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Abstract. We show an interesting identity for Ef(Y)—E f(X), where X, Y are nor-
mally distributed random vectors and f is a function fulfilling some weak regularity
condition. This identity will be used for a unified derivation of sufficient conditions
for stochastic ordering results of multivariate normal distributions, some well known
ones as well as some new ones. Moreover, we will show that many of these conditions
are also necessary. As examples we will consider the usual stochastic order, convex
order, upper orthant order, supermodular order and directionally convex order.
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1. Introduction

Stochastic orderings are an important tool for many problems in probability and
statistics. This has been demonstrated in the monographs of Stoyan (1983), Shaked
and Shanthikumar (1994) and Szekli (1995). Surprisingly, however, in none of these
monographs a detailed study of the case of normally distributed vectors can be found.
For most of the important stochastic order relations some sufficient conditions are known
for the case of normal distributions, but they are scattered in the literature. Some results
can be found e.g. in Béuerle (1997), Mosler (1984), Scarsini (1998) and especially in the
books of Tong (1980, 1990). Necessary conditions, however, are very hard to find.

It is the aim of this paper to fill this gap. We will give necessary and sufficient
conditions for many important examples of so called integral stochastic orders (we refer
to Miiller (1997) for a general treatment of these stochastic order relations ). The main
tool in our investigation will be an identity for Ef(Y)— Ef(X), where X,Y are normally
distributed random vectors. This identity will be derived from an extension of Plackett’s
identity (see Tong (1990), p. 191) and a double use of partial integration. It should be
of interest in its own. The idea of using this method for proving stochastic inequalities
for multivariate normal distributions is not new. Tong (1980) has used a similar idea to
prove Slepian’s inequality, and Joag-Devet al. (1983) also have used a related method to
characterize association of normal random variables. But we will show here that many
more stochastic ordering results can be derived from that identity. Moreover, we will
show that many of the sufficient conditions are also necessary.
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2. A useful identity

First we will fix our notation. Let p € R", and let X be a positive semidefinite n x n-
matrix. Then a n-dimensional random vector X has a normal distribution with mean
vector p and covariance matrix ¥ (written as X ~ N (g, X)), if it has the characteristic
function

, 1
Ux(t) == Ee" X = exp (itTu - §t’-’"Et) , teR™
If ¥ is positive definite, and hence invertible, then X has the density

1 1 _ n
fx(z)=m-exp (—i(m—u)TZ} l(a:—u)), zeR".

The following identity is a consequence of the well known Fourier Inversion Theorem,
see e.g. Lemma 9.5.4 in Dudley (1989).

LEMMA 1. If X ~ N(u,X) and I is positive definite, then we have the following
relation between the characteristic function Ux and the density function fx:

(@mm / e Ux(t)dt = # / exp (—itT(fv —p) — %tTEt) dt.

Now we consider the difference Ef(Y) — Ef(X) for normally distributed random
vectors X,Y. We will derive an important identity for this expression under some weak
regularity conditions on f. If f : R®™ — R is twice continuously differentiable, then we
write as usual

V@) = (aiif(:v)>n and  H(z) = (Bj;jﬂw))n

i=1 i,j=1

fx(m)

for the gradient and the Hesse matrix of f. Recall also that for a matrix A = (a;;) the
trace is defined as tr(A4) := > 7" | a;;, and hence tr(AB) = 3 j=1@ijbij, if A and B are
symmetric matrices. With these notations we can state the following result.

THEOREM 2. Let X ~ N(u,X), Y ~ N, X'), where & and &' are positive defi-
nite, and let ¢y be the density of N( A/ + (1= A)p, AT+ (1-A)E), 0 < A < 1. Moreover,
assume that f : R™ — R is twice continuously differentiable, and satisfies the following
condition:

Tj|{—00
(2.2) I )=0 VzeR", 0<A<1, 1<i4, j<n,
and
(2.3) |1}m $r(@) - 5 =0 VzxcR" 0<A<1, 1<4 j<n.
Then

4) B0 - B0 = [[ (0 - w7V5@) + (@ - DH @) - hr(a) da ax
0
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PROOF. Define g(\) : ff z)dz. Then Ef(Y)—Ef(X) = g(1)~g(0). Hence
it is sufficient to show that ¢’ is equal to the expression inside of the outer integral in
(2.4). But this can be seen as follows. From Lemma 1 we can deduce that

8 1 T
5@ = 55 [ O

1 0 4Ty
- Gy / e e, ()t

= (271)11 / P NOE (—z’tT(,u’ —p) — lt’-”(z:' ~ 2)t> dt

- ;(l‘l’: - ,u'z d))‘(:t) + 5 ;1(0-11 3$ a ¢)\( )
This yields
70 = [ 1@ s i@ds

Y- [ 1088 L Y 0 o) [ 05

_ Z(Nz i /¢,\( )af(z)dz+ 5 le( oij)/@«(”’)gifa(gd’”

- / ((u’ W)+ 5 (- DH @) - 62(0) de

Here the third equality follows from a (double) application of partial integration, taking
into account the conditions (2.1)-(2.3). O

Remarks 1. Notice that the conditions (2.1)-(2.3) are very weak regularity condi-
tions, which assure the existence of all occurring integrals. They are always fulfilled, if
the function f together with its first derivatives fulfills a polynomial growth condition
at infinity.

2. In the course of completing this article, we discovered that a similar result can
already be found in Houdré et al. (1998). Their proof, however, is quite different. It uses
advanced tools from the theory of Lévy processes.

From Theorem 2 we can immediately derive the following sufficient condition for
non-negativity of Ef(Y) — Ef(X).

COROLLARY 3. Let X ~ N(u,X), Y ~ N1, %), and assume that f : R® — R
satisfies the conditions of Theorem 2. Then Ef(Y) — Ef(X) > 0, if the following two
conditions hold:

(2.5) : (,U;Z [,Lz) : : 0 for all T e R )

and
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- 0%f (=) n
(26) 121(0';] - OU)W > 0 forall zeR".

PRrROOF. If & and ¥’ are positive definite, then the assertion follows immediately
from Theorem 2. If one or both of them are only semi-definite, then we can use an
approximation argument as follows. Let I be the identity matrix. Then for arbitrary
€ > 0 the matrices X+l and X' 41 are positive definite. Hence we can apply Theorem 2
to this perturbed matrices. Now let £ approach zero to get the assertion. O

3. Stochastic orderings

From Corollary 3 we can derive many sufficient conditions for stochastic ordering
of multivariate normal distributions. For a comprehensive treatment of stochastic order
relations we refer to Shaked and Shanthikumar (1994). Many of them can be defined as
follows: Let F be some class of measurable functions f : R® — R. Then we say that for
two random vectors with values in R™ the relation

(3.1) X <pY  holds if Ef(X)<Ef(Y) foral feF,

holds whenever the expectation is well defined. A unified treatment of this type of
orderings can be found in Miiller (1997). The most important examples are the following
ones.

e Usual stochastic order: X <4, Y, if Ef(X) < Ef(Y) for all increasing functions
f:R" =R

e Convex order: X <., Y, if Ef(X) < Ef(Y) for all convex functions f : R" — R.

e Increasing convex order: X <;., Y, if Ef(X) < Ef(Y) for all increasing convex
functions f : R" — R.

For these classical orderings, which we will consider first, sufficient conditions for
ordering normal random vectors are well known, but we give here new purely analytical
proofs, based on Corollary 3. Previously the proofs have always been based on almost
sure representations. We admit that these proofs are more elementary for the classical
orderings. The usefulness of our approach will become much more obvious later, when we
consider orderings, for which an almost sure representation is not available. Moreover,
we show that these conditions are also necessary. This is mostly easy to see, but we
could not find these results in the literature. Therefore we state them here with proofs.
For completeness we will first state the results in the one-dimensional case, since we will
need them later on in the proofs of the necessity parts.

THEOREM 4. Let X ~ N(u1,02) and Y ~ N(uz,02) be univariate normally dis-
tributed. Then

a) X < Y, if and only if p1 < po and o? = 03;

b) X <icz Y, if and only if uy < p2 and o3 < 0%;

¢) X < Y, if and only if py = po and o? < o2.

PROOF. a) The sufficiency of u; < ps and 0?2 = o2 follows from the fact that in
this case Y ~ X + ug — p1. On the other hand, X <, Y can only hold, if the ratio
fr/fx of their densities fulfills

0 )
R 10
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But this is only possible if i1 < pp and 0% = 3.

b) For the if-part observe that Y has the same distribution as X + Z, where Z ~
N{(pa — p1,0% — 0?) is independent of X. Since EZ > 0, Jensen’s inequality implies for
any increasing convex function f that

 Bf(Y)=Bf(X+72) = B(Ef(X + 2) | X)) > Bf(X + EZ) > Ef(X).

To show the converse let us assume X <;.; Y. Then EX < EY, hence g1 < pg. Let us
assume that of > ¢2. Then lim;—, 40 fy (t)/fx(t) =0, and therefore

B(X - t)F = /00(1 — Fx(z))dz > ftwu _ Fy(z))dz = E(Y — t)*

for sufficiently large ¢, a contradiction to X <;., Y.
c¢) The proof of the if-part is similar to b), and the only-if-part follows from b),
taking into account that X <., Y implies X <;., Y as well as —X <., —Y. 0O

Now we will start our investigation of the multivariate case. To begin with, we
consider the usual stochastic order.

THEOREM 5. Let X ~ N(u,X) and X' ~ N (¢, %) be n-dimensional normally
distributed random vectors. Then X <; X' if and only if p; < wi for all1 <i<n and
=3

Proor. It is well known that it is sufficient to consider twice differentiable in-
creasing functions. But then the if-part follows immediately from Corollary 3, since a
differentiable function is increasing, if and only Vf(z) > 0 for all £ € R™, and hence
(2.5) holds. Equation (2.6) holds trivially, since we have ¥ = ¥’. To show the con-
verse, let us assume that X <, X' holds. This implies that X; <t X! holds for all
margmals Hence we can deduce from Theorem 4 a) that we must have i < pi and
0y = 0;;. Moreover, we have X; + X; <, X! + X’ for all 1 < i < j < n, and since
Xi+X; NN(,uz—%-p,J,an—I-o +20”) we must also have 0% 4024205 = a§i2+0§j2+2az’-j
and thus it is necessary that 0y = 0j;. 0

THEOREM 6. Let X, X' be n-dimensional random vectors with normal distribu-
tions N(p,X) and N'(i', %) respectively. Then the following conditions are equivalent:

1. X < X'.

2. p=p' and X' — X is positive semi-deﬁnite.

PROOF. a) We again apply Corollary 3. Here Equation (2.5) holds trivially, and
(2.6) can be shown as follows: Since X' — Z‘ is positive semi-definite, it has the canonical

representation ¥’ — X = 3¢ )\ka(k)a(’”) , where a(®) are the eigenvectors, and A; > 0
are the corresponding eigenvalues. Hence

- 3 8*f(z) ()) 0 2f(@) _ < 0T b
(o}, — Ak a; A -a®” Hy(z)a® > 0,
”2;1 J 5 0T Z ,]Zl 4 856 Oz; ;

since a twice differentiable function f is convex, if and only if its Hesse matrix H fis
positive semi-definite.
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b) Now assume that X <., X' holds. Since all the functions f(z) = z; and f(z) =
—z;, 1 <1 < n are convex, it is clear that the condition g = g’ is necessary. Therefore
let us now assume that £’ — X is not positive semi-definite, i.e. there is some a € R™ such
that a7 (X' — E)a < 0. Then

E(@" (X ~ )’ = a"E(X ~ p)(X — p)T)a = a"Za > a"T'a = E(@” (X' - p))*.

Hence X <., X’ does not hold, since the function f(z) = (a¥(z — u))? is obviously
convex. [

Remark. In this case the only-if part can also be found in Scarsini ((1998), Theorem
4), but the proof given there is much more complicated.

For the case of <;¢; an if-and-only-if characterization seems to be unknown. There
is still a gap between the necessary and the sufficient conditions in this case. We only
can show the following result.

THEOREM 7. Let X, X' be n-dimensional random vectors with normal distribu-
tions N(n, X) and N (¢, T') respectively. Then the following conditions hold:

a) If u< p and X' — X is positive semi-definite, then X <. X'.

b) If X <ico X', then u <yt and a¥ (£ — X)a > 0 for alla > 0.

ProOOF. a) In this case (2.5) follows as in Theorem 5 and (2.6) follows as in The-
orem 6.

b) If X <. X', then p < p since the functions f(z) = z;, i = 1,...,n, are
increasing convex. Now let @ > 0. Then the function fo(z) = f(a’z) is increasing convex
for all increasing convex functions f : R — R. Hence X <;. X’ implies a7 X <;., a7 X".
According to Theorem 4 b) this yields Var(a”X) = a”%a < a”¥'a = Var(eT X"). 00

Now we turn our attention to stochastic order relations, which are suited for the
comparison of dependence structures. We first need some notations.

DEFINITION 8. a) For a function f : R™ — R define the difference operators
Af f(x) := f(x +ce;) — f(=),

where e; is the i-th unit vector and £ > 0.
b) A function f: R™ — R is said to be supermodular, if AA? f(z) > 0 holds for all
zeR" 1<i<j<nandallg§>0.
c) A function f: R” — R is said to be directionally convex, if A% Ag f(z) > 0 holds
foralzeR", 1 <i,5<nandalle§>0.
d) A function f : R® — R is said to be A-monotone, if for any subset J =
{i1,...,ix} C{1,...,n} and every €1,...,6, >0

AS . A*f(z)>0  forall zeR™

The stochastic order relation generated by A-monotone functions is called upper
orthant order (written <,,), since it can be defined alternatively by comparing upper
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orthants, i.e. X <., Y holds, if and only if P(X > t) < P(Y > t) for all t € R™. This has
been shown by Riischendorf (1980). But the comparison of upper orthants of normally
distributed vectors is well known as Slepian’s inequality, which can be found e.g. in Tong
(1980), p. 8ff.. It states the following result.

THEOREM 9. Let X ~ N(i,X) and X' ~ N(u,X') be n-dimensional normally
distributed random vectors with o;; = 0}, 1 < i < n. If oij Lol,1<i<j<mn, then

i3
X <, Y.
Combining this theorem with Theorem 5 we get the following result.

THEOREM 10. Let X ~ N(u,X) and X' ~ N/, ¥') be n-dimensional normally
distributed random vectors.

a) If,u,iS,u,;foralllgign,aiizagi,lgignandaijgagj,1§i<j§n,
then X <,, Y.

b) If X <uo Y, then u; < pg for all 1 < i <n and 0y; = o},.

PROOF. Part a) is an immediate consequence of Theorems 5 and 9. Part b) follows
from the fact that X <,, Y (resp. X >, Y) implies X; <., Y¥; forall1 <i <mn.QO

Unfortunately we are not able to give an if-and-only-if characterization of the upper
orthant order for multinormal distributions. It is clear, however, that if g = g/, then
X <o Y implies 045 < a;j for all ¢, 7, but we do not know, if this still holds in the case
By

Supermodular functions are also called quasimonotone or L-superadditive. The
stochastic order relation generated by these functions is called supermodular order (writ-
ten <,p,). Since it is obvious from the definition that every A-monotone function is su-
permodular, it is clear that supermodular order is stronger than the upper orthant order.
For some properties and applications of supermodular order we refer to Biuerle (1997),
Béuerle and Miiller (1998), and Shaked and Shanthikumar (1997). In Biuerle (1997) a
sufficient condition for normal distributions has been derived, which has recently been
extended to a necessary and sufficient condition by Miiller and Scarsini ((2000), Theo-
rem 4.1). They have shown that supermodular ordering holds, if the covariances can be
compared. This generalizes Slepian’s inequality from indicator functions of rectangles
to a much larger class of functions. For a related result we refer to Block and Sampson
(1988). Moreover, Huffer (1986) implicitly contains a similar result. He describes an
alternative way to proof such results by using the central limit theorem. We will state
the result here with proof, since the only complete proof can be found in Miiller and
Scarsini (2000), as far as we know. Using Corollary 3, however, the proof given there
can be simplified considerably.

THEOREM 11. Let X ~ N(p,X) andY ~ N (', X'). Then the following conditions
are equivalent.

(i) X <em Y5

(ii) X and Y have the same marginals and o;; < oi; for all i, j.

PROOF. a) The implication (i) = (ii) follows immediately from Slepian’s inequality
and the well known fact, that supermodular order can only hold, if the random vectors
have the same marginals.
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b) It follows from the results in Miiller and Scarsini (2000) that it is sufficient to
consider twice differentiable supermodular functions. However, a twice differentiable
function is supermodular, if and only if

2
MZO forall zeR" 1<i<j<n.
5.’L‘iawj

Hence the implication (ii) => (i) follows from Corollary 3. O

The directionally convez order (denoted as <gcz), which is generated by the direc-
tionally convex functions, also found increasing interest recently, see e.g. Shaked and
Shanthikumar (1990), Meester and Shanthikumar (1993), Béauerle and Rolski (1998),
and Miiller and Scarsini (1999), but sufficient and necessary conditions for <4., in the
case of normal distributions seem to be new. We can show the following result.

THEOREM 12. Let X ~ N(u,%) and Y ~ N (i, %'). Then we have X <y, Y, if
and only if p =y and o5 < oy; for all1 <i,j < n.

Proor. A twice differentiable function f is directionally convex, if and only if

& f(z)

Bxiéxj

Hence the sufficiency of the mentioned condition follows immediately from Corollary 3.

But this condition is also necessary, since all of the following functions are directionally
convex: f(x) =z;, f(x) = —z; and f(z) =225, 1 < 4,7 <n.O

>0 forall zeR", 1<i, j<n.

Remark. 1t follows from the above theorem that for normal distributions with
the same marginals there is no difference between supermodular order and directional
convex order. Both orderings hold, if the off-diagonal elements of the covariance matrix
are ordered. The advantage of <4, lies in the fact that we can also compare random
vectors with different marginals. In fact, it follows from Theorem 12 that for normal
distributions directional convex order can be decomposed in a supermodular ordering
part (i.e. a dependence ordering part, where the marginals are fixed) and a convex
ordering part (i.e. a variability ordering part). Indeed, assume that o;; < o;; for all

1 €14, j < n. Define the matrix )N by
PR Uij, ifizj
V) ol i

Then & — £ is positive semidefinite, since it is a diagonal matrix with non-negative
entries. Moreover, ¥ — £ has non-negative entries, and the two matrices have the same
diagonal elements. Hence we have shown that N'(g, B) <gc N(pt,X') holds, if and only
if there is some X such that

N, ) <em N (1, ) Sco N, X).
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