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Abstract. We propose a procedure to construct the empirical likelihood ratio con-
fidence interval for the mean using a resampling method. This approach leads to
the definition of a likelihood function for censored data, called weighted empirical
likelihood function. With the second order expansion of the log likelihood ratio, a
weighted empirical likelihood ratio confidence interval for the mean is proposed and
shown by simulation studies to have comparable coverage accuracy to alternative
methods, including the nonparametric bootstrap-t. The procedures proposed here
apply in a unified way to different types of censored data, such as right censored
data, doubly censored data and interval censored data, and computationally more
efficient than the bootstrap-t method. An example of a set of doubly censored breast
cancer data is presented with the application of our methods.
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1. lIntroduction

Since Owen (1998), the empirical likelihood method has been developed to construct
tests and confidence sets based on nonparametric likelihood ratios. For more references,
see Owen (1990, 1991), DiCiccio et al. (1991), Qin and Lawless (1994), Mykland (1995),
among others. Studies have shown that empirical likelihood ratio inferences are of com-
parable accuracy to alternative methods. In this research, we combine the ideas of
empirical likelihood and resampling to develop a general method so that the confidence
intervals for different types of censored data can be constructed in a unified way.

We begin with a review of work by Owen (1988). Let X3,..., X, be an independent
and identically distributed (i.i.d.) sample from a continuous distribution function (d.f.)
Fy. Then, the empirical d.f. F,, based on this sample is the nonparametric maximum
likelihood estimator (NPMLE) of Fy, since it maximizes the following likelihood function,

n

(11) L(F) = [[(F(X:) - F(Xi-))

i=]

over all distribution functions F. The empirical likelihood ratio function (Owen (1988))
is given by
(1.2) R(F) = L(F)/L{Fy),
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and it is shown that for a constant ¢ > 0, {fzdF | R(F) > ¢} = [(XL,n, Xun] may be
used as confidence region for the mean u of Fy. Specifically, Owen (1988) showed

(1.3) Jlim P{Xpn < p< Xya} = P{xfy < -2loge},

where x?,, denotes a random variable (r.v.) with chi-squared distribution of degrees of

freedom 1. One of the advantages of this method is that there is no need to estimate

the variance of the mean estimator. Here we consider how to construct the empirical

likelihood ratio confidence interval for the mean with different types of censored data.
In this work, what we have in mind includes the folloing types of censored data.

Right censored sample. One observes (V; 6;), i =1,...,n, with
_ X if X<, 6=1
(14) V_{Y if X, >, 6 =0

where Y; is the right censoring variable and independent from X;. This type of censoring
has been extensively studied in the literature over the past two decades.

Doubly censored sample. One observes (V;,6;), i =1,...,n, with

(1.5) Y, if X;>Y, 6=2

X, it Z;<X;<Y;,6=1
.‘/z_{

where, Y; and Z; are right and left censoring variables, respectively, with P{Y; > Z;} =1,
and (Y;, Z;) is independent from X;. This type of censoring has been considered by
Turnbull (1974), Chang and Yang (1987), Gu and Zhang (1993), Ren (1995a), Mykland
and Ren (1996), among others. In practice, doubly censored data have recently occurred
in studies of primary breast cancer (Peer et al. (1993), Ren and Peer (2000)).

Interval censored sample. One observes (V;,6;), ¢ = 1,...,n, with V; = (¥;, Z;)
and

(1.6) 2 i X;>Y

3 if X;<Z
where P{Y; > Z;} =1 and (Y}, Z;) is independent from X;. This type of censoring was
considered by Groeneboom and Wellner (1992). In practice, interval censored data have
been encountered in AIDS research (Kim et al. (1993)).

1 if Z;<X;<Y;,
@:{

Clearly, one possible way to construct the empirical likelihood ratio confidence in-
tervals with censored data is to use the likelihood function for a specific censoring model.
This requests some careful investigation for each type of censored sample. In particular,
the computation of the confidence region and the asymptotic results on the coverage of
the confidence region need to be studied for each type censored data. In this paper, we
intend to give a unified method which is easily applicable to different types of censored
data including all mentioned above.

One may note that the reason that Owen’s empirical likelihood method (1988) does
not directly apply to censored data is that the complete i.i.d. sample X;,..., X, is
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not available. Since for all types of censored data mentioned above, the NPMLE F),
can be numerically computed (see Mykland and Ren (1996) for doubly censored data;
Groeneboom and Wellner (1992) for interval censored data) and the strong uniform
consistency of F), has been established (see Stute and Wang (1993); Gu and Zhang
(1993); Groeneboom and Wellner (1992); among others), one may hope that if for an
integer m, an i.i.d. sample X7,..., X}, is taken from Fj,, this sample may behave the
same asymptotically (for large n) as X;,..., X,,. This resampling method is called the
Leveraged Bootstrap (LB) (Ren (1995b)). For the problem considered in this paper, one
may see that using this pseudo complete i.i.d. sample X7, ..., X}, called the leveraged
bootstrap sample, the likelihood function and the empirical likelihood ratio function are
immediately given by

(L.7) L*(F) = [[(F(X}) - F(X;-))
i=1

and

(1.8) R*(F) = L*(F)/L*(Fy,),

respectively, where F)., is the empirical d.f. based on X7,..., X} . As Owen (1988), we
denote F' < Fy;, as F' with support in [X(,), X, )] and denote

(1.9) F,,={F|R(F)>c¢,F<F,} for ¢>0.
We also define

(1.10) X7 = _inf /xdF and X{,,= sup /.’EdF.
’ FeF; ’ FeFy .

In Section 2, we show that [X} .., X7, ,] may be used as the confidence interval for p for
censored data (1.4)—(1.6), called the LB-Empirical Likelihood Ratio Confidence Interval
(LB-ELRCI), which eventually leads to the definition of a likelihood function for censored
data, called weighted emperical likelithood function. We establish the second order ex-
pansion of the log likelihood ratio, based on which without using resampling, a weighted
empirical likelihood ratio confidence interval (WELRCI) for the mean is proposed. The
proofs are deferred to Section 5.

In Section 3, we present some simulation results for right censored data, doubly cen-
sored data and interval censored data, respectively, and we apply the proposed methods
to a set of doubly censored breast cancer data (Peer et al. ((1993)). Section 4 includes
some concluding remarks.

We note that the nonparametric bootstrrap-t (Efron and Tibshirani (1993), p. 160~
163) may be used to construct the confidence intervals for the mean with the censored
data mentioned above, and it compares well with empirical likelihood method when there
is no censoring (Owen (1988)). However, since the NPMLE E, can only be computed
numerically for doubly censored data or interval censored data, say using the EM al-
gorithm, it can be very time-consuming to perform the nonparametric bootstrrap-t for
a large sample (see comments on p. 162 of Efron and Tibshirani (1993)). Simulation
studies show that our methods proposed in this paper are computationally more efficient
and generally has excellent performance in terms of coverage accuracy.
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2. Weighted empirical likelihood ratio confidence interval

To treat the ties among X7, ..., X}, we use the device by Owen (1988) as follows.
For any d.f. F, let
(2.1) w; > 0, > wi=FX})-F(X;-), i=1,...,m
3: X=X

where the w; have the from of probabilities attached to observations X}. Then, by

Lemma 1 of Owen (1998), we know that for w = (wy, ..., wn),
m
Fi,, = {F Hm w; > ¢, for w satisfying(2.1)} .
i=1

Therefone, in (1.10) we have

m
(2.2) X;"m:weif\lf ZwiXi* and Xy, = sup szX*
T =1

wEAem ;7

where
(2.3) cm_{ chzZOsz—-l}

The computtation of X7 ,, and Xy, is described in Section 2 of Owen (1988).

Note that the NPMLE F), for censored data (1.4)- (1.6) is not always a proper
distribution function. In this study, we will always adjust F,toa proper d.f. by setting
F, =1 at largest observation in the datta set, so that any observation Xr = F YU, in
a leveraged bootstrap sample is always well deﬁned for any uniform r.v. U on [0 1]. This
kind of odjustment of the NPMLE £}, is a generally adopted convention for censored
data (Efron (1967) and Miller (1976)).

The following theorem investigates the asymptotic property of the interval [X} Lm
X5 ml> called the LB-Empirical Likelihood Ratio Confidence Interval (LB-ELRCI), with
the proof deferred to Section 5. Let || - || denote the supremum norm and let

(2.4) O<p= /xng(J:) <oo, 0<o?= /(x — w)2dFy(z) < oo
Py = /xdﬁ’n(x), — /(:c — ) dE, ().

THEOREM 1. Assume m — oo and m/n — v € [0,00), as n — 00, and assume
(A1) || E, — Fo|| —F , as n — oo;
(A2) for some 0 < 72 < 00, /1ty — p) =P N(0,72), as n — oo;
(A3) 0% —F 62, asn — oo;
(A4) E{f:c4dF (z)} < My < o0 for alln > 1.
Then,
2logc
(25) hm P{XLm<.u’<XUm} P{X(l) _Wg/o_—g)}

From Theorem 1, one may see that if m = o(n), we have v = 0 in (2.5), thus (2.5)
is the same as (1.3) which was obtained by Owen (1988) for the complete data case. We
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may say that the leveraged bootstrap is consistent with m = o(n). However with some
modifications in the proofs of our Theorem 1 and Owen’s Theorem 1(1988), one can
easily show that [Xy;,, — X} ] = Op(1/+/m). Hence, with m = o(n), the width of the
(1 — @)100% confidence interval [X} +.m X{ ] 18 wider than that by the nonparametric
bootstrap method based on assumption (A2):

(26) Hn + za/Zén

where for 0 < a < 1, zy4/2 is the (1 — §) 100-th percentile of the standard normal
distribution, and §, = Op(1/4/n) is the standard error of the mean estimator y, and
may be computed by the nonparametric bootstrap method (Efron and Tibshirani (1993)
p. 47). Keeping this in mind, in practice we may simply use m = n as the sample size
of the pseudo i.i.d. sample X7,..., X}, which gives v =1 in (2.5) and

—2loge
(2.7) Jim PX;n<p<Xint= P{X(l) =1+ (T2/02)}

Note that when there is no censoring, we have 72 = ¢2 in (2.7) and (2.7) becomes

Jim P{X7, <p<Xjnt= P{x{y < —logc}.
Compared with (1.3), this implies that length of the LB-ELRCI is wider than the ELRCI
[XL,n, Xun] given by Owen (1988)

Note that Theorem 1 gives the asymptotic property of the LB-ELRCI for one lever-
aged bootstrap sample. If we take N leveraged bootstrap samples from F,, then clearly
for each sample (X[,,...,X},), k= 1,...,N, an LB-ELRCI [X} , X{, | can be com-
puted by (2.2), and one may expect to improve the efficiency of (2.7) using the idea of
the ‘best’ sample (Ren (1995b)) in this case. Specifically, among N leveraged bootstrap

samples, find a sample X7 y,..., X;; v and its empirical d.f. F; y such that
(28) 1Epp— Full = min 17, = Bl
where F}, is the empirical d.f. of X3,,..., X}, and use the interval [X} . v, X, ]

computed by (2.2) based on this ‘best’ i.i.d. sample X7 ..., X} y as the confidence
interval for ps. The intuition behind such use of the *best’ i.i.d. sample is that we consider
that F}  is the one closest to Fo among N leveraged bootstrap samples, because by
(2.8), F}  is the one closest to F,. In the next theorem, we investigate the asymptotic
properties of [X7 v, X7, y| with proofs deferred to Section 5.

Denote Y(;)’s and Z(;y’s as the order statistics for Y1,...,Y, and Z3,..., Z, respec-
tively. If V; = (Y;, Z;), such as for interval censored data (1.6), then as a convention, we

denote

(2.9) V(n) = max{Y(n), Z(n)} and V(l) = min{Y(l), Z(l)}
ElV|?<oco ifandonlyif E}Y|? < oo and E|Z}? < oo,

where ¢ > 0.

THEOREM 2. Assume (Al)-(A4) in Theorem 1 and assume
(A5) E|V]3 < o0
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(Ahfi) there exists 0 < 8 < & such that n™F(V,,y — V1)) max{ |V, [Vimy |} = 0p(1).
Then,
(i) for py = [ zdFy; y and 6} = V/n(us, ;= tin)/0n, we have

(2.10) dim PEXT o v < < X5 v}

N—o00

= lim P{((l +0p(1))65, v + \/_(p'" “)) < —210gc}

N—o0

where op(1) converges to 0 in probability as n — oo, N — oo;
(ii) 65 y =7 0np(1), as N — o0, and

N+00 N s

2logc
T2 /o2

where P, denotes the conditional probability given E, and 0np(1) converges to 0 in
probability as n — oo.

Now, when there is no censoring, we have £, = F,, and 72 = 02 in (2.11), and we
can easily show

* P‘n * * P'ﬂ
“Fn,N —Fp|| =30 and [XL,n,Nv‘XU,n,N] = X, Xunl, as N — o0
thus in turn, (2.11) becomes

lim lim P{X] ny<pu<X nN}—hm E{ hm P{XLnN</1'<XUnN}}

n—00 N—o0
= lim P{Xpn <p<Xyn}= P{x{yy < —2logc},
which coincides with Owen’s (1.3). This indicates that applying the idea of the ‘best’
sample (Ren (1995b)), we indeed improve (2.7) with more leveraged bootstrap samples
used in the proposed procedure. Following Remark 1 below, we outline the steps to
construct the LB-ELRCI for the mean with censored data.

Remark 1. 6, y in (2.10) may converge to 0 rather slowly depending on the rate
of (Viny — Viny)- Thus from (A2), we know that (2.10) gives

(vV—2Togc — |62 nI?
(2.12) PX{nnSu<Xjant 2P {X(l) (72/02) S

for large n and N, which may be used to set the constant c for a given confidence level in
practice. One may note that since 6} .~ converges to 0, the limit of the left hand side of
the inequality in (2.12) is the same as that of the right hand side. Thus, the use of &
in (2.12) gives a slightly conservative coverage of the confidence interval, which should
show for a moderate sample size n, but makes no difference for a very large n.

Constructing LB-ELRCI for the mean.
(S1) Compute the NPMLE F,, using censored data;
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(S2) Compute , and o2 in (2.4);

(S3) Use nonparametric bootstrap method to compute the standard error §, in (2.6)
for the mean estimator Un .

(S4) Take N iid. samples from F, : (X},,... ,Xin), k=1,...,N, and find the
‘best’ sample X7 y,..., X5 y with an empirical d.f. F; y satlsfymg (2 8);

(S5) For a given confidence level, compute ¢ > 0 in (2.12) with 7 = /né,;

(S6) Using ¢ computed in (S5) and the ‘best’ sample (X7 y,..., X} ) obtained in
(84), compute the LB-ELRCI [X} ,, v, X{;,, n] given by (2.2).

Remark 2. The idea of ‘best’ sample and (2.11) also suggest that we may choose
a ‘best’ sample without using resampling. Simulation studies show that the following
alternative step may be used to replace above (S4) in the proposed procedure above and
it performs well.

(S4’) Find a ‘sample’ X7,..., X} such that it is one of the possible i.i.d. samples of
size n from F, and has an emplrlcal d.f. F* satisfying 0 < F,—F*<1 /n.

Since F, is a step function for censored data (1.4)—(1.6), (S4’) can be done by a simple
algorithm and is more efficient computationally than (S4). Our studies also show that
the use of 0 < F* — F, < 1/n in (S4’) makes almost no difference.

In Section 3, our simulation studies show that the proposed LB-ELRCI with (S4’) or
(S4) generally performs well, which leads us to take a closer look at Theorem 2. Suppose
that the NPMLE F), for censored data is given by

(2.13) Eo(z) = iﬁil{Wi <z}

where Wi < W < --- < Wp, are distinct observations among V;’s. Then, for a large
N, the ‘best’ i.i.d. sample XiNv--er Xy n from F, should have an empirical d.f. F* , =

T,

S 2I{W; < z}, where n; is the number of X \’s equal to W; and 7+ = p;. Thus

i=1 n

for this ‘best’ sample, the likelihood function (1. 7) satisfies

L7(F) = [[(F(Xzw) = F(Xiw-)

= H(F(Wz) — P(W;—))™ =~ H(F(Wz) — F(W;—))".
=1 i=1

This means that the idea of the ‘best’ sample in LB-ELRCI procedure is approximating
the following likelihood function:

(2.14) 1(F) = [[F W) - Fw-)),
i=1

called weighted empirical likelihood function for censored data. One may note that for
the complete i.i.d. sample case, we have V; = X;, 1 < i < n and the weighted empirical
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likelihood function (2.14) coincides with the empirical likelihood function (1.1) by Owen
(1988), because the NPMLE F,,(z) =n"! 3>  I{X; <z} =10 2[{W; <z} and

i=1 n

: L(r)= H(F F(W;=))nn/™ —H(F(W - F(Wi=))™ = L(F).

i=1

It is easy to show that L(F) is maximized at F,. Thus, the weighted empirical
likelihood ratio X X .
(2.15) R(F) = L(F)/L(Fy),

may be used to construct the confidence interval for the mean, called the weighted empir-
- ical likelihood ratio confidence interval (WELRCI). The next theorem gives the asymp-
totic property of this confidence interval: [Xi ,, Xyn] = { [zdF | R(F) > ¢}, where
¢ > 0 is a constant.

THEOREM 3. Let pi‘: F(W;) — F(W;-), 1 < i< np, and let

2 y - -
ZPWQ 1, pi > 0, sz 1}

Assume (A1)-(A3) and (AS5) in Theorem 1 and Theorem 2, and assume
(A7) [2%dF,(x) = Op(1);
(A8) fan = [(z — pn)dFn(z) —»F E(X — p)?,  as n—oo.

(216) ) 7"(/1,) = Sup {H(pz/pz)np‘

=1

Then,
n(pn — p)* 2(ptn ~ p)fian -1
2. —21 = 1
(2.17) ogr(u) p < + 301 + Op(n™"),
and X )
(2.18) lim P{X;,<p<Xyn}= lim P{—2logr(p) < -2logc}
n—o0 n—r0

2loge
P{X(l) = Tz/gz}

Remark 3. Based on the second order expansion of the log likelihood ratio given
by (2.17), we suggest the WELRCI for the mean be constructed as follows in practice.
Let Cn = n(un — p)?/02 and Z, = /n(un — p)/7, then without loss of generality,
assuming that fiz, > 0 in probability, we have

P{Cn (1+ ?‘13\"/'_ ) < 210gc}

< P{Cn (1 + 2“3;_ ) < —2logc} +0(1) + P{Z, > z,}

where z, is the (1 — p) 100-th percentile of the standard normal distribution. Therefore,

(2.19) lim P{X.,<pu<Xua}
nN—00

— )2 — )
= lim P{n(ﬂn Q) <1+ 2(pn “)#3“) < —2logc}

2 4
oh 307
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T 2“3n7'
__nlgréoP{Cn <1+ 304 /n )S——Zlogc}

. 2‘/4’/371]7—
> nan;oP{Cn (1+ gy 4\/_ < —2logecy —p

(2.20) C, .
P{WS 7/2}—/7:1}1{2013{)(%1) 333/2}—P=1—’Y“Pa

where the constant ¢ is set to have

2|fan|T 72
(2.20) —210gc_zv/2{(1+3 4\/_ )

and 7 is estimated by 1/né, as in (2.6). The confidence interval based on (2.20) is slightly
conservative, but performs well in simulation studies as shown in Section 3. One may
note that it is not clear if the Bartlett-correction (DiCiccio et al. (1991)) holds generally
for censored data considered here, while (2.19)~(2.20), with a ‘correction’ term O(n~/2)
instead of O(n™1), has a similar form and holds generally for various types of censored
data.

Remark 4. The censoring mechanism of the data is reflected by the term 72 in

(2.11) and (2.18), and by the weights p; of the NPMLE in the weighted empirical likeli-
hood function (2.14). Thus in our proposed methods, 72 and o2 need to be estimated,
which is the price we pay for the generality of our approach. Nonetheless, simulation
studies in Section 3 show that this does not appear to affect the coverage and the length
of the LB-ELRCI and WELRCI.

Remark 5. The computation of the WELRCI [X' L,n,Xu,n] can be obtained by
solving the following optimization problems:

ne g
XL,,L = mianiWi and Xy, = mapriW
=1 =1
both subject to: p; > 0, 70 p; = 1, [[12,(ps/D:)"P* > c. Let

no ng ~
)‘)z_nZﬁilog{(Wi“)‘) ( sz_ A)}_logca
i=1 *

i=1

and W;; be the smallest W;’s with p; > 0 Wjs the largest W,’s with p; > 0. It can be
shown that h()\) is monotone in A and that the solutions are given by

R no ﬁ W no ﬁ —1
Xpm= Z (W /\) (izl W, /\> ,  for A< W; with h()) =

and

o A no ~ -1
b Wi Di Wi -
Xyn = E ()\ — Wz) ( E o Wz) , for A< W; with h(A) =0.
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Table 1. 90% C.I. for the mean with right censored exponential data.

sample Size n = 100 Coverage Mean Length s.d. Length Mean '5*,N' s.d. '6;,1\!'

n

of C.L of C.I.
Un £ 1.6458, .869 .368 .095 - -
' Bootstrap-t .900 428 167 - -
LB-ELRCI (N = 100) .900 .423 .138 .269 214
LB-ELRCI (N = 10000) .901 407 1122 .182 .146
LB-ELRCI (54') .907 419 112 .201 054
WELRCI 912 435 .139 - -
Sample Size n = 500
U +1.6458, .896 174 027 - -
LB-ELRCI (S4") .923 .186 .029 115 .026
WELRCI .928 .193 .003 - -
Sample Size n = 1000
pon 1= 1.6458, .888 .123 016 - -
LB-ELRCI(S4") .900 .130 .016 .089 .019
WELRCI 913 135 019 - -

X ~ Exp(1)(74.8%), Y ~ Exp(3)(25.2%).

Table 2. 90% C.I. for the mean with right censored normal data.

Sample Size n = 100 Coverage  Mean Length s.d. Length Mean |6} | s.d.167 ]

of C.I. of C.I.
pn  1.6453, .888 .368 047 - -
Bootstrap-t 901 391 .050 - -
LB-ELRCI (N = 100) 910 410 .062 210 .165
LB-ELRCI (N = 10000) .896 .396 054 .135 .100
LB-ELRCI (84" 910 411 .053 .201 .039
WELRCI .903 .390 .052 - -
Sample Size n = 500
pn £ 1.6455, .906 .166 .014 - -
LB-ELRCI (54%) .922 176 015 .109 .012
WELRCI 917 172 .015 - -
Sample Size n = 1000
pn 1+ 1.6455, .885 .118 .009 - -
LB-ELRCI (547%) .898 .123 .009 .084 .008
WELRCI .895 122 .010 - -

X ~ N(0,1)(67.2%), Y ~ N(1,4)(32.8%).

3. Simulation results and examples

This section considers the application of the WELRCI for the mean, which is com-
pared with other methods, including the LB-ELRCI described in Section 2. We denote
Exp(u) as the exponential distribution with mean u, N(u,0?) as the normal distribution
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Table 3. 90% C.I. for the mean with right censored lognormal data.

n = 100 Coverage Mean Length of C.I.  s.d. Length of C.L
n £ 1.6455, .808 795 .398
Bootstrap-t .869 1.158 1.243
LB-ELRCI(54") .869 .930 490
WELRCI .887 1.049 .650

X ~ LN(0,1)(67.2%), Y ~ LN(1,4)(32.8%).

Table 4. 90% C.1. for the mean with doubly censored exponential data.

n = 100 Coverage Mean Length of C.I.  s.d. Length of C.I.
n 1 1.6455, .873 422 .130
LB-ELRCI(S4) .909 A78 150
WELRCI .923 517 .210

X ~ Exp(1)(55.7%), Y ~ Exp(3)(25.2%), Z = 2Y — 2.5(19.1%).

Table 5. 90% C.I. for the mean with doubly censored normal data.

n = 100 Coverage Mean Length of C.I.  s.d. Length of C.I.
Un = 1.6455, 892 378 047
LB-ELRCI(S4%) .924 423 .052
WELRCI .910 402 .053

X ~ N(0,1)(53.4%), Y ~ N(1,4)(32.8%), Z = 2Y — 2.5(13.8%).

with mean p and variance o2, and LN (u,0?) as the lognormal distribution.

In Table 1, 1000 right censored samples of size 100 are taken from X ~Exp(1),
Y ~Exp(3) (note that the percentages of right censored and uncensored observations
are given at the bottom of Tablel, respectively), and for each sample, a 90% LB-ELRCI
for the mean is computed using (S1)-(S6) given in Section 2 with N = 100 and N =
10,000 in (S4), respectively, where the standard error §, is estimated based on 100
nonparametric bootstrap samples. For these 1000 right censored exponential samples,
90% LB-ELRCI using (S4’) instead of (S4), 90% confidence intervals (2.6) and 90%
WELRCI with v = .09 and p = .01 in (2.20) are also computed. In each case, the
coverage for the mean of X by 1000 confidence intervals is displayed in Table 1, and the
simulation mean and standard deviation (s.d.) of the length of these confidence intervals
are displayed as well.

As mentioned in Section 1, the nonparametric bootstrap-t method (Efron and
Tibshirani (1993), p. 160-163) can also be used to construct the confidence interval
for the mean. In our studies here, this method is applied to above 1000 right censored
exponential samples, where 1000 nonparametric bootstrap samples are used for the com-
putation of percentiles and 30 nested bootstrap samples are used for the estimation of
the standard error. Table 1 also includes some results for sample size n = 500 and
n = 1000, respectively.



WEIGHTED EMPIRICAL LIKELIHOOD 509

Table 8. 90% C.I. for the mean with doubly censored lognormal data.

n = 100 Coverage Mean Length of C.I.  s.d. Length of C.I.
pn £ 1.6455, .840 1.292 1.176
LB-ELRCI(S54") .874 1.424 1.224
WELRCI 910 1.972 2.349

X ~ LN(0,1)(31.8%), Y ~ LN(1,4)(32.6%), Z = 2Y — 2.5(35.5%).

Table 7. 90% C.I. for the mean with interval censored exponential data.

n = 100 Coverage Mean Length of C.I.  s.d. Length of C.I.
pn £ 16453, .858 430 .084
LB-ELRCI(S4%) .904 474 .102
WELRCI .933 524 .142

X ~Exp(1), Y ~Exp(3), Z = 2Y — 2.5; 6 = 1 : 55.9%, 6 = 2 : 25.0%,

6 =3:19.1%.

Table 8. 90% C.I. for the mean with interval censored normal data.

n = 100 Coverage Mean Length of C.I.  s.d. Length of C.I.
pin £ 1.6458, .874 461 .057
LB-ELRCI(S4’) 893 497 .062
WELRCI .900 501 .062
X ~N(0,1), Y ~N(1,4), Z = 2Y — 2.5; § = 1: 53.6%, 6 = 2 : 32.7%,
6§ =3:13.6%.

The same studies in Table 1 are repeated in Table 2 for right censored normal
samples. For right censored lognormal samples, Table 3 compares the performance of
the confidence interval based on (2.6), nonparametric bootstrap-t, LB-ELRCI with (S4’)
and WELRCI.

From Table 1-3, we can see : (1) the coverage and the length of the LB-ELRCI’s
with large N or with (S4’) used are basically the same as those by the nonparametric
bootstrap-¢; (2) as n increases, the quantity 65, | decreases, and the length of the LB-
ELRCT’s gets closer and closer to that of the confidence intervals constructed by the usual
asymptotic method (2.6); (3) WELRCI compares well with bootstrap-¢ and LB-ELRCI
and performs better than the usual asymptotic method (2.6).

Except bootstrap-t (because it is very time-consuming), the studies in Table 3 are
conducted in Tables 4-9 for doubly censored samples and interval censored samples with
exponential, normal and lognormal distributions, respectively. Note that it is known that
constructing confidence intervals for lognormal distributions is a hard problem, and here
we consider various types of censored lognormal distributions in our studies. Clearly, in
all cases WELRCI gives the best coverage among all methods considered here for the
lognormal data, and the confidence interval based on (2.6) performs very poorly with
interval censored lognormal data even for larger sample size n = 200 (see Table 9).

Next, we apply the proposed WELRCI and LB-ELRCI methods to a doubly censored
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Table 9. 90% C.I. for the mean with interval censored lognormal data.

n = 200 Coverage Mean Length of C.I.  s.d. Length of C.L

pn = 1.6453, 778 703 .305

LB-ELRCI(S4") .845 776 .391
WELRCI .881 2.662 34.378

X ~LN(0,1), Y ~LN(1,4), Z = 2Y —2.5; § = 1: 31.9%, § = 2 : 32.9%,

6 =3:352%.

Table 10. 90% C.I. for the mean with breast cancer data.

WELRCI  LB-ELRCI (N =1000) LB-ELRCL(S4’) p 1.6453,
[61.96, 64.92] [62.04, 64.91] [62.05, 65.04]  [62.07, 64.85]

data set encountered in a practical situation.

Ezample 1. In arecent study of primary breast cancer (Peer et al. (1993)), a dou-
bly censored sample is encountered. The age (in years), X, at which a tumor volume
is developed, is observed among 236 woman with age ranging from 41-84 years. From
1981 to 1990, serial screening mammograms with a mean screening interval of 2 years
were obtained. Among the tumor volumes detected by the screening mammograms,
45 women had tumor volumes observed at the first screening mammograms—yielding
left censored observations, 79 did not have tumor volumes observed at the last screen-
ing mammograms—ryielding right censored observations, and 112 were observed to grow
tumor during the period of the serial screening mammograms—yielding uncensored ob-
servations. The statistical inference on X should indicate the effect of the frequency of
the screening mammograms in detection of early atage of canser (Ren and Peer (2000)).
For this doubly censored data set, the confidence interval (2.6), WELRCI and LB-ELRCI
for the mean of X are constructed, respectively, and the results are displayed in Table 10.
One may note that the confidence intervals in Table 10 do not differ very much, though
the lengths of the WELRCI and LB-ELRCI are a little bit wider as expected based on
the simulation studies above.

4. Conclusions

Using the idea of leveraged bootstrap, a new method of constructing confidence in-
tervals for the mean with various types of censored data, called LB-Empirical Likelihood
Confidence Intervals, is proposed in this paper. The investigation of this method leads
to the discovery of the use of (S4’) in the proposed and the discovery of the weighted
empirical likelihood ratio confidence interval, which do not need to take any leveraged
bootstrap samples in their computations. Simulation studies show that the proposed
WELRCI, though from (2.19) theoretically slightly conservative based on the second or-
der expansion of the log likelihood ratio, compares very well (even for censored lognormal
samples) with the nonparametric bootstrap-t method in terms of coverage accuracy and
the length of the confidence interval, and is computationally for more efficient for doubly
censored data or interval censored data.
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Another advantage of the proposed methods in this paper is that they are easily
applicable to different types of censored data and they do not require (no more than the
bootstrap-t) the case by case study on the computation and asymptotic properties of the
empirical likelihood confidence bands for different types of censored data. In fact, the
proposed WELRCI method (under some conditions) directly applies to any incomplete
data for which the mean estimator based on the NPMLE is asymptotically normal.

5. Proofs
PrOOF OF THEOREM 1. First, it can be shown that (A1) implies that as n — oo,
(6.1) X{y <p < X(py, inprobability.

Thus, in probability

m m
(5.2) () = sup {I_I'mwz Zwin = g, for w satisfying (2.1)}
i=1 i=1

always exists. Nothing that A, is compact and convex, from (2.2), (2.3), the definition
of % (z) and the Intermediate Value Theorem, we can show that in probability,
(5.3) Xim Su< X, ifandonlyif rp(u)>ec.
From the proof of Theorem 1 by Owen (1998), we have
m
(5.4) log Rp = logr), (k) = — Z log(1 + AeY;"),
i=1
where Y* = X —p,i=1,...,m, and Ao € (-1/Y;,), —1/Y(},) is a unique solution of
1l o= Y
5.5 A= — —t =,
(55) o= 0D T

Therefore, by (5.3) it suffices to show that —2log Ry — (1 + 3’({;))(%1) in distribution.
From the Markov inequality and (A4), we have

(5.6) ax |Y;*| < m3,  in probability.

Let m ™
Xy =m EX:‘ and S%Z=m™! Z(X: —u)*
i=1 i=1
Then (A2) and the assumption m = O(n) imply
(5.7) Vm(X}, - p) = Vm( Xy, — ) + Vm/nyn(pm — p) = Op(1),
and (A4), (A2) and (A3) give

(5.8) 52552 as n-— oo
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Using the same argument in the proof of Theorem 1 in Owen (1988), by (5.6)-(5.8)

we can show that Ao = {(X7, — p)/S?}ro = Op(m!/?), where ry = 1 4 0,(1). Since

(A4) implies m~1 >"7", | X7 — pu|® = Op(1), thus applying the argument of Owen ((1988),

p. 242) almost line by line for his —21log Ry to our —21log Ry given by (5.4), we have
—2log Ry = {vm(X}, — 1)/S}* +0,(1), as m— oo.

Since in (5.7) the conditional distribution of v/m(X}, — u,) converges to N(0,02) as
n — 00, the proof follows from the fact that (A2) gives

- T
\,/n—"Z(X;z—u)/S—QZ—f— \/TTA/ZO, as n — 00,
where Z and Zy are two independent standard normal r.v.’s. O
PROOF OF THEOREM 2. (i) Let Fy be the empirical d.f. based on one leveraged

bootstrap sample X7, ..., X7 and F; \ the empirical d.f. satisfying (2.8) based on the
‘best’ sample X{ v, ... ,X » - From "Shorack and Wellner ((1986), p. 12), we know

Pu{llEy = Foll 2 K[V} = (Pu{VnlIF} = Ful) 2 KDV < (5872,
where n > 1 and K is a constant such that 58/e2X” < 1. Thus, we have that
(5.9) |Fon — Full < K/vA, a5 N oo
in probability. From (A1) and (5.9), it can be shown that in probability
(5.10) Xyn <p<XipnN 8 n—o00, N oo

Let

n
75 n(T) = sup {H nw;

ZwiXi*,N =z, for w Satisfying (2.1)} .
i=1

i=1

Since (5.10) implies that r;, y(p) exists, from the proof of Theorem 1, we know that in
probability,
(511) XE,n,N < H < X;},n,N if and Only if T:L,N(lu’) 2> G,

as n — 00, N — oo Also from the proof of Theorem 1, we have

(5.12) log R,y = logry, n(1) = = log(1 + do (X} — ),

i=1

where Ao,v € (—(X{py v — #) 71, —(X(y v — #)7) is 2 unique solution of

zN N’) -
Z(HA( —y

Nothing that for right censored data (1.4) and doubly censored data (1.5), V; € R
for 1 <i<n,and Xy € {V1,...,Va}, 1 < i < m, (Efron (1967), Mykland and Ren
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(1996)), thus from (A5), Theorem 3.2.1. of Chung (1974) and Borel-Cantelli Lemma, we
can show that in probability,

(5.13) max, | XNy —ul < 203 as n— 0.

5

For interval censored data (1.6), we have V; = (¥;,Z;) € R? and (5.13) also holds,
because of X}y € {Y1,Z1,...,Yn,Zn}, 1 < i < n, (Groeneboom and -Wellner (1992))
and because of (A5), convention (2.9) and

max {1X2w — ul} < max (1% — al} + max {17 — ).

Let [an, bn] be the support of £y, then according to convention (2.9), the support
of F; \ must be included by [an,bn] C [V(1), V(n)] for censored data (1.4)~(1.6). Also let

n
N ‘Z y=prn and SH=nT1)(X7y -l
i=1

then some straightforward calculation, (A2), (A6) and (5.9) give

(5.14) n(1/2_ﬂ)(u;,N — ) £0 and S2, £ o2,

as n — 0o, N — oo. Hence, applying the argument for g in the proof of Theorem 1 to
gn here, we have Aoy = Op(n™?), as n — 00, N — 00, for ¢ = % - B.
Note that from (5.9), (A4) and (A6), we have that as n — co, N — o0,

n T
(5.15) n Y |Xin —ulP <8 {n‘l DoIxinl+ W}
i=1

i=1

=8 { / " el dF(a) + w} <8 { / " SAFS () + 1+ IuJS}

:8{4 / " 23 (Fo(z) — Fy n(z))dz + / " x4dﬁ‘n(x)+1+{u|3}

An

< 32(bn — an)® max{[bal®, lan*HIFn — Fy w [l 4+ Op(1) = 0p(1) + Op(1).

Applying the argument of Owen ((1988), p. 242) almost line by line for his —2log Ry to
our —2log Ry n given by (5.12), from Ao,y = Op(n~?) and (5.15) we have that

(5.16) —2log Ro,v = (2ro,n — 1o ){Vn(X v — 1)/ SN} + 0p(1),

as n — 00, N — oo where 1o y = 1+0,(1). Therefore, (2.10) follows from (5.11), (5.12),
(5.14) and (5.16).

(ii) First, note that among all possible empirical d.f.’s based on complete i.i.d.
samples from Fn, there exists one F;' such that

(5.17) |E:~El<1/n and ||Fry—-Fr||5 as N — oo.
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From the discussions in the proof of (i) above, we know that the support of F* v must

be included by the support of ﬁ’n; that is the support of F n is included by [as,bs] C
[V(1), V()] for censored data (1.4)—(1.6). Thus,

P,
-0, as N — o9,

br
618 Valuny - il =va| [ Fan - Eds

where pf = [ zdF;(z). Moreover, from (A6) and (5.17) we know that as n — oo,

(5.19) VAlus — ] = VA / (Fr - B)dz

Hence, (5.18), (5.19) and (5.14) imply

< vn(bn — an)||Fy — Fn“ = 0p,p(1).

(5.20) 6n N P onp(l), a N —oo.

Therefore, the proof follows from that fact that (2.10), (5.20), (A2), (5.14) and the
Dominated Convergence Theorem (DCT) imply

lim 11m P{X{ N <0< Xian}

n—oo N—oo

2
DCT i B {Nliinw P, {((1 + 0p(1))8%  + ﬂ/;n:_“l) < _glogc}}

n—r0o0 n

= nllngoP { ((1 + 0p(1))on p(1) + [%;_—#))2 < -—210gc} . ]

n

PROOF OF THEOREM 3. Since W1 < X{) < X(; ) < Wy, in (5.1), then (A1)
implies
(5.21) Wi <pu < Wy, inprobability

as n — oo. From Remark 4 in Section 2, it can be shown that in probability, X Ln <
n< )A(U,n if and only if

(5:22)  r(u)=sup {ﬁ(pi/ﬁi)"ﬁf
i=1

ng no
ZPiWi = U, p; = O,Zpi = 1} >c.
i=1

i=1

Following the proof of Theorem 1 by Owen (1988), from (A2), (A3) and (A5) we have

_ 1/3
(5.23) max |Wi -yl =0p(n'"")
and o
(5.24) logr(n) = —n Y _ p;log(1 + Ao(Wi — 1))
i=1
where

(5.25) Xo = Op(n~1/2)

is the solution of

(5.26) g\ = Z 1+/\(W ) =0.
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Let

no
(5.27) 8% = Zﬁi(Wi — 1)? = 0% + (un — p)? = 05 + Op(n71),

i=1
and

no
(528) fis =) _pi(Wi = 1)° = fisn + 3(ttn — )7, + (ttn — 1)° = fizn + Op(n™"/?).

i=1
From (5.23), (5.25) and (5.26), the Taylor expansion gives

no A
Pi(Wy — )

5.29 0 =g(X) = —
(5.29) 9(Xo) 2 5 2g(Wi - 1)

no
= " Hi(Wi — WL — Xo(W; — ) + N (W; — p)* + £]]

i=1
= (pn — 1) — X08” + Afiz + Op(n™%/?),

where [&;| < [Xo(W; — )| and by (A7)

ng no
> bi(Wi — w)€2| < oD 5 (Wi — )t = 0p(n%/2).
=1 =1

From (A2), (5.25), (5.27)—(5.28) and (A8), we can show that (5.29) implies

— — )20
Ao = (ﬂnsz N) + ()u'n Sg‘) U3 +Op(n~3/2)-

Thus, the Taylor expansion, (5.24) and (5.30) give

(5.30)

o
—2logr(u) = QnZﬁi log(1 + Ao(W; — u))

i=1

70 X /\2 Wl _ 2 )\3 WZ _ 3 i

g==1

_ n(pn — p)? {1 . 2(pn — u)ﬂs} +0,(nY),

S2 3514
where |7:] < |Ao(W; — w)|*, and by (A7)

ng
Z P

i=1

Therefore, (2.17) follows from (5.22), (5.27) and (5.28). O

ng
< rol* DBl Wi — pl* = Op(n2).

i=1
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