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Abstract. In this paper we study interesting properties of Fisher and divergence
type measures of information for quantal, complete and incomplete random censor-
ing, and not censoring at all. It is shown that, while quantal random censoring is less
expensive, it is less informative than complete random censoring. It is also shown
that in experiments which are mixtures of quantal and complete random censoring,
the information received from these experiments is a convex combination of quantal
information and the information in complete random censoring. Finally, the “total
information” property is studied, in which the information received by the uncensored
experiment can be expressed as the sum of the information provided by random cen-
soring and the loss of information due to censoring. The results for Fisher's measure
of information are an extension of already known results to the multiparameter case.
The investigation of the previous information properties for divergence type mea-
sures is a new element, as well as the comparison of byproducts of Fisher information
matrices.

Key words and phrases: Quantal random censoring, complete random censoring,
Fisher information matrix, p-divergence, total information.

1. Introduction

In life testing experiments the response variable, the lifetime, is almost never fully
observed, because there is not enough time and/or money to run the testing, until all
units, put on the test, fail. This is the reason why censoring is always used in life testing.
In clinical trials, where the variable of primary interest is the time to survival (overall
survival, time to disease progression, etc.), censoring plays a fundamental role. Here we
shall be concerned with random right censoring.

Let X1, Xs,..., Xy be independent and identically disributed (i.i.d.) random vari-
ables with common survival function F(t) = P(X > t), where X represents the time
taken for an event of interest to occur. It is assumed the X;’s are not all observed fully,
but some are censored on the right. In this case, instead of X, we observe Y, which
is the censoring variable with survival function G(t) = P(Y > t). X and Y will be
assumed to be independent. The recorded information (Zy,61), (Z2,62),...,(Zys,6,) is
obtained from the random pair (Z, 6), where Z = min(X,Y) and § = I x<y). Here, §;
indicates whether X; has been observed or not. Note that if ' = G, then the probability
of censoring equals 1/2, and if Y is stochastically larger than X, then the probability of
censoring is less than 1/2.
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In some situations, continuous follow up or monitoring of the tested items is very
costly or technically difficult, and a failure or the item’s true condition is found only
on inspection. For example, a cracked part inside a machine. The machine or module
must be taken apart, examined and assembled again. In other situations, failures are not
signalled when they occur. To reduce the testing cost and make it simpler, we inspect the
item’s condition at a randomly selected inspection time Y. If a unit is found failed, one
knows only that its failure time was before its inspection time. Similarly, if a unit is found
unfailed, one knows that its failure time is beyond its inspection time. The information
received is in the binary form “z < Y” or “z > Y”, where z is the failure time of the
item. If the lifetime z > Y, the information recorded is only that z > Y. This is the
model termed by Nelson (1982) as quantal response model. Data associated with this
model are generally called quantal response data, and the corresponding censoring mode
will be termed guantal type censoring. If the inspection time is random, then we have
quantal random censoring. We shall distinguish two types of quantal random censoring:
(i) quantal random censoring based on 8, where we only observe the 6;, i = 1,2,...,n,
and (ii) quantal random censoring based on (8,Y), where we not only observe the §;,
but for each §; we also have a Yj, the inspection time, ¢ = 1,2,...,n. Both types of
quantal random censoring are less expensive than complete random censoring, but less
informative, as we intuitively feel. We establish this, by means of information theory
in Section 2 of this paper. In other words, if I is any measure of information, and I,.,
I4rc and Is are its values for random censoring and quantal random censoring based on
(6,Y) and 6, respectively, we shall prove that Is < I .. < I, for all standard I.

There are situations where, due to monitoring reasons, complete random censoring
is not possible. For instance, an uncensored observation is either recorded with constant
probability or varying probability over the experimental units; of course, the examination
or the inspection time is always recorded. In other words, uncensored observations are
randomly recorded or signalled. This experiment can be thought as a mizture of quantal
and (complete) random censoring, and it turns out that information for this experiment
is a convex combination of quantal information and the information in complete random
censoring. This is presented in Section 3, where we prove that, if p is the probability
of recording an uncensored observation, and I the information in this experiment, then
I = plc+ (1 — p)Iyrc, for any of the standard measures of information.

It is intuitively obvious that the information provided in a censored experiment
should be less than or equal to the information provided by the uncensored experiment.
In other words, if I is a measure of information, we should have I > I,... Indeed, this has
been shown to be true for any measure of information I (Tsairidis et al. (1996), Theorem
5.3). This result leads to the idea of decomposing I into two parts, one being I,.., and the
other a meaningful conditional information component, which is the loss of information
due to censoring. This property has been called by Gertsbakh and Kagan (1999) as the
total information property, and it is shown to be valid for Fisher’s information matrix
and Kullback-Leibler measure of information. In addition, based on this property, it is
shown that, if both measures of information are equivariant with respect to the expected
value of the distribution function of lifetime (with respect to G), then the conditional
information equals the unconditional, which is a kind of lack-of-memory property. This
is the topic of discussion of Section 4 of this paper.

There are two types of measures of information: parametric or Fisher type, and non-
parametric or divergence type (cf. Ferentinos and Papaioannou (1981), and Papaioannou
(1985)). The main representative of the first type is Fisher’s measure of information,
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which is defined for parametric families of distributions, while for the second class is
Csiszar’s ¢-divergence (cf. Csiszar (1963)) or the Kullback-Leibler measure of informa-
tion (cf. Kullback and Leibler (1951)). Another well known divergence is Matusita’s
measure of information (cf. Matusita (1967)). In random censoring we shall follow the
definition of measures of information as they have been clarified in Tsairidis et al. (1996),
and are based on the distribution of the random variables Z and 6 or the likelihood for a
single observation. Where needed, we shall sometimes employ a conditional expectation
argument to obtain simplified expressions for the measures of information. Frequently,
these expressions are analogous to the Hollander, Proschan, and Sconing type measure
of information (cf. Hollander et al. (1987)).

The distributional assumptions are as usual. For Fisher type measures of informa-
tion, we assume a parametric family of distributions M = {P,,0 € ©} with g.p.d.f.
f(z;0) = %’—D‘f, relative to a dominating measure p on the real space X, satisfying some
appropriate regularity conditions (cf. Papaioannou (1985)). X will be assumed non-
negative, and the parameter space is an open subset of the Euclidean space R*. For
divergence type measures of information, we consider two probability measures P; and
P, on the measurable space (X,7). Let fi(z) = %, i = 1,2, where p is a dominating
finite or o-finite measure, and Fi(z), i = 1,2, be the g.p.d.f’s and c.d.f’s of X, respec-
tively. For the censoring variable Y we shall assume a g.p.d.f. g(y) and a c.d.f. G(y),
independent of # (noninformative censoring). The distribution of Y need not belong to
M. For the p-divergence or Csiszar’s measure of information we shall assume that ¢ is
a convex function satisfying appropriate regularity conditions (cf. Csiszar (1963)).

Measures of information can be partially ordered as follows: If W is a function of
X, then Ix > Iy, for all standard I, where the ordering relationship “>” is in the
positive definite sense if I is an information matrix (cf. Pukelsheim (1993)). This is the
monotonicity property of measures of information or the well known property of mazimal
information (cf. Ferentinos and Papaioannou (1981), and Papaicannou (1985)), applied
to any paired random variables X and W defined as before. This ordering carries over to
experiments, and, in particular, to censored experiments. An experiment £ is identified
with a random variable X and will be denoted by £x. Thus, experiment £x is “greater
than or equal to” (or sufficient in Blackwell’s (1951) sense) experiment Ey, Ex > Ew,
if W is a function of X. The monotonicity property of measures of information with
respect to experiments states that if £x, = £x,, then Ix, > Ix,. The specification for
censored experiments is obvious.

In summary, in this paper we study interesting properties of Fisher and divergence
type measures of information for quantal random censoring, complete random censoring,
incomplete random censoring, and not censoring at all. The motivation for this work
have been the papers by Elperin and Gertsbakh (1988), Gertsbakh (1995), and Gerts-
bakh and Kagan (1999), where similar properties have been examined only for Fisher’s
information measure with # univariate. Here we extend these results to Fisher’s informa-
tion matrix and its byproducts, and to divergence type measures of information, as well.
These results might be useful in deciding which type of censoring should be preferred for
designing life testing experiments or clinical trials.

2. Quantal and randomly censored information.

For the random censoring setup, defined in Section 1, the joint distribution of (Z, §)
or the likelihood for a single observation, is given by



INFORMATION IN QUANTAL RESPONSE DATA AND RANDOM CENSORING 531

p((z,6);0) = [f (% 0)G(2)°l9(=)F(2:0)]'°,  6=0,1

Fisher’s measure of information is given by (cf. Tsairidis et al. (1996))

f(z)(z 0)fi)(%9) A ® Py (2 0)F ) (2;6)
T G e

IF(0) = 1555 (6) 9(=)dz

kxk

(-l s denotes a k x k matrix), where

fy(2;0) = 8f(z 9), Foy(2:0) = ﬂa(;ﬁ’ t=12...k

The following conditional expectation argument gives a simpler expression for IZ,(8):
The conditional distribution of (Z, §) given Y = y, is given by

p((2,6) | 4;0) = [f(z 0)°[F(y;0)]* %, 6§=0,1.

Note that for 6§ = 1, 2 < y, and for 6 = 0, z > y. The conditional Fisher information
matrix based on the above distribution, after some algebra, is

/ Y fiy (2 0) f5) (2 0) o4t Foy(y; 0)F5(y; 0)

F(rc)
)= f(z9) F(y;0)

(Z5)|Y Yy

kxk'
Unconditionally we have
2.1) I50) = I1;759(6)
_ Y fiy(20) fi;)(2:0) Fiy(y; 0) F 5y (y; 0)
=|[Tow ] e R

This will be called randomly censored Fisher information.
Csiszar’s p-divergence between f; and f> based on the censored experiment at hand,
is given by (cf. Tsairidis et al. (1996))

1550 = 5 [ oo (BED) o

6=0,1

- [t (1) [ (53)

where p;(z,6), i = 1,2, is p((2,6);0) with f replaced by f;, i = 1,2, and () is the
convex function associated with Csiszar’s measure of information, satisfying appropriate
regularity conditions for the existence of the above integral (cf. Csiszar (1963)). Again,
the conditional expectation argument gives

it = [ (35 e+ e (£G5).

and unconditionally

(22)  IS(fu o) = I (Fu )

= [ s | [ ftere (2E

kxk

%) dz + Fy(y)p (?(y))] dy.
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This will be called randomly censored divergence.

In quantal random censoring we either observe only the variables §; or the variables
(6,,Y;),i=1,2,...,n, in contrast to the pairs (Z;,8;),i = 1,2,...,n, which are observed
when we have plaln random censoring. The distribution of 6 is Bernoullz(l p= fo
f(z;0)G(z)dz).

In quantal random censoring based on 6, Fisher’s information matrix will be denoted
by I} (), and is given by

IF(9) = ” (alogh (8; 0)310%255 0))

(2.3)

b
kxk

where
I f(z:0)G(z)dz , 6=1
h(é, 0) = ) ,
fooo g(2)F(z;0)dz , 6§=0

while Csiszar’s measure of information will be denoted by I‘SC( f1, f2), and is given by

(24) IS(fi, f2) = ) ha(8) (Z;Eg;) ;

§=0,1

where h;(6), 7= 1,2, is h(6) with f replaced by f;, 1 =1,2.

For quantal random censoring based on (6,Y), we shall consider the distribution of
6 given Y = y, which is a Bernoulli distribution with probability of success p = F(y; §),
that is ~ s
(2.5) a(619;6) = [Fy:0)]° [F(y:0)]) ", 6=0,1.

The conditional Fisher information matrix based on the above distribution, after some
algebra, is

7 () = ” Fo)(y 0)F 5 (y; 6)
er=y F(y; 0)F (y; 9)

kxk
Unconditionally we have

Foy (4 0) F5 (93 9)
F(y;0)F(y;0)

This will be called quantal randomly censored Fisher information.

In a similar manner, if f; and F;, ¢ = 1,2, are the p.d.f’s and c.d.f’s of X, respectively,
and g and G the p.d.f. and c.d.f. of Y, respectively, then in view of (2.5), Csiszar’s -
divergence between f; and f; based on the conditional random variable (6,Y) | Y =y

is _
rc F = F
IGE_ (i, f2) = Fa(y)p (Fl%%) + Fy(y)e (F‘;Ei;) :
and unconditionally

(2.7) Ig’;c(flafz) = I(Cs,(;r)c)(fl,fﬁ

=) o [ (565) + B (75

dy

ee  EO=15570-|[

kxk
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This will be called quantal randomly censored divergence.

The following theorem shows that the monotonicity property holds in the censoring
case. In particular, it is shows that, both randomly censored Fisher information matrix
and randomly censored divergence, are greater than or equal to their quantal censored
-counterparts, respectively, provided that the two modes of censoring (random censoring
and quantal random censoring) have the same censoring variable Y (equal censoring
times). Elperin and Gertsbakh (1988) established the validity of (i), with @ univariate.

THEOREM 2.1. For the randomly censored and the quantal randomly censored Fisher
information matriz, defined by (2.1), (2.3) and (2.6), respectively, and the randomly
censored and quantal randomly censored divergence, defined by (2.2), (2.4) and (2.7),
respectively, we have

(i) If (0) < IE (6) < IE(8), in the positive semidefinite sense, and

(il) I (f1, f2) S IG.(f1, f2) < IS(f1, f2)-

PrROOF. The inequality Is < Iy, follows immediately from the monotonicity or
maximal information property, which is satisfied for Fisher’s information matrix and
p-divergence, (cf. Tsairidis et al. (1996)). For the inequality I, < I, and for both
measures, take the triplet (Z,Y,6). Plainly, by the same principle, I, = Isyy <
I 7y 5. On the other side, an application of the factorization theorem shows that the pair
(Z,6) is sufficient for (Z,Y,6) and, thus, Iyre < I(zv,5) = I(z,5) = Irc. An alternative
proof can be obtained by considering the additivity property of I(5y) and I zs), and
showing that E (Iy|s) < E (Izs). For 6§ =0, Iy|s—0 = Iz|s=0, since the random variables
Y |6=0and Z |6 =0 are equal almost everywhere. The conditional distributions cf
Y|6=1and Z |6 =1 are given by Cg(y)F(y) and Cf(2)G(z), respectively, where C
is a normalizing constant (one can easily check that the normalizing constants are the
same). The p.df of Y | X = z,6 =1 is given by

9(y)
_ =27 >
Iy ix=2,5=1(y) = G(z)’ v=2
0, otherwise

and so the density of Y | § =1 is

"I 6 () G()de = Coly) P1)
o G(z)
Thus, the inequality Iy s=1 < Izjs=1 follows from the monotonicity or maximal infor-
mation property of measures of information, which hold for both Fisher’s and Csiszar’s
measures. A further analytical proof is available from the authors.

Remark 2.1. The second proof of Theorem 2.1 establishes a more general result:
If X is a positive random variable with density Cf(z)G(z) and V" a random variable
with density Cg(y)F(y), where F' = f and G = g, then Iy < Ix.

Remark 2.2. Tt is known that random censoring includes type I censoring by simply
setting ¥ = ., where ¢, is some (preassigned) fixed number called fixed censoring time
(see, e.g., Miller (1981)). Setting Y = ., we have the recent result of Gertsbakh (1995),
for the Fisher measure of information with # univariate, in type I censored and quantal
response data.
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Ferentinos and Papaioannou (1981) considered byproducts of Fisher’s information
as parametric measures of information. Let AT , and A{" and A, i =1,2,...,k, be the
eigenvalues of the randomly censored and quantal randomly censored Fisher information
matrices, respectively, and ¢If, and & ° and ¢§;, i = 1,2,...,k, be the diagonal elements

of the previous matrices, respectively. Then

k k
Dyo(6) = det [I5(0)] = [[ e, Iro(6) = erlI5(0)] = > _uif,
i=1 i=1
and
k k
Dyre(6) = det[I5(0)] = [T AP, I;.o(0) = txlI5(0)] = > o7,
i=1 i=1
k k
Ds(0) = det[If 0)] = [[ A8, I3 (6) = tx[If (0)] = D _ 5,
i=1 i==1

are the byproducts of the censored and quantal censored Fisher information, respec-
tively. The following corollary shows that the byproducts of randomly censored Fisher
information are greater than or equal to the byproducts of quantal randomly censored
Fisher information.

COROLLARY 2.1. For the byproducts of the randomly censored and quantal ran-

domly censored Fisher information, we have
(1) D&(G) < quc(e) < Drc(0)7 and
(i) I5(0) < 13,.(0) < I7.(6).

PRroOOF. (i) Since IF (6), IF(0)—IL (6) and If (6), I (0)—If (6) are symmetric

gre
matrices, and I7,(6) — IF..(0) and IF (6) — If (6) are nonnegative definite, we have

e > A >N i=1,2,...,k,

(cf. Bellman (1970), p. 117, Theorem 3} where

ATE 2 A5 2 - 2 N,

)‘({rc > )\grc >..> Azrc’
and

A >8> >
So we have

D5(0) < quc(e) < Drc(e)'
(ii) Every diagonal element of the matrices I (0) — I%..(6) and I} (6) — I (6) are
nonnegative. This implies
tr[Z5(0) — IE.(0)] >0 and  tr[If.(0) - IF (8)] >0,

that is,

I5(0) < Iy (0) < I7.(6).

Note that the Ds(0) < Dyrc(8) and I3 (0) < I7,.(0) parts of the previous double inequal-
ities follow from the monotonicity property.
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3. Information in random censoring with random recording of uncensored observations

Let X be the lifetime response variable, and Y be the random inspection time, X
and Y are assumed to be independent. If the item fails before inspection, i.e., if X <Y,
,then, either with probability p, 0 < p < 1, the failure is immediately signalled, and the
true lifetime Z = X is recorded, or with probability 1 — p, the failure is not signalled,
and the item’s true condition will be discovered only at the moment Y of inspection. If
the lifetime X > Y, then the experiment terminates at the moment Y of inspection, and -
the censored lifetime Z =Y is recorded.

This experimental situation can be thought as a mixture of quantal and complete
randomly censored response. Elperin and Gertsbakh (1988) refer to this setup as random
censoring with incomplete information. This is a randomly censored experiment, where
the uncensored (true) observations are, either fully recorded (X;, §; = 1) with probability
p, 0 < p < 1, or quantally (qualitatively) recorded (Y;,8; = 1) with probability 1 — p,
and the censored observations are fully recorded (Y;, 6; = 0).

If p =0, i.e., afailure is never signalled, we arrive at the random quantal response
model (cf. Nelson (1982)). If p = 1, i.e., a failure is immediately displayed, we arrive at
the random censoring model (see, e.g., Miller (1981) and Lawless (1982)).

Consider now an item %, which has lifetime X; with c.d.f. F(z;8) , # € ©. The item
i is inspected at time Y; (random), since the beginning of its operation. Let G(y) be the
c.d.f. of ;. Random variables X; and Y; are independent. Then, according to Elperin
and Gertsbakh (1988), the likelihood associated with testing item ¢ is

L(z:;0) = [f(2;0)C(2:)p) ™ l9(2:) F (255 0) (1 — p)) V™ [g(2:) F(2:36)) %,

where 2; is the observed lifetime or the inspection time, and 6, « are indicator variables
defined as follows:

)

5= 1, if the lifetime is uncensored
710, if the lifetime is censored

_J 1, if the failure is signalled
*= 0, if the failure is not signalled

The likelihood associated with testing item i, given Y; = y;, is
(3.1) L(zi | yi30) = [f (2 0)p]*° [F (33 6)(1 — p)] "~ [F(ys; 0))' .

By definition, the conditional Fisher information matrix for the experiment at hand
(with a single observation) about 6, when Y =y, is

g (8logL(z|y;0) log L(z | y; 6)
0 90;

(3.2) I{7.6.mv=y(0) =

kxk

By relation (3.2), the Fisher information matrix is

I'0) = 1o = [ 9050 0.
In a similar manner, in view of (3.1),

(3.3) p(z |y) = [f (2Pl [F(y) (1 - p)] =P [F(y)]*~°,
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is the conditional distribution for a randomly censored experiment with random recording
of the uncensored observations, given Y = y. Then, the conditional ¢-divergence measure
and the op-divergence measure, for discriminating between f; and f, are

(3.4) IG5, y—y(f1, f2) = Z Epz{ <%)]

a,6=0,1
and

IS(f1, f2) = I 5,00 (f1, f2) = /o g(y)I(CZ,&,aNY:y(flafQ)dya

respectively.

The following theorem shows that measures of information for the experiment at
hand are convex combinations, with weights p and 1 — p, of the randomly censored and
the quantal randomly censored measures of information, respectively. The validity of (i)
of the theorem, with # univariate, is established by Elperin and Gertsbakh (1988).

THEOREM 3.1. For the Fisher information matriz and the p-divergence measure in
a randornly censored experiment with random recording of the uncensored observations,
we have

(i) 17(6) = pLL(6) + (1 — p)I5(9), and
(ii) Ic(f17f2):plg(f1,f2)+(1 p) qrc(fl’f2)-

ProoF. (i) For the sake of brevity we will use the following nctation:
f&0)=f  folz0) =fu, F;0)=F Fuyf) = F,.

By relations (3.1) and (3.2) we have

F _ si0f6) OLOREIONHO o F)
(3.5) Iz 5.0y —y (6) = E[a( H2 -8 -0) 75 +(1-6)=%5
o) Fy FoyFi5) FoyFy)
+(1-a) (5—F2 ~ 281 - 6)=0= 2+ (1 - o) =52 ).
But
c fayfu) foFo + finFo) FoyF)
(3.6) b; =E (5——2 —6(1 - 6) F + (1 -6) —F )
and FoF F o F FnF
re _ o) LI (z) (z)

where ¢ and (7 ¢, 1,5 =1,2,...,k, are the (i, ;) elements of the matrices
ij ij

F(re) _
Iz syy=y0) =

?

kxk

Y fo)(x;0) fy (x:6) Foy(y;0) Fj (5 0)
| gy e F(s:6)

and

IF(q'rc) (0) _ F(z) (y7 e)li(_?)(y: 6)
&Y=y F(y; 6)F(y; )

})
kxk
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respectively. Averaging with respect to «, one obtains from (3.5)-(3.7) that

B8 I Gpay—y®) = Plo=DIZ5y,0) + Pl =0IGFR_ (6)
' I(FZ( gﬂl’—y ©)+1-p) (1:;’(;%)/:1} (9)-
By relation (3.8), averaging with respect to Y, we have

I7(9) = pIZ(6) + (1 — p)I57.(6)-

(ii) Similarly, by relations (3.3) and (3.4) we have
(39) saprmyln ) = Bnfa oo (55) + 1 -0 (£2))]

) _
w1 e (B2 + -0 (22)] )

But
(310)  E, {5 ( E;)Jr( — 8 (F ym 1559, _ (f1, £2),
?;?1) By, [0 (2 1 1~ (F )| = 1650 1 £

Averaging with respect to «, one obtains from (3.9)—(3.11) that

C(r
(312)  IGsay—y(fis f2) = Pla= DI (fi, f2) + Pla=0IGE,_ (f1, f2)
=PI Sy oy (Fro o)+ (L= D)IGE,_ (f1. fo).-

By relation (3.12), averaging with respect to Y, we have

IC(f1, f2) = pIS(f1, f2) + (1 = D)IS (f1. f2).

Let us now allow the probability of recording an observation to depend on the tested
item 4. Let this probability be p;, and ¢; =1 —p;, 4 =1,2,...,n. In this case it is easy
to prove the following theorem.

THEOREM 3.2. If If, . (0) and IS, ..(f1, f2) are the Fisher and Csiszar infor-
mations for the whole sample, respectively, then

(1) sa,mple(e) - nIF (9) (Z?—l pl) rc(o) + (Z?:l qi) Igc(oL and
(11) sample(fla fZ) - nIC(fly f2) (Zz._l p’l) S:(fla f2) + (E«?:l Qi) Igc(flafZ)-

4. Information decomposition

Consider the randomly censored model, that is, suppose that Z; = min(X;,Y;),
1=1,2,...,n, areii.d. random variables which represent the lifetimes (true or censored)
of n items on test. Denote with f and F the p.d.f. and c.d.f. of X, respectively, and with
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g the p.d.f. of Y. Let the censored experiment be noninformative, i.e., the distribution
of Y be independent of the parameter 8. By I% () and I¥Z(fy, f2) we shall denote the
classical measures of information for X. )

Let f denote the p.d.f. of X | Y =y,6 = 0. Then

« f(z;0)
F _ >
(4.1) Fxiy=ys=0(z;0) = { F(y;0) * =Y
0, otherwise
Let also Iig::l)y ,(0) denote the conditional (given that ¥ = y) Fisher information

matrix on § contained in a censored observation in random censoring. Then

(4.2) 1509 (9) =

cens|Y =y

, fdeeo.
kxk

0 3 9 _
/y F(z;6) (a%logf(xﬁ)%;log 7z 0)) dz

In view of (4.1), the conditional (given that Y = y) Kullback-Leibler divergence between
f1 and f> based on a censored observation in random censoring, will be denoted by

[KL(re) (f1, f2), and is defined by

cens|Y =y

()
hae)

The following theorem gives the formula of the “total information” for the Fisher
and Kullback-Leibler measures of information.

(4.3) I (i) = [ Fia)log
y

THEOREM 4.1. IfI¥(0) and IEL(fy, f2) are the classical measures of information
for X, and I Izslrscl)y_y(e) and Iﬁﬁg{;):y( f1, f2) are the conditional (given that Y = y)
measures of information for a censored observation in random censoring defined by (4.2)

and (4.3), respectively, then the following relationships hold
(i) IE(6) = IE(6) + E, (F(Y OILID(9)), and

cens|Y

(i) IEE(f1, f2) = IEE(f1, fo) + By (Fl(Y)Icfﬂr;)(fhb))-
These formulas will be referred to as “total information”.

ProOOF (i) By relation (4.2), and after some algebra, we have

i * fo (@ 0)f;)(:0) . Fa)(y:0)F)(y:9)
Fy;0) llJy f(z;6) F(y;0)

Multiplying the right hand side of (4.4) by F'(y;6) and adding it to the right hand side

(4.4) IEC) () =

cens|Y =y

kxk

of (FZ(?;)IY ) = |/”' fiy (2 0) fi5) (% 9) - Fo) (4: 0) F5) (43 0) ’
=v f(z0) F(y;0) kExk

we obtain

(4.5) I3 (0) = I e, (0) + Fy; O)ILT2, _ (6).

Averaging (4.5) with respect to Y, we have that

I (9) = IE(0) + Ey(F(Y; 01509, ().

cens|Y
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(ii) In a similar manner, by relation (4.3), we have that

TC ) F
(4.6) j;f:s(,y) y 1 f2) = [/ fi(z) logf (= ) ~Fi@)lo gFIEz;J

'But the conditional randomly censored Kullback-Leibler divergence, when ¥ = y , is
given by

60 I = [ @ e+ A gl

Multiplying the right hand side of (4.6) by Fi(y) and adding it to the right hand side of
(4.7), we obtain

(4.8) IX*(f1, f2) = (I;[:S()T}:/)_y(fl)f2) + F1(y)fifs(ﬁf)_y(f1,f2)~

Averaging (4.8) with respect to Y, we have that

I (f1, f2) = IEM(fus o) + Bo(BL(YV) L 5 (1, 12)).

Now we establish analogous results for the Fisher and Kullback-Leibler measures
of information, when instead of random censoring we have quantal random censoring or
experiments with random recording of the uncensored observations. By Theorem 2.1(i)
we have that

I50) - 10 = [ " @) Fw0)BO)dy, 0co,

where

B(6) = “/ f(z@)( -log f~ (20)89 log f* (z@)) " feoO,
with .0
(4.9) =189 hee

F(y;0)’

the p.d.f. on [0,y]. By definition, the matrix B(6) is the conditional Fisher information
matrix on ¢ contained in a censored observation in quantal random censoring, given that
Y =y, and, from now on, it will be denoted by Iggﬁzzy (9). So

(4.10) IE6) = IE (8) + E,(F(Y;0)I57%) (9)),

enslY

and taking into account Theorem 4.1(i), we have

F(gr R F
(@11)  IF(0) = I5.(0) + Ey(F(Y;0)IL\T0(8)) + Eg(F(Y;0)ILTS, (6)),
which is the formula of the “total information” for Fisher type measure of information,
associated with quantal randomly censored Fisher information.
Let us now consider a randomly censored experiment with random recording of
uncensored observations. By Theorem 3.1(i) and relation (4.10), we have
(4.12) I7(0) = Ie(6) + p- Bg(F(Y;0) I 22(0)).

cens|Y
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If we combine relations (4.11) and (4.12), we have

IZ(0) = I7(6) + (1 — p) - Bg(F(Y;0) [ nin)(0)) + By (F(Y;0)IL02 (),
which is the formula of the “total information” for Fisher type measure of information,
associated with Fisher information in a randomly censored experiment with random
recording of uncensored observations. :
In view of (4.9), the conditional Kullback-Leibler randomly censored divergence
between f; and fy based on a censored observation in quantal random censoring, given

that Y =y, will be denoted by I Iz:s(f;c_)y( f1, f2), and is defined by
fi2)

(413)  IKE®O (5, f) = / £ () log L12) 18

B e 1O g Fi)
*F(y) U h()og 554 FI(y)lng(y)]'

The conditional quantal randomly censored Kullback-Leibler divergence, when ¥ = v,
is given by

KL(gr Ry | ; Py
(4.14) AL o 22 = P log 1) + Fay) log Al
Substracting (4.14) from (4.7), and multiplying both sides of ( 4.13) by Fy(y), we obtain
KL KL T K T
(4.15) ISy (s 12) = TGS (Fu, f2) + FL IS (f1, fa).
Averaging (4.15) with respect to Y, we have that
(4.16) LEE(fi, o) = IsE (fuo o) + Ef(RL(Y )29 (f1, f2)).
Taking into account Theorem 4.1(i%), we have
(4.17) I¥E(fi, f2) = IXL(f1, f2) + Eg(FL(Y) j:fs(f;c)(flafz))
+Eg(Fu(Y )y (1, £2)).

For the randomly censored experiment with random recording of uncensored observations
and in view of Theorem 3.1(ii), for ¢(u) = ulogu and relation (4.16), we have

(4.18) I¥E(f1, £2) = IRE(f1, o) + - Eo(FL(VIE LT (f1, £2).

If we combine relations (4.17) and (4.18), we have

419)  IEM(fL fa) = TFE(f1, o) + (L= 1) - By(Fy (V) Ien & (f1, f2)
+Ey(Fy (V)T (f1, £2))-

Relations (4.17) and (4.19), give the formulas of the “total information” for Kullback-
Leibler divergence, associated with quantal randomly censored Kullback-Leibler diver-
gence and the Kullback-Leibler divergence in a randomly censored experiment with ran-
dom recording of uncensored observations, respectively. The above lead to the following
theorem.
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THEOREM 4.2. For the guantal randomly censored measures of information and
the measures of information in a randomly censored experiment with random recording
of uncensored observations, the following formulas for the total information hold

(i) T£(0) = IE(8) + E,(F(Y;0)ILT2(8)) + Eo(F(Y;0)IET) (6)),

ens|Y ens|Y

(ii) I5(0) = IF(8) + (1 — p) - E,(F(Y;0)I59(6)) + E,(F(Y;6)IZ0) (9)),

cens|Y cens|Y

(i) TEE(f1, f2) = IKE(f1, fo) + Eg(FL(Y ) ooy (f1, £2))
+ Ey(Fy(V)IEETD (11, £)), and

cens|Y

(iv) IEE(f1, f2) = IXE(fr, o) + (1 = p) - By(Fu (V)28 (f1, £2))
+ Ey(Fy(Y)ny (1, f2)-

censlY

The following theorem shows that, for both Fisher information matrix and Kullback-
Leibler divergence, the property of being equivariant with respect to the expected value
of the distribution function of lifetime, is equivalent to the information lack-of-memory
property. The proof is straightforward.

THEOREM 4.3. (i) The equivariance of Fisher information matriz with respect to
the expected value of F(y;0), i.e., the relation IE.(0) = IE(6) - E, (F(Y;9)), is equivalent
to the information lack-of-memory property

Fre) _F
Icensc]Y-——y(e) - IX (6)

(ii) The equivariance of Kullback-Leibler divergence with respect to the expected
value of Fi(y), i.e., the relation IX*(f1, f2) = I§E(f1, f2) - Eq (F1(Y)), is equivalent to
the information lack-of-memory property

Ij:fs(lr;):y(fl, f2) = BEX(fu, fa)-

Remark 4.1. The first part of Theorems 4.1 and 4.3, with 6 univariate, is given in
Gertsbakh and Kagan (1999). It is easy to see that, relations (ii) and (iv) of Theorem
4.2, for p = 0, yield relations (i) and (iii) of the same theorem, respectively, and for
p = 1, yield relations (i) and (ii) of Theorem 4.1, respectively.
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