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Abstract. The empirical likelihood was introduced by Owen, although its idea
originated from survival analysis in the context of estimating the survival probabili-
ties given by Thomas and Grunkemeier. In this paper, we investigate how to apply
the empirical likelihood method to a class of functionals of survival function in the
presence of censoring. We define an adjusted empirical likelihood and show that
it follows a chi-square distribution. Some simulation studies are presented to com-
pare the empirical likelihood method with the Studentized-t method. These results
indicate that the empirical likelihood method works better than or equally to the
Studentized-t method, depending on the situations.
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1. Introduction

Many statistical experiments result in incomplete sample, even under well-controlled
conditions. This is because individuals will experience some other competing events
which cause them to be removed. In such cases, the event of interest is not observable
and the situation is termed random censoring. Censored data often arise in the study
of medical follow-up, survival analysis, biometry and reliability study. In the last two
decades, statistical inference with censored data has been paid considerable attention
and studied extensively.

Let Xi,...,X, be nonnegative independent and identically distributed (i.i.d.) ran-
dom variables (r.v.) denoting survival times with the unknown distribution function F'.
Let Y7,...,Y, be nonnegative i.i.d. r.v. denoting censoring times with the distribution
function G. It is assumed that X;’s and Y;’s are independent. In the random censoring
model, the true survival times Xi,..., X, are not observable. Instead, one observes
only Z; = min(X;,Y;), and §; = I(X; < Y;), where I(-) denotes the indicator function.
A well-known nonparametric estimator of F' is the Kaplan-Meier (KM) product limit
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estimator defined by

1—ﬁ(t):ﬁ[n—§-;-‘%

] HZ(y<t,60:y=1)
i=1

) for t< Z(n),

where Z(;) < --- £ Z(,) are the ordered statistics of the Z-sample and 0(;) is the 6
associated with Z(;). Also define 1 — Fi)=0ift > Z(y).
Let us consider the functional of F(-) in the form of

(L) o) = [ " (0)ar (),

where £(t) is some (nonnegative) measurable function satisfying E£(X) < oco. Some
special cases of §(F) include the mean lifetime of F if £(¢) = t, the survival probability
1 — F(to) at a fixed time ¢, if £(t) = I(t > tp), and the cumulative hazard function

Ot"(l — F(t))"'dF(t) at a fixed time tg if £(t) = I(t < to)/[1 — F(t)]. Clearly, an obvious
estimator of 6(F') can be obtained by replacing F'(t) by its KM estimator E'(t) resulting
in

n . Z(n) .
(1.2) 6= o(F) = /0 £()dE ().

Asymptotic properties of #(F) have been studied by several authors. For instance,
Stute (1995) shows that under certain optimal integrability conditions on the function
&(+), the distribution of /n(6(F)— 6(F')) is asymptotically normal with mean 0 and some
variance 02, say. In order to compute confidence intervals for (F'), we need to estimate
the asymptotic variance o2. However, the expression for o2 takes very complicated form,
see the Lemma in Section 4 of this paper. Thus, the usual plug-in method, where one
replaces F and G by their KM estimates ¥’ and G, will produce a very complicated
estimator for o2 for which its consistency may even not be guaranteed. An alternative
way is to estimate o2 by the jackknife and Stute (1996) shows that this indeed provides a
consistent estimate of o2. This method of confidence region construction will be referred
to as the Studentized-t method with jackknife variance estimate. Clearly, this method
produces confidence regions for §(F') with asymptotically accurate coverage probabilities.

Despite its usefulness, there are several drawbacks associated with the Studentized-t
method, where the variance estimates are either obtained by the jackknife method or the
plug-in method. First of all, this method does not always work well for small samples.
Secondly, the method is not range-preserving in the sense that confidence intervals for the
parameter 6(F') obtained by the Studentized-t method with jackknife variance estimator
or the plug-in variance estimator may contain values outside its range. An example of
this is the mean lifetime, which must be nonnegative. However, if the jackknife variance
estimate is not very stable, then it is possible that the confidence interval for the mean
lifetime will contain negative values.

In this paper we shall investigate how to use the empirical likelihood method to
overcome the drawbacks encountered by the Studentized-t method. It is interesting to
note that the empirical likelihood based method was first applied in survival analysis
by Thomas and Grunkemeier (1975) for constructing confidence intervals for a survival
probability with censored data. However, it is Owen (1988, 1990) who shows that the
idea has wide applicability to complete data and introduces the method for very general
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statistical problems. Much research work has been carried out by various authors since
then, including DiCiccio et al. (1991), Qin and Lawless (1994), Chen (1993, 1994). Hall
and La Scala (1990) gave an excellent exposition of the empirical likelihood method
and also outlined some of the advantages of the empirical likelihood method over other
competitors such as the normal approximations. For instance, the empirical likelihood
is range-preserving and transformation respecting and usually has good small sample
performances.

To the best of our knowledge, studies on Owen’s empirical likelihood method have
mostly been restricted to the complete data case. A natural problem is whether we can
extend Owen’s empirical likelihood to randomly censored data to cover more general cases
than the survival probability studied by Thomas and Grunkemeier (1975). The answer
to this question is affirmative. To be more precise, we shall generalize Owen’s method to
a class of functionals 6(F') defined in (1.1), which include the survival probability and the
mean lifetime with randomly censored data. It turns out that the empirical likelihood
ratio in this case will tend to a weighted x? distribution, where the weight depends on the
unknown population and is a result of random censoring. (See Theorem 2.1 in Section 2.)
To apply the method, one needs to estimate the variance (e.g, by the jackknife variance
estimator). Fortunately, the method still retains other properties associated with the
ususal empirical likelihood, e.g, it is still range-preserving, the confidence interval is
determined automatically by the sample.

We should note that our empirical likelihood method is developed for functionals
of survival functions with censored data. In this sense, it is different from the empirical
likelihood methods studied by Thomas and Grunkemeier (1975), Li (1995) and Murphy
(1995) in that those methods use the product type constraints and can not be easily
applied to the inference of the functionals considered such as the mean survival time.

The paper is organized as follows. In Section 2, an adjusted empirical likelihood
method for the mean lifetime is described. We define an adjusted empirical likelihood
and we shall see that the adjusted empirical likelihood follows a chi-square distribution.
Some simulation studies are given in Section 3 for both the empirical likelihood method
and the Studentized-t with jackknife variance estimate and comparisons will be made
between these two methods. Finally, we shall give proofs of our main results in Section 4.

2. Methodology and main results

Let us first give some motivations for our definition of the empirical likelihood for
6(F). First notice that

#(+55t) = 7[5 G

-/ i e P @G ()
_ /Ooo 5(”) / dG(y)dF (z)

e e dF
- [ T e 1 - G )

:/0 &(z)dF(z)
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=6(F), i=1,...,n.

Hence, the problem of testing whether 6y is the true parameter of §(F) is equivalent to
testing whether E(5 (g()g )) =6p, % =1,...,n. This can be done using Owen’s empirical
likelihood method (1990). Let p = (p1,...,pn) be a probability vector, i.e., > i, p; =1
and p; > 0 for 1 <4 < n. Let F, be the distribution function which assigns probability

p; at point 296 Hence,

1-G(Z))
o) = on (12502

i=1

Then, the empirical likelihood, evaluated at true parameter value fp, is defined by
L(6o) = max Di-
0(Fp)=00,»  pi=1;_ H

Since G(-) in the definition of §(F,) is assumed to be unknown, we can replace it by its
KM estimator G(t) defined by

n I(Z(i) St,ﬁ(i)zo)
- 1 {n -1+ 1}

T

Then, we can defined an estimated empirical likelihood, evaluated at the true value @g
of 6(F), by

L(6o) = max Hpi

subject to

zpi (%) = G, and Zpi =1.

i=1
For simplicity, let us write

£(Z)6; _ 1<
Vi = —224% g =Ny
1—Go(Z:) " nz o

Then, by the Lagrange multiplier, we can easily get
1 - .
pizﬁ{l—l—/\(Vni—Oo)} 1 i=1,...,n,

where X is the solution of

(V'm. -
(1) §:1+Mwn—%) 0

Note that [, ps, subject to > ; p; = 1, attains its maximum n™ at p; = n~1. So
we define the empirical likelihood ratio at 6y by

R(6) = H(npz H{l + AV — 60)} 71,

i=1
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and the corresponding empirical log-likelihood ratio is defined as

(22) l(&o) = -2 IOgR =2 Zn:log{l + /\(V.m ——.00)},

i=1

where A is the solution of (2.1).

Under certain conditions, it can be shown that [(6y), multiplied by some population
quantity, follows a chi-square distribution with 1 degree of freedom. In other words,
rl(8o) ~ x% asymptotically. In order to use this to construct a confidence interval for 6y,

one must first estimate the coefficient . To that end, let nVar (jack) be the modified
jackknife estimate of the asymptotic variance of § due to Stute (1996). Define

(2.3) i(9) = #1(6),
where

_ n 3 (Ve - Vn)2
n\//a\r*(jack)

?’,‘.

The following theorem gives a nonparametric version of Wilks’ theorem for the adjusted
empirical likelihood in the censored case. The proof of the theorem is given in Section 4.
Before stating the theorem, we define

FI(S) - P(Zl > 5)7 HO(S) = P(Zl > S>51 = O)a

Hi(s)=P(Zy > 5,6 =1), ~lz)=exp { /Ox— dg(()s) ,
[ dG(s) . ' B
C(z) —/0 A-HG) -GGy ™= inf{t: H(t) = 1}.

THEOREM 2.1. Assume the conditions
TH -
() /0 €2 (22 (2)df () < oo,
TH
(€2) / £(2)CV/?(2)dF (z) < oo,
0

™ £(z)dF(z)
(C3) /0 W < C0O,

(C4) tp =71 and F(rp)=F(1r-).

Let 0y be the true value of 0, then i(f)g) has an asymptotic chi-square distribution with
1 degree of freedom, that is,

(24) [(90) 5 x3.
A simple approach to construct an o-level confidence interval for 8, based on (2.4),

is I, = {0 :[(8) < co} with P(x? < ¢5) < 1—a. Then by Theorem 2.1, I,, will have the
correct coverage probability 1 — o asymptotically, i.e. P (6 € I4) =1 — a + o(1).
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Remark 2.1. The definition of the empirical log-likelihood ratio (), defined by
(2.2) and (2.1), looks rather similar to that for the mean in the absence of censoring.
However, the difference here is that V,,;’s, i = 1,...,n, are no longer independent and
identically distributed random variables, due to the estimation of G(z) by its KM esti-
mator Gp(z).

3. Some simulation studies

We shall conduct some simulation studies to compare the performances between the
empirical likelihood method and the Studentized-t method with the variance estimated
by the jackknife proposed by Stute (1996). In particular, we shall investigate two specific
functionals of the survival functions: the first being the mean lifetime p = f0°° zdF(z)
and the second being the survival probability at a fixed point tg, namely 1 — F(¢p).

In both situations, we generate the lifetimes and censoring times from exponential
distributions with parameters 1 and ¢, respectively. That is, F(z) = 1 — exp(—z) and
G(z) = 1—exp(—cz) for > 0. Here, ¢ > 0 is chosen to accommodate certain preselected
censoring proportions. The sample sizes have been chosen to be 10, 20, 50 and 100.
The coverage probabilities are calculated for the empirical likelihood and Studentized-t
methods based on 1000 pairs of simulated data generated from the lifetime and censoring
distributions. The nominal levels are taken to be 0.90 and 0.95. The results are presented
in Tables 1 and 2.

For the mean lifetime, we make the following observations from Table 1.

(1) For fixed censoring proportions, the coverage accuracies for both the empirical
likelihood and the Studentized-t method generally increase as the sample size n increases,
as can be expected.

(2) The performances of both methods critically depend on the censoring propor-
tions. For a fixed sample size n, the coverage accuracies for both the empirical likelihood
and the Studentized-t method generally decrease as the censoring proportion increases.

(3) The empirical likelihood works uniformly better than the Studentized-t method.
The contrast in their performances is made even more transparent when the sample size
n is small (say n = 10, 20) and the censoring proportion is relatively large (see the case
where censoring proportion is 0.4).

For the survival probability example, the simulation results given in Table 2 are not
as clear cut as for those of the mean lifetime. But first, let us continue to make several
remarks from Table 2.

(4) Both the empirical likelihood method and Studentized-t method work very well
for moderate to large sample sizes (e.g., n > 20). In fact, in these cases, it is very difficult
to assess which method is better than the other since neither of the two methods has
better coverage accuracies all the time.

(5) When n = 10, some of the coverage probabilities for the empirical likelihood
method could not be calculated. (These are marked as “NA” in Table 2.) To understand
why this happens, we recall that Vy; = £(Z;)6:;/(1 — G(Z;)) and &(Z;) = I(Z; > to). So
when n is small, our simulated data (Z;,8;)’s could sometimes result in V5; = 0 for
all i = 1,...,n, under which one could not solve for A from (2.1) and hence could not
calculate the log-likelihood ratio [(fy).

We close this section with some general remarks regarding the two methods. Our
simulation results reveal that, in terms of coverage accuracy, the empirical likelihood
method works well for both the mean lifetimme and the survival probability at time to.
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Table 1. Coverage probabilities for the mean lifetime.

Nominal level is-0.90

Nominal level is 0.95

Censoring n Studentize-t Empirical Studentize-t Empirical
proportion likelihood likelihood
10 0.770 0.860 0.810 0.880
0.10 20 0.830 0.870 0.870 0.920
50 0.866 0.900 0.904 0.936
100 0.892 0.936 0.936 0.960
10 0.710 0.750 0.730 0.780
0.25 20 0.790 0.870 0.800 0.890
50 0.786 0.908 0.848 0.930
100 0.804 0.890 0.856 0.940
10 0.510 0.630 0.520 0.680
0.40 20 0.600 0.760 0.700 0.800
50 0.632 0.768 0.674 0.798
100 0.676 0.810 0.736 0.854

Table 2. Coverage probabilities for the survival probability 1 — F(0.5).

Nominal level is 0.90

Nominal level is 0.95

Censoring n Studentize-t Empirical Studentize-t Empirical
proportion likelihood likelihood
10 0.886 NA 0.891 NA
0.10 20 0.904 0.920 0.950 0.970
50 0.884 0.886 0.940 0.948
100 0.914 0.918 0.952 0.956
10 0.851 NA 0.886 NA
0.25 20 0.888 0.923 0.930 0.958
50 0.906 0.916 0.940 0.950
100 0.900 0.918 0.960 0.974
10 0.754 NA 0.794 NA
0.40 20 0.862 0.924 0.902 0.952
50 0.882 0.936 0.942 0.968
100 0.894 0.938 0.936 0.974
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On the other hand, the Studentized-t method also works well in the survival probability
example, but less well in the mean lifetime example. This could perhaps be explained
as follows. As mentioned in the Introduction, the performance for the Studentized-¢
method relies heavily on whether one can obtain a stable variance estimator. In the

first example, the variance of i = fOZ("’ zdF(z) and its estimates (e.g., by the plug-in
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method or the jackknife) relies on the properties of F'(z) and G(z) on the whole interval
[0, 7H), which may not be stable near the end point 7. This subsequently affects the
performance of the Studentized-¢ method. On the other hand, in the second example, the
variance of 1 — F'(tp) and its estimates only rely on the properties of the KM estimates
F(-) and G(-) on the interval [0, o], which are known to be good. Therefore, it is not
surprising that the Studentized-t method works well in the second example but not so
well in the first one.

4. Proofs

Let W,; = Vi — 6 and Wn =n"1! Z?:l Whi. Let

n(z) = #) / Iz < slé(s)yyo(s)diy (s),

o) // [s <=z, ;j(zg(t)%(t)dff()(s)dﬁdt)-

To prove Theorem 2.1, we need the following lemma.
LEMMA. Under the same conditions as in Theorem 2.1, we have
Vi W, 5 N(0,0%),

where
o = Var (§(Z1)70(Z1)61 + 1 (Z1)(1 — 61) — 12(Z1)) -

PROOF OF THE LEMMA. Notice that
(4.1) W= [ €@ - Flo).

Under the condition (C4), F defined by Stute (1995) is just F". Hence, (4.1) and Corollary
1.2 of Stute (1995) together prove the lemma.

PRrOOF OF THE THEOREM. Under the condition (C3), we have

—Z( 65(2 >2:0,,(1).

From this and the following result due to Zhou (1992)

(4.2) sup (M) = 0p(1),

OSZSZ(n) 1-— Gn(Z)

we have n=1 Y V2 = O,(1) and

NP
(4.3) ng =
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From (4.3) and the fact that n™! 37 | Voi = O, (n71/2) (implied by the lemma), we
can show that, similarly to Owen (1990),

(4.4) A= O0p(n~7?).

Let Vg = g gG(( Z)) By the condition (C3), followmg the proof of lemma 3 in Owen

(1990) line by line, it follows that max;<i<y [Vai| = 0,(n'/?). This together with (4.2)
proves that

6£(2) (Cn(2) - G(2)))
(1= G(Z)(1 - Ga(2)
Gn(2) - G())

IA

1123%)( Vs 1@33 Vail + m 1<z<n

< op(n1/2) + sup ax |Vai| = op(nl/z).

0<2<Zmy | 1= Gn(2) 19180
Hence
_ 1/2
(45) joax [Wi| = 0p(nl/?).

From (2.1), we have

1< Wi 1 < W2
- —_— = — Wil 1 - AW, + ——2— | =0.
n;1+AWm’ nz ( m+1+)\Wm- 0

Hence,
Wi
(46) A= %——1—@- Yoy
where
_ e i 1+Awm
.—1 zz:l
Now (4.3), (4.4) and (4.5) together prove
(4.7) Tn < Op(n™) [Bax Wil = Op(n_l/z)
by the fact that n=1 Y 1 | 5 < 2n7 ! (maxi<i<n [Whil) 3oi; W2; in probability.

By (2.1), (4.3), (4.4) and ZZ 5), we have

AWy - -
0= AZ T+ ,\Wm Z; T AW ; (i) = ; ()" + (1)

That is

n n

(4.8) STOWR) =) OWai)? + op(1).

i=1 i=1
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Hence from (2.2) and (4.8), we have

n
(4.9) 1(60) = 2 _log{1+ AWy}
i=1
- 1
(4.10) = 2; ()\Wm - 5(/\Wm)2) + T
n
(4.11) = XY W2+,
i=1
where "
T < A3 ZW;:’z < Op(n‘g/2 max IWm| Z = 0p(1).
i=1
Hence (4.6), (4.7) and (4.11) together gives
nWh,
(4.12) 1(60) = (—g—’—-—- +0p(1).

By Stute and Wang (1993), we have with probability 1

_ 1<
(4.13) Vo= > Vai — bo.
i=1

This concludes that

n

(4.14) WS (Vo= V) = 2 D WE
i=1 =1

It is known from Theorem 1.2 of Stute (1996) that
(4.15) n\//'a;*(jack) 2% o2,

Clearly, it follows from (4.12), (4.14) and (4.15) that
=\ 2
o) = (V) +op ),

where [(6) is defined in (2.3). Therefore, Theorem 2.1 follows straightaway from the
lemma.
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