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Abstract. We suggest a modification of the CUSUM procedure to detect changes
in angular data. We obtain limit theorems for the test statistics under the no change
null hypothesis. We discuss the estimation of the times of changes and show that the
binary segmentation provides the times of all changes. Our method is applied to a
data set on the activity of a pulsar.
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Mises distribution.

1. {Introduction and results

By listening to the radio signals of pulsars, astrophysicists have been searching for
pulsars which emit very high energy gamma rays. While the pulsar’s radio emissions are
very regular, the arrival times of pulsed gamma rays often exhibit stochastic variation
and the pulsar signals are also mixed with the radiation background. Astronomers make
measurements of the radiation and plot the results on the unit circle. If the pulsar is
inactive the plotted points are approximately uniform on the unit circle. If the pulsar
is active, the folded distribution will be different from the uniform. Hence astronomers
wish to decide if the observations have different distributions and to estimate the periods
of pulsar activities. For further discussion and analysis of change-point detection in
gamma ray data we refer to Lombard et al. (1990) and Lombard (1991). We also note
that Lombard (1986) and Csorg6 and Horvéth (1996) (cf. Csérgd and Horvath (1997),
pp. 190-194) used rank—based procedures to detect possible changes in angular data.

In this paper we use the following model: the observation X;,X,,...,X, are
independent with distribution functions Fiy)(t), F(2)(t),...,F(n)(t). Under the null-
hypothesis the observations are identically distributed, i.e.

H():F(l)(t)=F(2)(t):*--=F(n)(t) for all 0St__<_27(’.
Under the alternative there are R changes in the distribution, i.e.

H, : there are integers 1< k(1) <k(2) <---<k(R)<n such that

Foy(t) = - = Fuap(t),  Fum+n(t) = = Frey®),- ..,
F(k(R)) (t) == F(n) (t) for all 0 <t<2w and
Fley)(t1) # Fre))(t1), - - -, Fie(r—1))(tr-1) # Fir) (tr-1)
with some tl,tg,...,tR_l.
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The assumption

(1.1) k.‘(l) = [n@l],k(2) = [’I’Iﬂz], .. ,/{:(R) = [neR],
withsome 0<8; <--- <8 <1,

means that the lengths of the periods where the observations are identically distributed
are proportional to the total observation period.

Let S1(n) = 321 <j<n €08 Xj, S2(n) = 32, <<, 5in X; and define the CUSUM process
Ryn(k) = n71/2{S; (k) — £51(n)} and Ry n(k) = n~"Y/2{Sy(k)— £, (n)}. The procedure
is based on T (k) = (R% ,(k)+R3 , (k))*/2,1 < k < n. First we consider the asymptotic

properties of T, (k) under the null hypothesis. Let u; = EcosX;, pz = EsinX;,

0% = var(cos X1), 03 = var(sin X;) and v = cov(cos X1, sin X;).

THEOREM 1.1. We assume that Hy holds. Then

(1.2) {Run(nt), Ron(nt)} "2 [Ty (6) — 11 (1), Ta(t) - tTa(1)},

where {T'(t) = (T'1(t),T'2(t)),0 < ¢t < 1} is a Gaussian process with ET(t) = ET»(t) =0,

ET1(¢)T1(s) = o? min(t, s), ET2(t)T2(s) = o2 min(t,s) and ET'(t)T2(s) = ymin(t, s).

For any sequence N(n) satisfying

N(n)
n

(1.3) L6 withsome 0<6<1

we have

(14)  {Ry wimy(EN(n)), Ra iy (tN ()} P!

{T1(t) — tT1 (1), Ta(t) — tT2(1)}.

Theorem 1.1 implies immediately that

(1.5) T (nt) 22 A),

where

(1.6) A(t) = {(T1(t) — tT1(1))* + (Ta(t) — tTa(1))?}H/2
and

(1.7 Ty (EN () 2230 A(),

assuming that (1.3) holds. It is easy to see that var(Ryn.(nt)) — o2t(1 —t) and
var(Ra n(nt)) — o3t(1 —t) for any t € [0,1], as n — oo, which suggest the maximally
selected statistic

Ti= s Ta(t)/((1 - )2
1/(n+1)<t<n/(n+1)

Next we show that T, can be approximated with the maximum of x?-processes.

THEOREM 1.2. We assume that Hy holds. Then we can define stochastic processes
{Ap(t),0 <t <1} such that

(1.8) {An(1),0<t <1} 2{A®),0<t <1} foreach n
and
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(1.9) | Ty — Ay = op(exp(—log n)%)
for any 0 < ¢ < eg with some ¢y > 0, where

AL = sup An(t)/((L - 1))/2.
1/(n+1)<t<n/(nt1)

Unfortunately, nothing is known about the distribution of A%. However, it can be
easily shown by an exponential transformation, that A% in distribution is the maximum
of the Euclidean norm of an Ornstein-Uhlenbeck process with dependent components.
We refer to Piterbarg ((1996), pp. 115-118) for some results on the tail behavior of
A}. We can get the asymptotic distribution of T;f when ¢ = o; = 09 and v = 0. Let
a(n) = (2loglogn)/? and b(n) = 2loglogn + logloglog n.

THEOREM 1.3. We assume that Hy holds, vy =0 and 0 = 01 = 02. Then
(1.10) lim P {a(n)-(l;T,f <z+ b(n)} — exp(—2exp(—z))
for all . For any sequence N(n) satisfying (1.3) we have
(1.11) nli_)ngo P {a(N(n))é—T;\}(n) <z+ b(N(n))} = exp(—2exp(—z))

for all x.

Next we consider supg.;«; |Tn(nt)| and T;¥ under the alternative. Let

en= 3 Oi(m@G+1)—mQ)+ 0w - ), 1<i<R,
1€j<i-1

where pi = > cicp1(0i — 0im1)pa(3), 6o = 0, Ory1 = 1 and py(é) = Ecos Xy,
1 <i < R+ 1. Similarly,

eia= D Oi(ua(i+1) = pa(i) +0:(pa(i) — p§), 1<i<R,
1<5<i~1

where u3 =31 ;< py1 (0 — 0i-1)p2(i), with po(i) = Esin Xj(;), 1 <i < R+ 1.
THEOREM 1.4. If Hy and (1.1) hold and

(1.12) lgliaéXRﬂei,ll + les,2]) > 0,

then there are constants c* > 0 and c¢** > 0 such that

(1.13) sup Tyn(nt) = c*n'/? + Op(1)
0<t<1

and
(1.14) T = c**n'/2 + Op((loglogn)*/?).
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We would like to note that Grabovsky (2000) obtained limit results for the distri-
butions of sup, T, (nt) and T;* under the alternative.

We can also use T,,(nt) and T, to estimate the time of at least one change. Let
k(n) = min{k : T,,(k) = max;<i<n, T (3)} and k(n) = min{k : To(k)/(k/n(1—k/n))/? =
Tx}. We show that both ~l~c(n) and k(n) can be used to estimate one of the times of
changes. This means that k(n)/n will be near 6;., where k(i*) = nf;- is one of times of

A

changes under the alternative. Similarly, k(n)/n estimates 0;s-.

THEOREM 1.5. If Hy, (1.1) and (1.12) are satisfied, then there are i*, i** €
1,2,..., R such that

k(n) p

(1.15) == B
and N
(1.16) _(:l Py

The proof of Theorems 1.1-1.5 will be given in Section 3.. Next we show that
Vostrikova’s (1981) binary segmentation procedure can be used to divide the data into
homogeneous subsets. ;

Using a test, for example sup{T,(nt),0 <t < 1} or T}, we check Hy using asymp-
totic critical values. If Hy is rejected, k(n) (or k(n)) can be used to estimate one of
the times of changes. Then we divide the data into two subsets X,. ..,X,-c(n and
X Bi(n)+1> - -»Xn and test the “no change” null-hypothesis separately for each of these
two subsets. We can use (1.4) or (1.11) to get asymptotic initial values. If the “no
change” null-hypothesis is not rejected, the subset Xy,...,X o(n) 18 homogeneous. If the

“no change” is rejected for Xj,..., Xy, we find another time of change with k(k(n)),
and we continue the segmentation for Xy, .. .,X;c(;c(n)) and Xic(ic(n))+1v ... ,X,-g(n). We
apply the same procedure to X m) X-

2. Application to the von Mises distribution

Lombard et al. (1990) and Lombard (1991) assume that the observations follow von
Mises distribution on the unit circle. Namely, if the density of Fi;) is f(;), then

exp(p; cost)
2rlo(pi)

where p; > 0 are unknown parameters and Iy denotes the modified Bessel function of
the first kind and of order zero (cf. Mardia (1972), pp. 57). If p; = 0, then the formula
in (2.1) means that

1
. . [ <
(2 2) f(z) (t) o’ 0<t< 2

(2.1) for(t) = 0<t<2m,

i.e. we have the uniform distribution on the unit circle. In this case Hy and H4 mean
that

(2.3) Hi:pi=---=pn
and
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(2.4) H} : there are integers 1 < k(1) < k(2) < -+ < k(R) < n such
that p1 =+ = pr(1) # Pr()+1 = *** = Ph@)+1... # Pr(RI41 = """ = Pr-

Lombard et al. (1990) argue that the phases would be uniformly distributed in the
absence of a signal while the distribution of the phases is different from the uniform
when signal is present. Thus the parameters of the homogeneous periods change from
zero (the pulsar is inactive) to non-zero (the pulsar is active).

Let us assume that Hg holds. The common parameter is denoted by p. Mardia
((1972), p. 62) showed that ui(p) = ggzg, 0 < p < o0 and p1(0) = 0, where pi1(p) =
Ecos X7 and pa(p) = Esin Xy = 0, y(p) = cov(cos X1,sin X;) = 0 for all 0 < p < oo.
The modified Bessel function of the first kind and of the first order is denoted by I (p).
In this case (1.2) reduces to

(2.5) (Run(n), RBon(nt)} "2 {61 By (1), 02 Ba(8)},

where {B;(¢),0 < t < 1} and {By(¢),0 < t < 1} are independent Brownian bridges.
Note that the limit still depends on the unknown o3 and o5. However, these parameters
can be easily estimated with

2
1 Z Z

1<i<n 1<j<n
and
2
. 1 .
G5(n) = — E sin X; — — E sinX; » .
n
1<z<n 1<j<n

The result in (2.5) implies immediately the weak convergence of R ,(nt) =
Ry n(nt)/61(n) and Ry n(nt) = Ry n(nt)/62(n).

THEOREM 2.1. We assume that Hj holds. Then

(2.6) {Ry n(nt), Ry n(nt)} = {B1(t), B2(t)},

where {B1(t),0 <t < 1} and {Bs(t),0 <t < 1} are independent Brownian bridges. For
any sequence N(n) satisfying (1.3) we have

D?[0,]

PO (B (1), Ba(t)}-

(2.7) {B1,n(n)(EN (n)), B, N (my (EN (1))
Theorem 2.1 yields immediately that T}, (nt) = (R2 . (nt) + R%(nt))!/? 2] A(t)

and T(n)(tN (n)) A(t) where A(t) = (B2(t) + B2(t))}/2. We note that Kiefer
(1959a, 1959b) obtained formulas for the distribution functions of the supremum and

integral functionals of A(t).
Let

Ty = sup To(nt)/((1 - ))/2.
1/(n+1)<t<n/(n+1)

Similarly to Theorem 1.3 we have the following limit result:
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THEOREM 2.2. We assume that Hy holds. Then

(2.8) lim P{a(n)T: <z + b(n)} = exp(—2exp(~z)).

n—+ro0

For any sequence N(n) satisfying (1.3) we have
(2.9) lim P{a(N(n))T5 () < =+ b(N(n))} = exp(~2exp(~z))

Jor all x.

Next we consider T, (nt) under H}. The first result yields the consistency of tests
based on sup{7,(nt),0 <t < 1} and T}.

THEOREM 2.3. If H}, (1.1) and (1.13) hold, then there are constants &* > 0 and
&** > 0 such that

(2.10) sup Tn(nt) = é&n'/? + Op(1)
0<e<1

and )

(2.11) T = &*n'/? 4 Op((loglog n)'/?).

The estimation of the variances o7 and 02 has little effect on the estimation proce-
dure discussed in Section 1. Similarly to k(n) and k(n) we define

k* (n) = min{k : Tn(k) = 1%1?3)(71 Tn(l)}

and
E*(n) = min{k : T,.(k)/(k/n(1 — k/n))}/? = T*}.

Our last result is the consistency of k*(n)/n and k*(n)/n.

THEOREM 2.4. If H}, (1.1) and (1.12) are satisfied, then there are j* and j** €
1,2,..., R such that

k*(n)

(2.12) = 5 0
and R

In the von Mises model we can compute the constants y;(¢) and po(i) appearing in
(1.12). By Mardia ((1972), p. 57) p1(8) = I1 (o)) /To(pri)), 1 < 6 < R+ 1 (p(rir) =
pn), where I1(0)/Io(0) = 0 and po(i) = 0,1 < i < R. Hence e;2 =0forall1 <i< R+1
and condition (1.13) holds if and only if max{le;1]/,1 < i < R} > 0. In the model
introduced by Lombard et al. (1990), the active phases correspond to p > 0 (and therefore
p1 # 0). Consequently, the condition max{le;1],1 < i < R} > 0 is satisfied.

We applied our results to the data of astrophysical observations provided to us by
Lombard. The data consist of 1,555 observations. We assumed the observations follow
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Table 1. Binary segmentation scheme.

interval sup; Tn(nt) T decision least sq. fit
1-1555 p =0.0725 p=0.1163 change

E*=1060 k*=1460 k= 1060
1-1060 p = 0.007 p=0.0823 change

k* =678 k* =678 k=678
1-678 p = 0.8318 p=0.2574 nochange p=20.04 error=0.001
678-1060 p=0.53 p=20.11 no change p=03 error=0.06
1060-1555 p =0.496 p=10.5378 nochange p=0 error==:0.001

Table 2. Asymptotic critical values for sup, Tr(nt).

p 0.9 0.95 0.99
asymp. Value 1.45 158 1.84

Table 3. Asymptotic critical values for T,;‘.

p 0.9 095 0.99
asymp. Value 294 366 5.29
n = 50 221 264 3.50
n = 100 2.23 269 3.56
n = 500 2.29 275 3.67

von Mises distributions. We used sup{T,(nt),0 < t < 1} and T* for testing and the
corresponding arg max estimations to get estimates for the times of changes. Table 1
summarizes the outcome of the binary segmentation scheme. The last column of Table 1
shows the estimated value of p and the least squares fit to the data. It is clear from the
table that the first 678 observations correspond to the period of the pulsar’s inactivity.
They are followed by the next group of 382 observations indicating the pulsar’s activity.
The last group of 495 observations shows again inactivity. Our conclusion coincides
almost exactly with the conclusion reached by Lombard (1991) who used a different
approach.

Tt has been observed that the rate of convergence of maximally selected statistics to
the extreme value limit distribution can be very slow. We refer to Horvath and Gombay
(1996) for a discussion on the rate of convergence of maximally selected likelihood ratios.
We will see in the proof of Theorem 2.2 that two approximations are used to derive (2.8).
First T;{ is replaced with a xy?-process and then we obtain the limit distribution of the y2~
process. We show that the distribution of T and sup{A(t)/(t(1 —t))1/2,h <t <1 - £}
are close if h = £ = (logn)3/n. (We note that sup{A(t)/(t(1 — t))}/2,h <t < 1 — £}
has an extreme value limit distribution with norming and centering sequences a(n) and
b(n)). According to Vostrikova (1981)

A
P{hg“‘;i‘i_e G- O)ne = }
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Table 4. Simulated critical values for sup, Tn(nt) and T,";

sup; T (nt) T

p 0.9 095 099 099 095 0.99
p=20

n = 50 1.37 148 1.78 197 233 3.02
n=100 140 1.52 183 205 246 3.12
n=>500 145 159 180 216 254 3.31
p=20.1

n = 50 1.35 146 1.72 193 227 3.03
n=100 139 153 178 194 238 3.26
n=>500 145 158 1.79 227 265 3.59
p=0.2

n = 50 1.35 1.49 165 200 2.25 281
n=100 139 152 176 199 237 3.36
n=>500 142 1.56 182 219 255 3.34
p=203

n =50 136 149 167 198 231 287
n=100 141 157 178 205 254 3.13
n=2500 142 1.56 1.81 2.18 257 3.51
p=04

n = 50 1.39 1.52 1.76 204 2.33 3.02
n=100 140 152 184 207 246 3.32
n=>500 140 1563 1.70 209 254 3.50
p=20.5

n = 50 1.34 147 168 194 234 299
n=100 1.39 150 177 196 239 3.25
n=>500 144 156 1.79 224 277 3.59
p=0.6

n = 50 1.3¢ 147 1.70 200 239 3.24
n=100 140 1.53 1.89 213 254 3.56
n=>500 140 1.54 1.76 217 265 3.34
p=0.7

n =50 1.40 150 1.73 208 246 3.15
n=100 140 150 1.78 2.03 248 3.22
n=>500 142 1.58 1.84 212 2.56 3.37
p=0.8

n =50 1.38 1.50 1.84 2.03 2.58 3.52
n=100 142 156 1.81 229 270 346
n=2500 145 160 1.83 232 271 3.58
p=0.9

n =50 1.36 148 1.75 213 2.55 3.39
n=100 138 1.51 176 212 259 3.57
n=>500 142 152 186 222 266 3.71

559
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Fig. 1. The limit and the simulated distribution functions of sup, Tn(nt).

" . " " s i 2 2
-2 =1 0 1 2 3 4 5 6 7 8

Fig. 2. The limit and the simulated distribution functions of T2,
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as T — o0

for any 0 < h,£ < 1.

Tables 2 and 3 contain the critical values for sup, Ty, (nt) and T* using the limit
distributions and Vostrikova’s (1981) formula with A = £ = (logn)3/n. We performed
Monte Carlo simulations to study the accuracy of the approximations. We used (2.1)
with p =0,.1,.2,...,.9 as the density of the observations under the null hypothesis. The
sample sizes were n = 50, 100 and 500 and each samples were repeated 5,000 times. The
results are given in Table 4. Figures 1 and 2 give the graphs of the limit and the simulated
distributions in case of n = 500 and p = .6. It is clear from the simulations that the
limit results for sup, Ty, (nt) are acceptable even in case of small sample sizes. The limit
result overestimates the critical values for 7. Using Vostrikova’s tail approximation for
the supremum of the y?-process we get more suitable critical values.
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3. Proofs of Theorems 1.1 -1.5

ProOF OF THEOREM 1.1. By Einmahl (1989) we can find a Gaussian process
I'(t) = (I'1(t),I'2(t)) with covariance structure specified in Theorem 1.1 such that

3

(3.1) I(51(T)1,82(T) ~T(T)| = O(logT), as T — oo,
where ||-]| denotes the maximum norm of vectors. Now (1.2) follows immediately from
(3.1).

To prove (1.4) first we note

S [S1(EN(n)) — T1(nbt)] < o® 151(8) = T1(t)] + Sup [Ty (n6t) — 1 (¢N(n))|

= Ai(n) + Az(n).

a.8.

Using (3.1) and condition (1.3) we get A;1(n) = O(logn). By (1.3) it is enough to
consider SUPy<;<np SUPg<s<en |1 (t+ 8) — T'1(t)| where € > 0 can be as small as we wish.
Since I'1(t)/o1 is a Wiener process (Brownian motion) we obtain for any n that

Csup  sup [Ti(t+s)—Ti(t)| 2n'/2 sup sup ITi(t + s) — T1(8)]-
0<t<nf 0<s<en 0<t<A 0<s<e

By the continuity of I'; (t) we have

lim sup sup Ii(t+s)—-T1(¢)|=0 a.s.,
€l0 p<t<h 0<s<e

and therefore As(n) = op(n'/?). Thus we have

(3.2) Os<1£1 |S1(tN(n)) — T'1(nbt)| = op(n'/?)

and similarly :
(3.3) sup |S2(tN(n)) — Ta(nbt)| = op(n'/?).
0<t<1
Computing the covariance functions one can easily verify that
(34) {(n8)Y2(T'1(nbt), T2(nb1)),0 < t < 1} 2 {(T(£), Ta(t)),0 < t < 1}.
By (1.3), (3.2)—(3.4) we have

S IN=Y2(n)(S1(EN (n)), S2(tN (1)) — (n8) ~/*T(nbt) || = op(1),

which completes the proof of (1.4).

PrOOF OF THEOREM 1.2. Since {Si(nt),Sa(nt),0 < ¢ < 1/2} and {Si(n) —
S1(nt), S2(n) — Sa(nt),1/2 < t < 1} are independent, by Einmahl (1989) for each n
we can define two independent Gaussian processes I') and I'® such that
(35)  sup [[(Si(nt), Sa(nt)) ~ 1) (nt)]/ log(nt) = Op(1)

2/n<t<1/2
and
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(3.6) sup  [|(S1(n) — Si(nt), Sz(n) — Sa(nt)) — TP (n — nt)||/log(n — nt)
1/2<t<1-2/n

= 0p(1).

Next we define

8 (p = § PTACD @) 4T (0/2) + TP (n/2))),  0<t<1/2
"= 2 (TP - nt) (1 - OO (/2) +TO /), 12t L.

Using standard arguments (cf. for example, Cs6rgé and Horvath ((1997), 17-19)) one
can derive from (3.5) and (3.6) that

61 sup [(Run(nt), Ran(nt)) - Ba(®)] = Op(n~2logn)

and

(3.8) n’ e [(Ry,n(nt), Ro.n(nt)) — B (t)ll/(E(1 — £))1/>
=Op(1)

for ahy v>0and 0 <v < 1/2. Next we note that

(3.9) {Bn(£),0 <t <1} 2{Iy () — Ty (1), To(t) — ta(1),0 < ¢ < 1}.

Let An(t) = (B2, (t) + B2 ,())/2/(t(1 — ))/2. It follows from (3.9) that (1.8) holds.
Next we define ¢(n) = exp((logn)*)/n with some 0 < o < 1. We can assume that
o1 < 9. We observe that for any 0 < ¢; < ey < 1

(3.10) sup [ Baa(t)l/(t(1 ~1))/? < sup |An(t)]

c1<t<Len c1<t<Len

< sup [Bai(0)|/((1 - t)'?

c1<t<Lez

+ sup |Bna()]/((1 - 1))"/2.

c1<t<cn

By the Darling and Erd6s (1956) law (cf. also Cs6rgé and Horvéath ((1997), pp. 363-372))
we have

(3.11) (2loglogn)™/?  sup  |Baa2()l/(t(1 —1))/2 5 oy,
1/nt<i—1/n

(3.12) (2loglogn)™% sup |Bni(t)|/(t( - ))1/2 Sall?e;,  i=1,2
1/n<t<e(n)

and

(3.13) (2loglogn)~1/2 sup |Bns(8)]/(t(1 - 1/2 50?0, i=1,2.
1—e(n)<t<1-1/n

Choosing 0 < a < (02/(01 + 02))2, by (3.10) — (3.13) we conclude

(3.14) lim P{ sup  Ap(t) = sup An(t)} =1

n—oo 1/n<t<l/n c(n)<tL1—c(n)
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Now (3.8) with v = 0 and (3.14) imply that

(3.15) lim P {T,f = sup Trn(nt)/(t(1 — t))1/2} =1

n—0oo c(n)<t<1-—c(n)

The equations (3.14) and (3.15) mean that it is enough to approximate
Ty (nt)/(t(1 ~ )2 on [c(n), 1 — ¢(n)]. By (3.7) we have that

sup (R} n(t) + B3 L(t)Y? — (B2 1(t) + Bl o(8)/21/(¢(1 — £))*/?
c(n)<t<Ll—e(n)

< sup |(RIL(1)+ B3.(1)'/2 = (Ba (t)+ B2o(t)/?  sup  (s(1-—s))7%/?
0<t<1 e(n)<s<1l~¢(n)

= Op(log nexp(~(logn)*/2)),

which completes the proof of (1.9).

Proor oF THEOREM 1.3. If y =0 and o1 = 09 = o, then
5
{5800 <t <1} 2810+ B3O 60 - 00 < 1 <),

where {B1(t),0 < ¢t < 1} and {By(t),0 < ¢t < 1} are independent Brownian bridges.
Hence (1.9) and Horvéth (1993) (cf. also Csorgé and Horvath ((1997), pp. 363-372))
imply (1.10).

Let &£(n) = a(n)T/o — b(n). By the Skorohod-Dudley-Wichura representation
theorem (cf., for example, Shorack and Wellner ((1986), p. 47)) we can write (1.10) as

(3.16) (§" (n), N*(n)/n) — (£7,60)] =50,

where £* is a random variable with distribution function exp(—2exp(—z)) and

(3.17) {£*(n), N*(n)} 2 {¢(n),N(n)}  for each n.

Let 8,¢ > 0. By (3.16) there is K such that P{supg<,<s |6*(n) — &*| > €} < 6. Since
N*(n) — oo a.s. , there is ng such that P{N*(n) < K} < 6, if n > ng, and therefore
P{E*(N*(n)) — &*| > €} < 26, if n > ng. Now (1.11) follows from (3.17).

ProoOF OF THEOREM 1.4. Let
(k1) —pp), i 1<k<kQ)
(a(1) = )R(L) + k(us(2) — 1), i k(1) <k < K(2)

(i(1) = p)k(L) + - - + (ui(R) — pR)E(R) + k(pi(Ra) — ),
\ if  k(R)<k<k(R+1)

for each i = 1,2. By the weak convergence of partial sums we have

2 ma |Si(F) ~ 5i(n) — 4(B) = Op(1), =12,

1<k<n
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and therefore

(3.18) [pax [Tn(k) — '1/2(f2(k)+€ (k)2 = 0p(1).

Observing that

2 20L\1/2 _, 1/2
Dax (2 (k) + £5(k)) max (eZ 1+ €)' 2 >0,

the proof of (1.13) is complete.
Using the Darling and Erdds (1956) law on [1, k(1)], [k&(R),n) and the weak conver-
gence of partial sums on [k(1), k(R)], similarly to (3.18) we have

(319) max [T, (k) —n~2(€3(k) + (k) 1/z|/( (1__)>1/2

1<k<
= Op((loglogn)'/?),

which gives immediately (1.14).
PrOOF OF THEOREM 1.5. Let ¢* the smallest integer satisfying

2 2 \1/2 2 \1/2
12152(,;(61,1 +e72) 2 = (el 1t e€hs) 2,

Now (3.18) implies (1.15). Similarly, (1.16) follows from (3.19).
4. Proofs of Theorems 2.1- 2.4

By the central limit theorem we have

(4.1) |63(n) — of| = Op(n™'/?) and |63(n) — o3| = Op(n™"/?).

ProOoOF OF THEOREM 2.1. Using (2.5) we get that

max Rﬂz,n(k") _ Rz,n(k) - Op(n_l/z),
1<k<n| 6;(n) o

1=1,2,

and therefore (2.6) follows from (2.5).
Arguing as in the proof of Theorem 1.1 one can easily show that (2.6) implies (2.7).

Proor oF THEOREM 2.2. By the Darling and Erd8s (1956) law and the central
limit theorem we have

(4.2) max |R;n(k)/(k/n)/? = Op((logloglogn)'/?), i=1,2.
1<k<logn !
and

(43) Jax, [Rin(K)/((n — k)/n)}/?| = Op((logloglogn)'/?), i=1,2.
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Thus (1.10) implies that

. 2 2
(4.4) Jim P{a(n) logn<B2x | (B (k) oy

+RS n(k)/93) 2/ ((k/m) (1 = (k/m)))*"* < 2+ b(n)}
= exp(—2exp(-z))

2

for all . Putting together (4.1)-(4.3) we get

max |R; o(k)|/(k/n)'/? = Op((logloglogn)'/?), =12
1<k<Llogn

and
A £\ /2
max ]&n(k)!/ (1 o ;{) = Op((logloglogn)/?), i=1,2.

n—logn<k<n
1/2
n n

On the other hand, (4.1) and (4.4) yield

(R%,n(k) N R%,n(k)>1/2_ (R%,n(k) . R%,n(m)“?
2 2 52

9] 03

1/2
— op[ (loglogn "y
\\ logn
and therefore (2.8) follows from (4.4).

The result in (2.9) can be derived from (2.8) in the same way as (1.11) was derived
from (1.10) using the Skorohod-Dudley—Wichura representation.

logn<k<n—logn

Proor OoF THEOREM 2.3. Under H} we can find two positive constants such that
63(n) =¥ = Op(n™/%)  and  |83(n) — 13| = Op(n™"/?).
So instead of (3.18) we write

ax T (k) — 07 2 (0 (k) /11)? + (2(K) [72)2) /2] = Op(1)
and

% jmax ((6(k)/ 1) + (€a(k) /1))

; 2 ) 2\1/2
- lrsniaS‘XR((el,l/'yl) -+ (e,yz/fh) ) > 0’

completing the proof (2.10). Similar arguments give (2.11).

Proor oF THEOREM 2.4. Following the proof of Theorem 1.5 one can derive
(2.12) and (2.13) from (2.10) and (2.11).
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