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Abstract. A general goodness-of-fit test for scale-parameter families of distribu-
tions is introduced, which is based on quotients of expected sample minima. The
test is independent of the mean of the distribution, and, in applications to testing
for exponentiality of data, compares favorably to other goodness-of-fit tests for expo-
nentiality based on the empirical distribution function, regression methods and cor-
relation statistics. The new minimal-moment method uses ratios of easily-calculated,
unbiased, strongly consistent U-statistics, and the general technique can be used to
test many standard composite null hypotheses such as exponentiality, normality or
uniformity (as well as simple null hypotheses).
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1. Introduction

Deciding whether given data comes from a particular class of probability distribu-
tions is one of the basic problems of statistics. For example, given a random sample
Xi1,Xa,...,X, from an unknown distribution F, it is often desired to test for exponen-
tiality of the data, i.e., to test the null hypothesis

(1.1) Hy : F € {exp(B) : 8> 0},

(where exp(f) denotes the exponential distribution with density e %% for z > 0).

Alternatively, it may be desired to test for uniformity, normality, or other general
properties of the underlying distribution, and many goodness-of-fit tests for such com-
posite null hypotheses are available (cf. D’Agostino and Stephens (1986)).

It is the purpose of this article to introduce a general test for scale-parameter fam-
ilies, that is, to test the null hypothesis Hy : F' € F, where F = {Fg, 3 > 0} is a family
of distributions satisfying F(z) = Fy(Bz) for all 8 > 0. Such scale-parameter families
include the class of exponential distributions in (1.1), as well as many other families
such as uniform (Fp ~ U[0, 8], i.e., Fp is uniformly distributed on [0, 3]), and normal
(Fg ~ N(0,8%)). (Note that neither {Poisson(8)} nor {N(3,1)} are scale-parameter
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families; scale-invariance says that the random variable X has law in the family if and
only if X also does for all § > 0.)

The test described below is based on the expected value of sample maxima or min-
ima, for which classical U-statistics are standard estimators, and is based on a represen-
tation theorem of Hoeffding, on the linearity of expectations of sample extrema, and on
the classical U-statistic strong law of large numbers and law of iterated logarithm.

2. Extreme-value moments

Throughout this article, X, Xy, Xo,... are iid random variables with finite mean
E(X) and distribution F'. The minimal and maximal moments of F' are

p(F) = E(Xy A+ AXg), me(F)=EX VXV -V Xg),

where k is a positive integer, a A b = min{a,b}, a Vb = max{a,b}, and E(-) denotes
expectation with respect to the underlying probability. Thus, for example, m;(F) =
my (F) = E(X); and 7 (F) = ma(F) iff F is degenerate (Dirac point mass). Also note
that in contrast to the classical moment (E(X¥)) framework, finiteness of E(X) implies
that of both 7y and my, for all k, both {t} and {T\r/zk} are o(k) with decreasing o(1)
difference sequences {|rity — 41|}, (cf. Hill and Spruill (1994), Lemma 2.2) and both
are linear

(2.1) if G =law(aX +b), then 1E(G) = amg(F)+b
and  mMy(G) = amy(F) +b for all k € N.

A well-known result of Hoeffding (cf. Pollack (1973)) which plays an essential role
in this article is that

(2.2) the sequences {r(F)} and {%k (F)} each determine F (and vice versa).

(Much more is true: even Miintz subsequences {k; : £1/k; = oo} of {rh} and {%k}
(Hill and Spruill (1994)) and moment sequences of non-extremal order statistics (Pollack
(1973) also determine F'.)

Hoeffding’s result (2.2) and easy calculations imply, for example, that

(2.3) g (F) = ﬁ forall k€N iff F ~ exp(A);
and

v Bk .
(2.4) my(F) = il forall keN iff FF~UJ0,0].

(On the other hand, {T\T/lk} for N(0,1) are known in closed form only for k = 1,2,3,4,5
(cf. David (1981)).)

There are many statistics which can be used to estimate i (F) and 7\r/Lk(F) from a
random sample X3, ..., X,; the standard one for 7, is the U-statistic

- - k)!
2.5 Mp(X1,..., X, :=@—) min{X;,,..., X, : {i;} distinct, 1 <i; <n
nl 1 J J
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which is both an unbiased and (by Hoeffding’s (1961) strong law of large numbers for
U-statistics) a strongly consistent estimator for my, that is,

(2.6) My(Xy,...,Xn) = mp(F)  as. as n — oco.

In fact with a second moment hypothesis as well (Var X; < 00), central limit and
law of iterated logarithm results also hold for convergence of My to 77y (Serfling (1980),

p. 191).
We observe that a useful computing formula for (2.5) is
) 1 n—k+1 n—i
2.7 Mp(X1, ..., Xp) == =x X
27 R Y (L

where {X;.,} are the order statistics X1.n < Xomp < -+ < Xy of Xy,..., X,
3. Quotient extreme-value moment goodness-of-fit tests

The purpose of this section is to use the linearity of the minimal moments, linearity
condition (2.1), Hoeffding’s representation property of the extremal moments (2.2), and
the U-statistic strong law of large numbers (2.6) to introduce a goodness-of-fit test for
scale-parameter families which is based on quotients of the minimal moments and U-
statistics. For simplicity only positive variables and the minimal moments {7} will be

addressed, and the extension to general variables and to the maximal moments {%k} is
left to the interested reader.
For each k € N, let g (F) := mg(F) /g1 (F) and

(3.1) (X1, oy Xn) = Mi(X1y o, Xn) [ M1 (X1, -+, Xn)-

The next theorem gives a minimal-moment characterization of scale-parameter fam-
ilies which is the basis for the test statistics @, r defined below.

THEOREM 3.1. Suppose X1, Xs,... are iid with distribution F, and F = {Fs}
is a scale-parameter family of (integrable) random variables. Then the following are
equivalent:

(i) F = Fg for some B > 0;
(ii) ge(F) = qu(Fy) for all k € N;
(iil) qx(X1,...,Xn) — qx(F1) a.s. as n — oo, for all k € N.

PRrROOF. “(i) = (ii).” Suppose F' = Fp for some 3 > 0. Then by (2.1), ¢x(F) =
qk(Fg) = ﬂmk(Fl)/,Bﬁ’bk+1(F1) = qk(Fl) for all k € N.

“(ii) = (i).” Suppose qx(F) = qe(F1) =: gi for all k € N, and let g =y (F) > 0
and A = 7y (F;) > 0. Then by the definition of {g}, g1 (F) = p/ H;;l g; and
g1 (F1) = A/ H?___l gj, 80 1y (F) = Ly (F1) for all k € N, which by linearity (2.1)
and Hoeffding’s representation theorem (2.2) implies that F' is in the scale-parameter
family containing Fi, so F' = Fg for some 3 > 0.

“(i) = (iil).” Suppose F' = Fp for some 3 > 0, and fix k£ € N. By the U-statistic
strong law of large numbers (2.6), gx (X1, ..., Xn) — qe(Fp) a.s. n — co. But by linearity
(2.1) and the definition of {qx}, qu(F1) = qx(F3).

“(iii) = (ii).” Immediate by (2.6) and the definition of {gz}. O
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COROLLARY 3.2. (Exponential family case). Let X1, Xo,... be iid with finite pos-
itive mean and with distribution F'. Then the following are equivalent:
(i) F ~ exp(B) for some 8 > 0;
(ii) gu(F) = (k+1)/k for all k € N;
(iil) ge(X1,...,Xn) = (k+1)/k a.s. for all k € N.

ProOOF. Immediate from Theorem 3.1 and the {r1;} for exponentials in (2.3). O

Test statistics {Qp.r : 1 < p < oo} will now be defined which measure the dis-
crepancy between the sample quotients (of minimal moments) and the true quotients of
the scale-parameter family containing F'. The distances used are the standard ¢, dis-
tances, and the quotients are simply those of the classical U-statistics estimators (2.5)
of the minimal moments {rhx(F)}. Here ||(x1,...,2m)|p, denotes the usual £, norm
oy |:c,-|”)1/p for 1 < p < oo, and the sup norm max{|zi],...,|ZTm|} for p = co. The
composite null hypothesis for the random sample to be from the given scale-parameter
family (e.g. (1.1)) will then be rejected iff the discrepancy @, r is sufficiently large.

Let {a,} be an unbounded increasing sequence of positive integers with a, =

0((n/‘log’ log n)1/2).

DEFINITION 3.3. Let F = {Fj} be ascale-parameter family, and let Xy, Xs,..., X,
be iid with finite positive mean. For each p, 1 < p < o0, let

(3.2) Qp,r (X1, -+, Xn) = [|Gal X1, -, Xn) — Gn(F1)lp,

where in(Xla---,Xn) = (QI(Xh'"7X'n-)7"'7Qan(X17""Xn)) and qn(Fl) = (ql(Fl)a
o+ v Qan (F1))-

Thus the statistic (3.2) of a random sample of size n is the ¢, distance between
the first a,, quotients of minimal moments of the sample, and those of the distribution.
Thus for a, = [n'/3] + 6 (as was used in the simulation below), if n = 20 the first 9
minimal-moment quotients are compared, and if n = 50 the first 10 are compared. (Here
[z] =min{t e N:i > z}.)

THEOREM 3.4. Let X1,Xa,... be positive iid random variables with distribution F,
let F = {Fp} be a scale-parameter family, and let 1 < p < o0. If Qp r, (X1,...,X5) — 0
a.s., then FF € F. Conversely, if Fy has finite variance, then for oll F € F,
Qp. 7 (X1,...,Xn) =0 as.

Proor. Fixp, 1 <p<oo.

“=" By way of contradiction, suppose F' ¢ F. Then by Theorem 3.1 there exists
anm € N, and d > 0 so that |gn(F) — gm(F1)] = d. By (2.6) and the definition of
{gm}, @m(X1,..., Xn) = @u(F) as. as n — o0, so liminf, oo Qp r, (X1,..., Xp) >
|gm (F) — gm(F1)| =d > 0 as.

Conversely, suppose that F; has finite variance 02. Since the {g;} are scale invariant,
assume without loss of generality that F' = Fy. If 02 = 0, then F is the class of (positive)
constant (Dirac measure) distributions, and trivially gx(X1,...,X,) = qx(Fp) =1 as.
for all k and 8, so Qp.F, (X1,...,Xn) = 0 as. If 02 > 0, then since 0 < Var(X;) <
oo if and only if 0 < Var(min{Xj,...,Xx}) < oo, it follows from Serfling’s law of
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iterated logarithm for U-statistics (Serfling (1980), Theorem C, p. 191), using kernel
h(zi,...,2x) = min{zy,..., 2}, that

Mi(X1,. .., Xn) — i (F1)

' /loglogn
n

Hence

=0(1) as.

Mi(X1,...,Xy5)
M1 (X1, ..., Xn)

e (F1) + O(y/(log logn)/n)
i+1(F1) + O(y/(loglog n) /n)
i (F1) + O(y/(loglog n) /n)

qk(le'- aXn) =

i

g1 (F1)
Since 741 (F1) > 0, this implies that
(3.3) lge(X1, ..., Xn) — ge(F1)] = O(y/(loglogn)/n)  as.

Since

1 (X1, Xn) = @a(F)lle < D lae(X1,- -, Xn) — qe(F)),
k=1

it follows from (3.3) that
Qp,Fy (X1,...,Xn) = O(any/(loglogn)/n)  as,
and the conclusion then follows since a,, = o((n/loglogn)'/?). O

COROLLARY 3.5. (Exponential family case). Let X, Xs,... be positive #id with
distribution F, and let F = {exp(B) : B > 0}. Then for all 1 < p < oo,

1/p
=%

Z lg (X1, ..., Xn) = (K + 1)/k|”) — 0 a.s. iff F is exp(B) for some 8> 0.
k=1 '

ProOF. Immediate from Theorem 3.4 and (2.3). OO

Analogs of Corollary 3.5 to other standard scale-paraméter families are also easy to

construct. In case the minimal or maximal moments {1} and {7\7/%} are not available
in closed form (as in the Gaussian case), they may easily be approximated by Monte
Carlo simulation using the U-statistic (2.5).

4. Application to tests for exponentiality

In this section, application of the above ideas is given for testing whether data
comes from an exponential distribution exp(g) for some B > 0; that is, for testing the
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null hypothesis in (1.1). Although there are various other tests for exponentiality, such as
the Pearson chi-square test and modern adaptations, empirical distribution function tests
and regression tests, and tests based on the classical sample moments (cf. D’Agostino
and Stephens (1986), Chapter 10, Ascher (1990), and Baringhaus and Henze (1991)),
the new @, r test is versatile (through choice of p and numbers of moment-quotients
compared), is easy to implement, has limiting distribution which is parameter free, and
is based on classical U-statistics about which a great deal is known. Since Poisson
processes are characterized by exponential interarrival times, these tests may also be
used for testing whether given point process data comes from a homogeneous Poisson
process. Analogs of the tables in this section to @, r tests for uniformity, normality and
other scale-parameter families are calculated similarly.

Table 1. Critical points for Qp 5 test for exponentiality.

n =10 7 = 20
a=.001 a=.01 oa=.05 a=.001 a=.01 a=.05
Q1,F 58.944 12.175 5.150 3.192 2.285 1.623
Q2,F 55.219 9.037 2.557 1.421 1.017 0.704
Qoo F 55.195 8.981 2.185 1.307 0.875 0.557
n =30 n =40
Q1 F 2.400 1.741 1.278 1.919 1.397 1.058
Qa2,F 1.058 0.768 0.540 0.895 0.632 0.449
Qoo,F 0.997 0.648 0.442 0.829 0.552 0.370
n = 50 n = 100
Qr 1.551 1.243 0.914 1.125 0.873 0.648
Qa2 F 0.767 0.550 0.393 0.485 0.367 0.276
Qoo, F 0.663 0.479 0.330 0.430 0.318 0.232
The critical points above for different values of e, p and n were calculated by simulation: n
exponential observations, X1,..., Xn were generated and the statistic Q, r computed (using

(3.2) and Corollary 3.2 (i)—(ii)); this was repeated for a total of 10,000 iterations, and the
corresponding empirical a-quantiles were determined

Comparisons of the @, r test with other standard tests for exponentiality are given
in the following table against standard alternatives to the exponential distribution includ-
ing types of increasing, decreasing, and non-monotone failure rates (recall the exponential
has constant failure rate). The alternatives used (cf. D’Agostino and Stephens (1986),
p. 452-453) are the IFR types x5, U[0,1], Weib(L.5), |N|, Gamma(1.4), Gamma(2.0),
Beta(2,1) and Beta(1,2), DFR types x?, Weib(0.8), [C|, Gamma(0.5), and Gamma(0.7),
and the non-monotone failure rate types LN(1), LN(1.5) and Beta(0.5,1) where:

Weib() is the Weibull distribution with density, f(z) = vz7~ ! exp(~z7), = > 0;

|N| is the distribution of ¥ = |N| where N is N(0,1);

LN refers to the lognormal density f(z) = const -z~ ! - exp(—(log z)%/2), z > 0;

|C| is the distribution of Y = |C| where C is standard Cauchy;

exp(1l) is mean-1 exponential distribution.

Standard tests against which the @, r test is compared in Table 2 include the
Anderson-Darling test A2, the Cramer-von Mises test W2, Stephens’ Wg regression test,
Baringhaus and Henze’s T; test, Moran’s test M, Patwardhan’(s) Q(1) test, Gnedenko’s
F-test Q(R), and the Cox-Oakes test CO, details of which may be found in D’Agostino
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and Stephens (1986), Ascher (1990), and Baringhaus and Henze (1991).

Table 2A. Estimated powers, in percent, of @, 7 test for exponentiality at 5% level.

' n = 20; 5000 trials

QuF QoF Qeor A*> W2 Ws T1i M Q1) Q@R CO
Null Hypothesis

exp(1) 6 5 4 4 4 4 4 5 4 5 5
Alternatives
Increasing Failure Rate
Xz21 9 7 10 45 47 35 52 56 15 26 57
Ulo,1] 7 12 28 63 66 69 60 46 27 60 59
Weib(1.5) 8 7 11 45 47 40 51 51 15 30 56
IN]| 2 2 3 17 21 17T 2 18 9 17 22
Gamma(1.4) 2 13 15 9 15 17 6 9 17
Gamma(2.0) 10 8 10 45 48 34 53 57 16 25 57
Beta(2,1) 75 94 99 100 100 160 100 100 87 99 100
Beta(1,2) 3 2 4 22 25 25 24 20 11 24 25
Decreasing Failure Rate
x% 79 78 65 70 51 37 60 5 26 46 71
Weib(0.8) 34 36 34 27 20 19 25 28 12 20 26
|Cl 57 68 71 63 63 68 64 53 53 57 57
Gamma(0.5) 79 78 67 71 52 36 61 7 25 47 72
Gamma(0.7) 38 36 31 27 18 15 23 31 11 19 27
Non-monotone Failure Rate
LN(1) 4 8 10 12 13 17 11 8 10 5 9
LN(1.5) 5 9 11 14 15 17 13 10 11 7 10
Beta(0.5,1) 52 38 12 40 18 3 13 39 22 14 28

From our power study we conclude that for large sample sizes the proposed tests
Qp,r behave well against a large selection of alternatives and are competitive with other
well known goodness of fit tests for exponentiality. For small samples, the statistics
Qp,r (especially Qo r) behave very well against DFR alternatives, but poorly against
IFR distributions. It is expected that there will be the opposite situation if maximal
moments are used instead of minimal moments.

Remark. Corollary 3.2 ((i)<>(ii)) suggests an alternative test for exponentiality:
estimate 772, with the U-statistics M, in (2.5), and then test ]\2[,;“ ! for linearity in k. A
similar linearity-based goodness-of-fit test for Poisson data was obtained by Nakamura
and Perez-Abreu (1993).

5. Remarks

a) The same ideas can be used to test for simple null hypotheses by just com-
paring the sample minimal moments with true minimal moments. For example, the
null hypothesis Hy : F' = exp(l) should be rejected iff the sample minimal moments
{My(X1,...,X,)} are not close to the true minimal moments {1/k} (cf. (2.3)). Al
though the above statistics @, r were designed to test for scale-parameter families only,
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Table 2B. Estimated powers, in percent, of Q, r test for exponentiality at 5% level.

n = 50; 5000 trials

Qur QorF Qoo,r A2 W2 Wg Ti1 M Q1) QRB) CO
Null Hypothesis

exp(1) 5 5 5 5 5 5 5 5 5 5 5
Alternatives
Increasing Failure Rate
% 84 85 78 92 90 77 94 96 40 64 96
ulo,1] 50 91 97 99 98 100 96 79 53 95 94
Weib(1.5) 71 83 82 91 90 86 94 93 35 73 95
| N} 16 29 36 45 49 52 50 36 14 43 49
Gamma(1.4) 21 20 18 32 32 23 37 40 9 19 41
Gamma(2.0) 85 84 78 91 90 77 94 96 411 64 95
Beta(2,1) 100 100 100 100 100 100 100 100 100 106 100
Beta(1,2) 16 37 49 57 59 75 59 40 19 54 58
Decreasing Failure Rate
xf 98 08 93 96 90 63 94 98 40 79 97
"~ Weib(0.8) 59 62 57 52 43 31 51 52 16 38 52
|Cl 89 95 95 93 93 94 93 86 83 89 91
Gamma(0.5) 98 98 93 96 90 63 94 98 39 79 97
Gamma(0.7) 63 61 50 52 38 21 46 57 13 31 55
Non-monotone Failure Rate :
LN(1) 30 18 16 34 29 28 17 14 23 8 11
LN(1.5) 30 19 17 35 30 28 18 15 22 10 13
Beta(0.5,1) 79 64 15 76 48 5 24 63 35 15 46

a similar statistic can test for (finite-moment) families in which both scale and location
are unknown, since by linearity (2.1), (fgy1 — k) /(Thk+2 — Thik41) is independent of
both scale and location.

b) The statistics @ r described above give equal weight to proximity to all mini-
mal moments, but perhaps nonuniform weights (e.g., more weight on proximity to means
than higher minimal moments) will lead to tests which are more powerful against stan-
dard alternatives; this has not yet been studied by the authors.

¢) Although much is known about the distribution of sample extrema (cf. Resnick
(1987)) and about convergence and limiting distributions of the U-statistics {M}, the
approximate and limiting distributions of @, r or of the ratios M, / Mk+1 are not known
to the authors.

d) The statistics Qp  have several additional advantages. First, in many appli-
cations such as those involving time to failure, the sample minima (and their quotients,
which measure the advantage of adding an additional component to the system) are
natural objects of independent interest.

Second, they are (via Theorem 3.4) one of the only goodness-of-fit tests for com-
posite scale-parameter null hypotheses which are consistent against any finite-moment
alternative to the null hypothesis. And third, since they depend only on existence of a
finite first moment, they may prove useful in testing distributions such as stable laws
which do not have finite variance.
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e) As pointed out to us by Michael Stephens, the quotient test described above
could be useful in the presence of censoring, since the minimum, for example, is insen-
sitive to deletion of high values of the sample. This is probably also the reason for the
better performance of the Q, r statistics against DFR alternatives than against IFR al-
ternatives. In addition, an even more censoring-robust test could be easily designed using
a statistic based on g, ..., gc+q instead of g1, ..., qa+1, since the moments {rny, k > c},
also determine the distribution uniquely.

f) Since the U-statistic strong law of large numbers also holds for large classes
of dependent random variables such as ergodic stationary sequences (Aaronson, et al.
(1996)), the same Q, r statistical tests can be used for many applications in which the
data X7, Xo,... are not necessarily independent.
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