (3.5) we deduce
- 0
Z 9y (m)z™ = g Z g m =12 +pg*t 3" g (m - k+ 1)z
m=k-1
k—2 oo
) D o (m i
1=0 m=1

The desired recurrences are now easily established by a careful inspection of the coeffi-
cients of 2™ in both sides.

Note that, the quantities g; )(m) which are necessary to initiate the recursive scheme
described in Corollary 4.1 can be fetched from Corollary 3.2 (g§°) (m) = g9 (m)).
Needless to say, an exact formula of gr )(m) can also be established by expanding

G(O)(z) of Theorem 4.1, into a power series. Nevertheless, the resulting formula is not
very attractive, so we shall not further pursue this matter.

The mean and variance of Y, are (c.f. Corollary 3.4 and (4.1))

— _ rq(2 — qk—l)
ﬂwm“wwm“Eﬁfxv,
Ver(¥,®) = r Var[y @] = +Twﬁlf@t?

For the evaluation of higher order moments of YT(O) it seems reasonable to resort to
recursive schemes, since the establishment of neat and computationally tractable exact
formulae is rather infeasible. This problem is addressed in the next two theorems.
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THEOREM 4.2. The s-th factorial moments of Y}(O)
tr(o) = BYOXO - 1) (¥O ~s+1)], 521 pro =1

satisfy the following recurrence relation

Hr+1,(s) = 2,(1—?1—){ ? Z ( ) For,(s—3) Z(Z (J)q

+SQ[1 + (k — 1)pg*~ ]Mr+1,(s+1)
min{s,k—1}

vy (G- 1><j>ur+1,<s_,->}, r>1
= N
(11,(s) = I(s) s given in Theorem 3.4).
PROOF. Substituting G (2)(c.f. Coroliary 3.1) into (4.2) we obtain
Gi(2) = PP ARG (@) + 42Ch (2) + pg* 1 G (2).

Applying Leibnitz’s formula in the last equality we get

#GE(2) 22( )dJ(A(z» (G (2))

dzs dzi dzs—7

LG @) , eGRE)
e dzs dzs—1

dzs=i

(2 dI(GP(2))
_p22(>2 dzi dzsjz

=3

L LEGERE) | ¢THGR)
1 dzs dzs—1

d*(GY%) -1
+pgt™ 1{ k-19°(G1(2)) + s(k — 1252 (Gri1(2)

e 12( ) df(zk Y @60 (2)

dz® dzs—1

dzi dzs—3

min{s,k—1} s dj(zk——l) ds—j(ng_)l(Z))
TR )

which, on setting z = 1 , reduces to the recurrences described in the theorem.

Clearly, the evaluation of the moments about 0 could be accomplished by a combined
use of Theorem 4.2 and the formulae relating factorial and ordinary moments (c.f. (3.9)).
Nevertheless, a direct (recursive) scheme is still of some interest since it leads to less
computationally demanding procedures. This is the subject of the next theorem.
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THEOREM 4.3. The s-th order moments about zero of Yy y,©®
prs = E(YO)], 520
 satisfy the recurrence relation
.u',r-i—l,s = q’“ 1 {qz ( ) 1 +qu_2(k - 1)3_1:]:“;'-}—1,71
=0
k—2 s
153 (2) o)

z=0 =0

orr,s > 1 (u} , = 1., is given by Theorem 3.5).
1,8 s

PrOOF. Substituting the second and the third recurrences of Corollary 4.1, into
the obvious formula

k—2 00
0 0
Hri1,s = Z m® 154—)1(7“) + Z msg£+)1 (m)
= m=k—1
we get

oo oo
0
Hrsts =4 Z m*gQy(m—1) +pgF Y mogy(m —k+1)
m=k—1

{Z Zg(o)(m—Z)q + Z Zg(‘”(m }

=0 m=k—1

and taking into account that the bracketed term equals Z:;g > Mgy )(m z),
we gain the expression

o0 o0
[¢) - 0
Mrrs = 9 (m+1)°g% (m) +p* 1 Y (m+ k — 1)°6{); (m)

m=0 m=0
+p? Z e Z (m +z)°g{ (m).
m=0

Observe next that

i (m + a)s (0) i s ( ) mia-S—ig(O)(m) Z (z) - z,u;”“
m=0 m=0 i=0 i=0

and substitute in the previous formula to get

s—1
Brii,s = qZ( )ur+1,+pq’“ 12( )(k—l)s “Urpri+ (@ + 00" Vg,
=0

k-2 s

+p2ZZ( ) T

=0 =0
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The desired result can be easily established now by solving the last formula with respect
to ppiy s -

It is evident that the mean of YT(O) is a monotonically decreasing function in p, and
therefore, there is a unique moment estimator of p. On the other hand, the numerical
calculations needed for performing the maximum likelihood estimation of p (i.e. the
calculation of the first and the second derivatives of the probability mass function of
v, ) are highly facilitated by the recurrences for s (m) established in Corollary 4.1.
We are not going to further details on these topics, leaving them to the interested reader.

Before closing this section, we shall discuss in brief how the distribution of the
random variable Yk(’or) can be expressed in terms of properly defined sequences of numbers
and polynomials.

For k > 2, a fixed positive integer, let us introduce the sequence of numbers
{Fk.m}m>0 , or simply {Fp,}m>o0 , by the following recursive scheme
m+1, if 0<m<k—2
= 1
Fn=SF._, + SFnkit, f m2k-1,

In the next theorem we consider a sequence of symmetric Bernoulli trials and express
the probability mass function of YT(O) in terms of convolutions of the numbers F,,, .

THEOREM 4.4. Ifp=q=1/2, the probability mass function of Yr(o) is given by

(r)

F,
0 _ Im
97(" )(m) T gm4-2r

where F7(,f) is the i-th convolution of the numbers {Fuy}m>o0, i-e.

FQ =N"FiVF, ;, i22 FP=F,
j=0

Proor. Clearly, the initial conditions F,, = m+ 1, 0 < m < k-2, can be
equivalently described through the recursive scheme
Fy=1; Fon=F,1+1, 1<m<k-2
Substituting now the Fi,’s in the expression
e k-2 00
Y Fpa™ =1+ Y Fpz™+ > Fpz™
we can easily calculate the generating function of the numbers {F}, },,>0 as

0 k-2 ;
> Fp2™ = -—-——-—————-Zi=012 =4G(22).
m=0 1—-2-— §Zk_1
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The generating function of the r-th convoluted numbers {F,Sf )}mZO will be given by

oo ) r
> Fem = (Z szm) = 27(G 22)
m=0 m=0

and replacing z/2 for z, we get

[l

00 (r) 0
Fé:’;__zm — 221'(G(0)(z))r — 22TG£.O)(Z) = 92r Z 97(-0) (m)zm
m=0 m=0

which completes the proof.

In order to capture a similar result for gﬁo) (m) in the general case 0 < p < 1, let

us introduce a sequence of polynomials {F m(z)}m>0 = {Fn(z)}m>0 defined by the
recurrence relations

) _ f (m+1)22?, if 0<m<k-2
(4.3) ; Fm(2) = {Fm_l(x) +zFp_gi(z), if m>k-1
and denote by F\(z) the i-th convolution of the sequence {Fn(2)}m>o0 , i€

m
FO(2) =Y F V(@) Fmj(z), 22 FD ()= Fu(x).
§=0

THEOREM 4.5. The probability mass function of YT(O) is given by

9O (m) = ¢™FD) (p).

Proor. Clearly, the definition of F,,(z), 0 < m < k — 2 is equivalent to
Fo(z) =2%  Fp(z)=Fpoi(z)+2?, 1<m<k-2
and employing the same reasoning as before, we may express the generating function of
the polynomials {Fp,(z)}m>0 as
o0 2x—k—-2 ;
S Fueen - LTS

o myk—1
— 1—2—2z2

Therefore ' . ,
00 0 2xk-2 _;
) _ _ €z Z':o z
> @) = (Eij@)zm) = (—~—~—1_z_*m _1>
m=0 m=0

and replacing p,qz for z, z respectively we deduce, by virtue of Theorem 4.1

Y ED @) =Y g0 (m)zm.
m=0

m=0
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This completes the proof.

Remark. I & denotes the number of successes until the first appearance of a
detection pattern, £ the number of successes until the second appearance of a detection
pattern and so on (with the non-overlapping enumeration scheme), then

YW=l tbt o +&;

recalling the discussion following Corollary 3.5 we may state that Yr(l) has a negative
binomial distribution with parameter r and 1 — ¢*~1, shifted to the support {2r,2r +
1,2r+2,...}.

5. Asymptotic results

Let us consider first the problem of approximating the distribution of the number
of failures until the first appearance of a detection pattern in a prolonged sequence of
trials. »

THEOREM 5.1. For the probability mass function g{®(m) of Y@ | we have

pg(z—1) 1
(5.1) 9(0)(771) ~ 1= qo)k - (k- 2)qz — 1] e as m — 00

where 0 < x < 1/q is the smallest in absolute value root of V(z) = 1 — qz — pg*~12F1

(the sign ~ indicating that the ratio of the two sides tends to 1).

PrOOF. By Corollary 3.1, the probability generating function of Y(9 can be ex-
pressed as a rational function, as follows

PP+gz+(g2)? +---+(¢2)*?] _ U(z)
1 — gz — pgF—1zk-1 V()

GO (z) =

According to the partial fraction expansions method (see Feller (1968), p. 277), the
coefficient of 2™ in G(%)(z) equals (approximately, for large m) prz~(™+D | where z is a
simple root of V(z) = 0 which is smaller, in absolute value, than any other root, and

ne—va{[%]_}

Since V'(z) is a decreasing function for z > 0 and V/(0) =1 , lim,_, V(2) = —00, there
is a unique positive root of V(z) , say z = z . For all real or complex numbers z with
|z| < z , we have

(5.2) laz(1 +pg" 224 "?)| < g(1 + pg*2277%) = 1
and accordingly
V(2)| > 1—-lg2(1 +pg*22*)| >0, for |z| <=z

i.e., there exist no roots of V(z) with |z| < z . Now, if there exists a real or complex
number 2g , |20| = z , such that, for z = zp , inequality (5.2) reduces to equality, then
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29 = z . Therefore, z is smaller in absolute value than any other root of V() . Finally,
we observe that z > 1 (note that V(1) = p(1 — ¢*~1) > 0) is a single root of V(z)
(because V'(z) = —q[1 + (k — 1)pg"~22*¥~2] # 0) and satisfies the condition gz < 1, the
last one being an immediate consequence of V(1/¢) = —p <0 .

. With all these in mind we may state the following asymptotic expression for (%) (m)

9 1— qk—lxk:—l

P 1—-gqx 1
9O (m) ~ — :
d k=1 k-1 gmtl
L G b £ A A | PR
p2(1 _ qk—lxk—l)

q(1 — qz) {1 + (k- l)éqk_lw’“_l] gmtl

Formula (5.1) is now easily established if we replace ¢*~'z*~1 by (1 — qz)/p (this is
feasible because V(z) = 0 ) and perform elementary algebra in the outcome.

It is worth mentioning that z can be satisfactorily approximated by z* = 1 + (k —

1)p%g*~2. To justify this, write first V(z) = 0 in the alternative form

o= (1= g2 ) = (2)

and observe that the dominant root z can be numerically calculated by successive ap-
proximations setting zo = 1 and z,41 = f(z,) (see e.g. Feller (1968)). The first two
iterations yield

Ty = f(zo) = _1_:__;;_(1_’“_1
T2 = f(z1) = %[1 —p(1 — pgF~1)k1] = é{l —p[l — (k= 1)pg"~']} = 2*

and since the higher-step approximations become rather cumbersome, one could termi-
nate the process here (at the price of a cruder approximation as compared to subsequent
terms of the iteration scheme).

Let us now proceed to the investigation of the asymptotic behavior of the random
variable YT(O) . As indicated after Corollary 3.1, for k = 2, the distribution of Y(© is
geometric with parameter p?; conséquently, the distribution of Yz((:) is negative binomial
with probability generating function 7

2

T
— ) =aP).
1 o qz o pqz) 2,1‘(2)

It is well known that, if 7¢ — A > 0 as r — oo , the negative binomial distribution with
parameters r and p converges in law to the Poisson distribution with parameter . In
the next theorem, we prove that, under the same assumption (i.e. lim,_, rq = )), the

asymptotic distribution of Yk(,or) is Poisson for all k > 2.

P(1—(1-p%)2)" = ( P



596 STATHIS CHADJICONSTANTINIDIS AND MARKOS V. KOUTRAS

THEOREM 5.2. If lim, .o 7q = A > 0 then the random variable Yk(g), k>2
converges in law to the Poisson distribution with parameter 2], i.e.

2\)®
lim Pr(Y D =z) = e“”(—)—, £=0,1,2,...

00 x!

Proor. It is immediate that

lim p?" = lim (1 —¢)% = e~ 2,
7200 700

. . k1 o [0, if k=2
Jim [1 = A(2)] = lim r{(gz) 92 = { Az, if k>3,

k——lzk—l) _ {2)\2, if k=2

Jim (g2 + pg Az, if k>3

The last two formulae ascertain that
1 if k=2
: T _ ’
rll,r{.loA () = {exp(/\z), if k>3
. . . k—1_k—1\r __ exp(——2)\z), if k=2
Jim (1 — gz —pg"~"2")" = {exp(—/\z), if k>3

and recalling Theorem 4.1 we get
lim Gg)l(z) = exp(—2A\ + 2)z)
7—00 ’

which proves the asymptotic result we are interested in.

Since ¥;*) can be decomposed in a sum of r iid random variables (see (4.1)), the
following additional asymptotic result will hold true (by virtue of the Central Limit
Theorem).

THEOREM 5.3. Ifr — co and p is fixed, then the standardized random variable

1 {Y(O) _rq(2—¢* 1) }

rVar[Y©O] | " p(l—¢*1)

converges to the standard Normal distribution N(0,1). (Var[Y(9)] is given explicitly in
Corollary 3.4).

6. Applications

The random variables studied in the previous sections can be fruitfully exploited in
several areas, including actuarial science, reliability engineering, quality control etc. A
few specific examples will now be discussed in some detail.

An automobile insurance company is considering to offer their customers the follow-
ing plan. Every “policy year” i , the company will pay the claims only if the aggregate
claims C; throughout the year exceed a certain threshold ¢. In the opposite case, i.e. if
C; < ¢, the policyholder will pay the damages by himself and the year will be declared
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as “claim-free”. For every pair of claim-free years, or a pair of claim-free years separated
by at most k — 2 non claim-free years the customer is awarded a bonus point and once
he manages to collect » bonus points, the company applies a special discount to the pre-
mium of the insurance contract. Apparently, in order to specify the parameters involved
in the plan (c, k discount rate), the company has to study carefully the total claim W of
the policyholder at the time he gains the premium reduction. The mathematical model
for the plan can be summarized as follows: Let C; denote the total claim for year ¢ and

define o
1, ifC;<e
Xi = {0, if C; > c.

Then T}, is the year in which the company is liable for the discount whereas Yk(’or)
enumerates the number of non claim-free years. Therefore, W is a sum of a random
number Yk(g) of iid random variables (selected out of Cy,Cy,...) and the probability
generating function of W is computed as

E(z") = GO(G.(2));

G.(2) = E[z€] is the probability generating function of C; , and G°(z) is given by
Corollary 3.1. The distribution of W can now be easily studied if the distribution law of
the annual aggregate claims C is specified. It is worth mentioning that a similar analysis
to the one conducted above could be performed for a penalized insurance plan which
would impose a penalty (e.g. increased premium) to the policyholder whenever annual
aggregate claims exceeding a threshold c, show up very frequently (for example in two
consecutive years or in policy periods which are very close to each other).

Another interesting application, emanating from engineering models is the following
version of moving (sliding) window detection problem (compare to Glaz (1983)). A radar
sweep with a quantizer transmits to a detector the digit 1 or 0 according to whether the
signal-plus-noise waveform exceeds a predetermined threshold. The detector’s memory
is keeping track of the last k transmitted digits and generates a pulse when two 1’s are
present. Should this occur, the detector’s memory is cleared and the next transmitted
digit is the first to be registered. The r-th pulse initiates an alarm. Clearly, the random
variable Yk(g) enumerates the number of times the signal-plus-noise waveform was below
the threshold level, till the time the alarm was triggered.

In the same flavor, one could construct a sampling inspection plan which rejects a
lot of equipment (such as power generators or lawn mowers) whenever r pairs of defective
items are spotted, with each pair being separated by at most k-2 non-defective items. If
the term “defective” indicates that the equipment subject to testing broke down before
a (pre- specified) test period, then Yk((? gives the number of items that have survived in
a rejected lot. 7
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