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Abstract. In this paper the limit distribution function (d.f.) of general bivariate
order statistics (0.s.) (extreme, intermediate and central) is studied by the notion of
the exceedances of levels and characteristic function (c.f.) technique. The advantage
of this approach is to give a simple and unified method to derive the limit d.f. of any
bivariate,0.s. The conditions under which the limit d.f. splits into the product of the
limit marginals are obtained. Some illustrative examples are given.
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1. Introduction

Let X; = (X1, X2), ¢ > 1, denote i.i.d. random vectors, with a d.f. F(z) =
F(zy,22). Write X¢1:n < Xt < -0 < Xienm, t = 1,2, for the order marginal of
the first n pairs (X, Xo;). Let Up, = (vin,v2,) be a real vector which is regarded
as a level (typically each of vy, and vy, becoming higher with n) and define p;.,, =
P(Ey;) = P(X1 > vin, X2 < vap), P2in = P(F2) = P(X1i < vin, Xoi > von),
P3:n = P(E3;) = P(X1i > vin, Xoi > va2n) = G(0y) and pa:p = P(Ey) = P(X1; < vin,
Xa; < van) = F(Dp), representing the probabilities in the four quadrants defined by
the point ©,. Choosing F;(z;) and Gi(z;) = 1 — Fi(z;), ¢ = 1,2 denote the marginals
of F(Z) and G(Z), respectively, we get pi, = Gi(vin) — G(T,), © = 1,2, and pgn, =
1 — G1(vin) — G2(v2n) + G(¥y,). Furthermore, let S, = (Sin, So2n) be the vector of the
number of exceedances of @, by X1, Xa,...,Xp, i€, Sjn = Y0 Iix;imu,np § = 1,2,
where 14 denotes the indicator function of the set A. In this paper we investigate prop-
erties of S,,, and as consequences, obtain limiting distributional results for the vector
Zim = Zky hym = (X1,n-ky+1:m> X2mn—ky+1:n), for any integers k; and kp such that
1 < ky,ky < n. For fixed k; > 1(i = 1,2), as n — 00, k; will be called fixed rank (or
the case of extreme o.s.), while if k; — 00, as n — oo, k; is called increasing rank. Two
particular rates of increase are of special interest. The first is called the case of central
rank (or the case of central o.s.), in which we have k;/n — X; € (0,1), i = 1,2. The
second case is called the intermediate rank (or the case of intermediate 0.s.), in which we
have k; — oo, but k;/n — 0. We shall also use the term k;-th lower o.s. for X iken and
k;-th upper o.s. for X; n_g;+1:n, ¢ = 1,2. In speaking of a general distribution theory for
bivariate o.s. however, the following distinct cases must be considered

(1) (U.e.-U.e.); (2) (U.e-L.e.); (3) (U.i.-U.i.);
(4) (U.i-L.i.); (5) (C-C.); (6) (U.e-U.i.);
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(7) (U.e-L.i); (8) (U.e-C.); (9) (Ui-C.),

where the words, upper, lower, extreme, intermediate and central are abbreviated, re-
spectively to U., L., e., i., and C. '

In a long and important series of paper over a period of twenty years or so,
Finkelstein (1953), Sibuya (1960) and Tiago de Oliveira (1959, 1962, 1965, 1970, 1975
and 1977) have obtained a number of more or less equivalent results on the forms of
the limit d.f’s of the vector Zi., = (X1,nn, X2,nmn) (i€, the case (1)). The neces-
sary and sufficient conditions for the weak convergence of the d.f. of Zi.,, are derived
by Galambos (1975), while the domains of attraction of these limit d.f.’s are discussed
extensively by Marshall and Olkin (1983) and Takahashi (1994). The asymptotic in-
dependence of the components of Zy., is studied by Mikhailov (1974) and Galambos
(1975). The tail equivalence in the case (1) is discussed by Takahashi (1987). The weak
convergence of the d.f.’s of the vectors Zj., and Z,—_k, k. (i-e., the cases (1) and (2))
and the vectors Z,;:l,n, Z,,n_khkw,n are investigated by Barakat (1990, 1997), where v,
is a discrete positive random variable (r.v.). More survey of recent developments can be
found in Galambos (1978, 1987). The work for remaining cases under general conditions
is limited. However, the asymptotic normality of the sample quantiles (case (5), when
ki = An + o(n'/?), A; € (0,1) and F;(&) = \;) is proved by Goel and Hall (1994),
under the assumptions that the first partial derivatives of the functions G;(z;) — G(%Z),
i =1,2;G(Z) and F(Z) exist in neighborhoods of ({1, {2) and are continuous at (£, £2)
and that fi(&1), fo(€2) are nonzero, where f;(z;) = dF;(z;)/dz;. This result was proved
previously under stronger assumption by Babn and Rao (1988), by using Bahadur’s rep-
resentation of sample quantiles. In this paper the limit d.f. of the bivariate o.s. in each
of the cases (1-9) is obtained by using the notion of the exceedances of levels and the c.f.
technique. The advantage of this approach is that one can handle all cases (1-9) in one
theorem.

Throughout this paper, basic arithmetical operations are always meant componen-
twise (see Galambos (1978), Chapter 5). We shall also use the notations ¥t.,(Z) =
P(Z;., <%),0=(0,0), I =(1,1), © = (00,0), max(a, b) = a Vb and min(a,b) = aAb.
Finally, let A,(.) denote the bivariate normal standard d.f. with correlation p.

In order to obtain the d.f. of S, consider the random vector (Wh, Wy, W3, Wy),
where W; denotes the number of Ej;, Ejo,..., Ejn, j = 1,2,3,4, which occur. Clearly
the random vector W = (Wy, Wy, W3) has the probability mass function

n!
* wi W W3 N—w) —we—w3

w3)!p1:np2:np3:np4:n ’

(11) fW’n(w) = wlng!w:;!(n —w — w2 —
where pa.n, = 1 — (P1.n + D2:n + P3:n) > 0. Moreover, S, = (W + W3, W + W3). It can
be shown that
81As2
(1.2) foun@® = 3,
. r=0V(s1+s2—n)

S1—7T, 7T So—T, N—81 —S2+Tr

‘Piin P3:nP2in Pamn

On the other hand, the obvious equivalence of the events {Z;., < 9,} and {5, < k}
leads directly to the relation

(1.3) Ugn(Un) = Fs, (k- 1),

n!
(s1 = r)rl(sa —r)l(n —s1 — 82+ 1)!
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where Fg _(3) = P(S, < 3).

Notice that W and S, have a four-dimensional multinomial and trivariate multi-
nomial distributions, respectively. This fact, in view of (1.3), reveals a strong relation
between the limit behaviour of the general bivariate o.s. and the convergence theorems
for the multinomial distribution. For example, in the next section, the central limit
theorem for the multinomial distribution is used to obtain the limit results concerning
the d.f’s of the bivariate o.s. with variable ranks. On the other hand, it is worth to
mention that many other asymptotic results are related to the limit results of this work.
For example, if S¥ has the d.f. (1.2), with p1., = A10/7, Pa.n = Ao1/7, and pa., = i1 /n,
then by taking limits in (1.2), one can obtain a bivariate Poisson d.f., which corresponds
to the d.f. (2.6) (in the next section). Moreover, it is easy to check that r.v.’s Uy, Uy with
this limit d.f. have a representation of the form Uy = Uy + U, Uy = U3 4+ U, where U},
Uz, U are independent and have Poisson distributions with respective parameters g,
Aot, and Aqy;. Numerous applications are apparent from this representation. For exam-
ple, counts of accidents over a period of time in two overlapping districts have bivariate
Poisson distribution (see Marshall and Olkin (1985), and references therein).

2. Main Results

The following almost obvious theorem gives the necessary and sufficient conditions
under which the components of the vector S, (Zz.,) are stochastically independent for
any finite n.

THEOREM 2.1. For any finite n, the components of the vector Sy, (Zx.,,) are stochas-
tically independent if and only if (iff) P3.n = P13:0DP23:n(G(Tn) = G1(v1n)G2(van)), where
pj3'n = p].n +p3:n, j - 1, 2.

Remark 2.1. Clearly, the independence of the r.v.’s X7 and X,, where X = (X1, X2)
denotes a generic (X1;, X2;), ¢ > 1, implies the condition G(,) = G1(v14)Ga2(v2,). How-
ever, when n becomes large enough, the necessity of this condition will be relaxed, as we
shall see later.

PROOF. The proof can be easily followed from the fact that

m n
S'n. = Z(I{X1i>v1n}7I{X2i>vzn}) = Z(Yila }/21:)7 say.
=1 i=1
Hence, the c.f.’s of S;, = (S1n, So2r) and Y = (Y1, Y2), where Y denotes a generic (Y13, Yai),
are related by @z, (f) = ¢#%(f). Therefore, Si, and Si, are independent iff ¥; and
Y, are independent, which means that the events {X; > vi,} and {Xo > vo,} are
independent. [

The following theorem gives conditions for the convergence of ¥y, (v, ), where {t,}
is any sequence of real constants, not necessarily of the form (@,% + b,), @, > 0 or even
dependent on the parameter ¥ = (x1,%2) and kq, ko are any increasing ranks.

_ THEOREM 2.2. Let (n — k) Ak; — oo, i = 1,2,as n — oco. Furthermore, let
k/n— A= (\,A2), asn — 0o such that 0 < A<1or A =0 =1 If
G(@n) -Gy (vln)G2 (’Uzn) D3:n — P13:nP23:n

2.1) riom = = — P12,
( ) " \/Gl (’Uln)GQ ('UZn)Fl (Uln)Fg (’U2n) \/p13:np23:nq13:nq23:n piz
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for fized constant p1a, | p12 [< 1, where gia.n =1 — pigin, 1 = 1,2, and

ki - nGz(vm) R

vk (1= %)

Jor some fized constants Ty and T2, or equivalently (as we shall see)

(2.2) %, =12

(2.3) ki — nGi(vin) _ ki —npign m i=12
\/TLG,, ('Uin)Fi('Uin) VTPi3:nqi3:n

hold, then

(2.4) Ui (On) = N, (F), as n— 0.

Conversely, with T, = Un(T) = 8nT+bp, 7(T) = (11 (%1),72(x2)), where @, = (a1n, aon) >
0, b, = (b1n,b2n) are some vectors of real sequences and 1, To are continuous functions,
if (2.4) holds so do (2.1), (2.2) and (2.3).

Proor. First observe that E(S;,) = npiz.n, var(Sim) = npismGizn, i =
1, 27 and: Cor(Sl'rn S2n) = COV(Sln) S?n)/\/var(sln)var(s2n) = (p3:n - p13:np23:n)/
\/P13:nP23:nG13:0q23:n- Thus, T12., is just the correlation of Sy, and Sy, i.e., | 124, |< 1,
which in turn yields that | pj2 |< 1, provided that the limit in (2.1) exists. Next, that
(2.2) implies (2.3), for each ¢ = 1,2, follows by writing

k;
k; = ’I’LGi('Uin) + Ti4 | ks (1 — ;;) (1 -+ 0(1)) , i=1,2

and noting that this implies k; ~ nG;(vin) and (n — k;) ~ nF;(vy,). Similarly, (2.3)
implies (2.2). Now, consider Zjn, = (Sjn — E(Sjn))/+/var(S;n), j = 1,2. The c.f. of the
vector Zy, = (Zin, Z2,) is given by

bz (f) — E(eit121n+itzzzn) — e_itl\/npl&n/ql&n—it2‘\/np23:n/q23:n
il

'(pl'neitl/v np1s;nQ13:@ + pS‘neitl /-\/npla;nqmm +it2/\/np23mq23:n
+p2:neit2/vnp23:nq23:n + p4:n)n
= (Aanpl:n + Ancnp&n + -DnC'np2:n + Danp4:n)n7

where In An = itl V q13:n/np13:n, In Bn = _’it2 V p23:n/nq23:n7 In C1'n, = it2 \% q23:n/np23:n

and In Dy, = —it1y/P13:n/Nq13:n. Noting that ¢5 .. (f) can be written in the form

¢Zn:n(a = (Bn(An - Dn)p13:n + (An - Dn)(cn - Bn)pB:n
+Dn(Cn - Bn)p23:n + Dan)na

when, 0 <A< 1, ie, pizmn = N €[0,1), iz =1 -\ € (0,1],7=1,2,as n — 0co. On
the other hand ¢z ., (£) can also be written in the form

¢Zn:n(£) = (Bn(An - Dn)p13:n + (An — Dn)(Cn _ Bn)pB:n
_Dn(Cn e Bn)‘]23:n + DnCn)na

when, )\1 = 0 and /\2 = 1, i.e., DPi3in — O(qlg;n — 1) and D23.n — I(Qng - 0), as
n — co. Therefore, in view of the condition n(pi3.n A p23.n) — 00, as 7 — o0, one can
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easily show that the proof of (2.4) is just an imitation of the proof of the classical central
limit theorem by c.f.’s (see e.g., Billingsley (1995), Chapter 5, Section 27). Indeed, after
simple calculations, we can show that

— 1 1
(25) B E) = 1= o (8 + 6+ 2ntaman) +0 (3.

which in turn, in view of (2.1), (2.3), (1.3) and by virtue of the converse limit theorem
of c.f.’s yields (2.4). Hence the first results.

To prove the converse, notice that, the limit in (2.4) will be in the sense of weak
convergence. Moreover, by the continuity of the limit A,,,(7(Z)) and on account of
Lemma 5.2.1 in Galambos (1978), the marginals of ¥}, (@, +b,,) converge to the corre-
sponding marginals of N, ,(7(Z)). Thus, an application of Theorem 2.5.2, in Leadbetter
et al. (1983), leads immediately to (2.2) as well as (2.3). On the other hand, if (2.1) does
not hold, we can select a subsequence {n'} of {n} on which (2.3) holds (remember that
| r12:n |< 1), where the limit p;, may depend on the actual subsequence {n’}. Observing,
however, that N, (7(Z)) = Ny, (F(Z)), leads to piy = pfs, i.e., the limit p12, in view of
(2.4), cannot depend on {n'}. O

The tools are now available for developing a general theory for the limit distributions
of bivariate o.s. This will be done in the following theorem.

THEOREM 2.3.

Part 1. (U.e.-U.e.) Letk be a vector of fized ranks. If, asn — 00, nG;(vin) — T,
i=1,2, and nG(9y,) — 73 hold for some sequence {Un} = {(Vin,van)} and fized constants
71,79 and T3 such that T3 Ao > 0, then

k1—1ka—114Aj

(26) Ugn(On) — Z Z Z G=r 'T"(] T)!(Tl - 7-3)i_rq-§(7-2 - Tg)j—re—n—-rz-l-rs

i=0 j=0 r=0

and 0 < 13 < 14 N\ To. Moreover,

. G('Un) -Gy (Uln)GQ(UZn) _ T3
T12:n = - P12 = ’
vV G1(V1n)G2(v2n) F1 (v1n ) F2(van) VTiT2

Thus, the limit of Wy, splits into the product of the limit marginals iff 73 = 0 (i.e.,
nG(v,) — 0). (Note that p12 > 0.)
© Part 2. (Lie- Ue.) (most of the results of this part are contained in Barakat,
1990) Let k be defined as in Part 1. If, as m — oo, nFy(u1,) — I and nGa(vay) — T
hold, and at least one of the limits nG(u1n,V2n) — 73 and nF(uin,va,) — 1§ exists, for
some sequence {(U1in,V2n)} and fized 0 < l1,72,73,15 < 00, then

as n — 00.

(27) lIln—k:l-{—l,k:g:n('ulln,'UZn) = P(Xl,lclzn < ulnaX2,n—k2+1 < 'U2n)
— M g, (12) — Mg (13,1 = 13,75, 72 + [3)
= M-,kz("?) — Mg (lg’T2 - T:;’Tgall +T§),

where
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and ,
ki—1ka—1 iAF

1 - .
My (21, 22,23, 74) = Z Z Z (i-r)!r!(j—r)!le Txhxl e,

i=0 j=0 r=0

Moreover, T12.n — p1a = ~(12 —73)/Vlita = —(lh — 1&)/Vli7e. Thus, the limit of
Wn—ki+1,k5:n Splits into the product of the limit marginals iff 7 = 73 (Ga(van) ~
G(U1n, v2n)) or equivalently Iy = I5(Fy(u1n) ~ F(u1n,v2,)). (Note that pya < 0.)

Part 3. (Ui-U.i.) Letk be such that ky Aky — oo, but k; = o(n),i=1,2,asn —
co. If, as n — 00, (ki — nG;(vin))/Vki = Ti, i = 1,2 and G(9,)//G1(v1n)CG2(var) —
piz hold for some sequence {U} and fized p12, 71, T2, then Vg, (B,) — N,,,(7). The
asymptotic independence occurs iff G(Un)/+/G1(vin)Ga(v2n) — 0 (note that pa > 0).

Part 4. (Li-U.i.) Letk be such that ki A(n—ky)Aky — 00, but (n—k1), k2 = o(n).
If, as n — oo, (nFi(u1n) — (n— k1))/vVn — k1 = 11, (k2 — nGa(v2s))/ Vs — T2 and

G (U1in, von) — G2(v2n) _ F(u1n, v2n) — Fi(u1,)
VF1(u15,)G2(v2n) V' Fi (u1r)G2(van)

hold for some sequence {(U1n,v2n)} and fized pia, 71, T2, then Vo by 41,k0:m (Uin, Van) —
N, (T). The asymptotic independence occurs iff

— P12

G(“lny U2n) - GZ('U2n) — F(U1n,’U2n) - F1(U1n)
\/Fl (uln)GQ(U2n) \/Fl (uln)G2('U2n)

(note that p12 < 0).

Part 5. (C- C.) Let k be such that \/n(ki/n — ) — 0, asn — oo, i = 1,2,
where A; € (0,1). If, as n — 00, V(A — Gi(vin))/vV/ M1 = X)) — 7, i = 1,2, and
G(0n) — A2 hold for some sequence {Tn} and fized Aja, 11,72, then Uy, (Tr) — Ny, (7),
where p12 = (A2 — AtA2)/v/ A A2 (1 — A )(1 = \3). The asymptotic independence occurs
iff Ad12 = A Ag,le., G(ﬁn) ~ Gl(’U1n)G2(’Ugn).

Part 6. (Ue.- Ui) Let ky be fized, while ks — oo and ky = o(n), as n — oo.
If, nG1(vin) — 11 and (k2 — nG3(van))/vVEz — .12, as n — oo, hold for some sequence
{on} and fized 11,73, then Ug.,(0,) — My,, (m)N(r2),as n — oo, where My, (1) =
St Lriem™ and N(z) = 715—; [2. e ¥ /24t is the standard normal d.f.

Part 7. (U.e-L.i.) Let ki be fived, while ks — oo and n— kg = o(n), as n — oo.
- If, nGi(vin) — 11 and (nFa(ug) — (n — k2))/v/n — kg — To, s N — 00, hold for some
sequence {(Vin, u2n)} and fized 71,72, then Wi, n_ky11:m(Vin, Uzn) — My, ()N (12), as
n — 00.

Part 8. (U.e- C.) Let ky be fized, while /n(ke/n — A) — 0, Ay € (0,1), as
n— oo. If, nG1(vin) — 71 and v/n(A2 — Ga(van))/\/A2(1 — X2) — 72, as n — oo, hold
for some sequence {v,.} and fizxed 11,72, then Uy, (9,) — My, (11)N(12), as n — co.

Part 9 (Ui- C.) Let ki — 00,k1 = o(n) and \/n(ke/n — Ag) — 0,X € (0,1),
as n — oo. If, (k1 —nG1(vin))/Vki — 71 and /n((Az — Ga(van))/(vV/ A2l = A3)) —
T2, as 1 — 00, hold for some sequence {0} and fized 71,73, then Uy, (5,) — N ()N (12),
as n — 0o.

— 0

PROOF. Parts 3-5 and 9 follow immediately from Theorem 2.2, in view of the
following facts:
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(1) In Part 3, we have G1(vin) V G2(van) — 0, as n — 00, then rig., ~ G(,)/
VG1(v1r)G2(van).
(2) In Part 4, we have Fy(u1,) V G2(vap) — 0, then

G(u1n,V2n) — G1(v10)G2(v2n) _ G(Uin,V2n) — G2(von
VF1(u1n)G2(van) vV Fi(u1,)G2(van)

) + \/Fl (u1n)G2(van)

i
T12:n ~

which leads to

. o Gluin,van) — Ga(ven) L. F(upn,van) — Fi(ugn)
lim ry9., = lim = lim .
n—00 n—=0 /P (u10)G2(v2n) n—o0  \/Fi(u1r)G2(von)
(3) In Part 5, we have G;(vin) ~ A; € (0,1),7=1,2.
(4) In Part 9, we have G(U,,) < G1{v1n) — 0, as n — 00 and Ga(van) ~ A2 € (0,1),
then
|G(0n) — G1(v1n)G2(var)|
\/G1 (Uln))‘Q(l - )\2)

< g (VO + Galvan) VETn) 0.

In order to prove Parts 6 and 8, notice that G(v,,) = ps.n, < P13in = G1{v1n) ~ 11 /0
and pos., = Ga(v2n) ~ A(npag.n ~ ka — 00), where A = 0 in Part 6 and A = A9 € (0,1)
in Part 8. On the other hand, we can write the c.f. of the vector (S, Z2,) in the form

¢51m22n (E) = E(eitlslﬂ““it?Zzn)

_ o-ita/rmma e @ i+ )
R N et Y e o
= (Bn(eitl - l)pl&n + (Cn - Bn)(eitl - 1)p3:n + (Cn - Bn)p23:n + Bn)n’

|'r12:n! ~

where B, and C, are defined in Theorem 2.2. Now, we can easy show that,
Bnpizin ~ Tl/n; (Cn - Bn)pS:n = it2p3:n/\/np23:nq23:n + 0(%) = 0(%)(Since; Pan <
P13:n ~ Tl/n);

it2 D23:n t% (p23:n q23:n) 1 ;
C,—B L, TS e 4+ =
( n n)p23.n \/h_ Qoa. mn 02 +0 iy ana

B.—1— ity [Pz 13 Poam to (l)
" \/;7: 423:n 2n d23:n n

Therefore,

PS1niZ2n(t) = (1 + (et — 1)% _B (l))n

2n n
. t2 t2 ‘
— exp ((e”2 —1)m — 5) = exp (——2—> exp (ri(e"t - 1)) .

This completes the proof of Parts 6 and 8. The proof of Part 7 is similar to the proof of
Parts 6 and 8 (with only the obvious changes) and for brevity it will be omitted.
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Turning to the proof of Parts 1 and 2. In Part 1 we can write the c.f. of S, as

b3 (f) — E(eit181n+z’tzSzn)

=(1+ (e“1 = 1)p13:n + (e“1 - 1)(éit2 — 1)pain + (€2 — D)poa.)™

After noting that p13., = G1(v1a) ~ T1/7, Degin = Ga(van) ~ T2/n, and ps., = G(Vy) ~
T3/m, we get, as n — 00

(2.8) ¢s, () — exp((e'* — 1)1y + (' — 1)1z + (et — 1)(e2 — 1)73),

which is the c.f. of the limit d.f. in (2.6). It is easy to show that the correlation
coefficient of this limit d.f. is given by 73/,/7172. Since, Parts 1 and 2 are related
by the simple transformation (X;,Xs) — (—Xi,X32), Part 2 can be easily proved
as follows: Let ¥, (%) = Hi.,(Gi(z1),Ga(z2), G(T)), say. Then ¥y g, 41 40:0(Z) =
P(Xl,klzn < $17X2,n-—k:2+1:n < 332) = P(_Xf,n—kl-i—l:n < xl;XZ,n—k2+1:n < x?) =
P(X2,n—k:2+l:n < 152) - P(Xr,n—k1+1:n < ‘”m17X2,n—k2+1:n < xZ); where Xf,n——h-{—l:n =
(n—ky+1)-th largest of (—X11, —X12,.--, =X1n)- Hence, ¥, 41 ko:n(Z) =¥ _koin(z2)—
Hp. o (F1(z1), Ga(z2), F1(21) = F(Z)) = V. kyn(@2) — Hpn (F1(21), G2(x2), G2(22) - G(T)),
where ¥_1,.,(%2) as usual is the marginal d.f. of ¥, (7). O

Remark 2.2. By using a linear parametrization in Theorem 2.3, by using identi-
fications T, = GnZ + b, Gn = OnZ + Bn, Gn, G > 0; 7i = Ti(xs), L = Li(zs), i = 1,2;
75 = 73(Z) and I = l3(Z) we see that the limit distributional types of the U.e. (L.e.) and
U.i. (L.i.), in contrast to central o.s., are all continuous (see Leadbetter et al. (1983)).
However, the asymptotic d.f.’s of the central o.s. are normal given weak conditions.
Therefore, by proceeding as we did in the second part of Theorem 2.2, we can show
that all sufficient conditions for the convergence of the d.f. of bivariate o.s. which are
given in Parts 1-9 of Theorem 2.3 are also necessary, when we use the preceding linear
parametrization and the limit distributional types are continuous.

Remark 2.3. By virtue of Theorems 2.1 and 2.3, we conclude that for any n (finite
or infinite) the marginal d.f’s of any bivariate o.s. are independent iff they are uncorre-
lated.

3. Examples

For all the following examples, we assume that the marginals of the d.f. of considered
bivariate o.s. converge.

Ezample 3.1. (The Morgenstern distribution) For this d.f. we have G(Z) = G1(z1)
Go(z2)(1 + aFi(z1)Fa(z2)), where —1 < o < 1. Thus, we can show that, nG(7;) — 0,

in Part 1; nG(uyn,v2,) — T2, in Part 2; —E(Tcl%}%)z—(;;n_) = v/G1(v1n)Ga(van)(1 +

aFl(Uln)Fz(’Uzn)) - O, in Part 3; (G(uln,v%) - Gg(’l)gn))/\/F1(uln)G2(’l)2n) s
V Fi(t1n)G2(v2,)(1 — aG1(u1n) Fa(van)) — 0, in Part 4 and G(77) — AMA2(1 + ol —
A1 = X2)), ie, pr2 = ay/A1A2(l — A1)(1 = Xg), in Part 5. Therefore, in all Parts
1-9 of Theorem 2.3 the d.f. of bivariate o.s. converges, whenever its marginals converge.
Moreover, if « = 0, in Part 5, and in all remaining parts, the limit d.f. splits into the
product of the limit marginals.
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Ezample 3.2. (Mardia’s distribution) For this d.f. we have G(Z) = G1(z1)G2(z2)/

(G1(z1) + Ga(z2) — G1(z1)G2(z2)). Thus, we can show that, nG(T,) — ni72/(11 + 72),
ie., p12 = /T172/(T1 + 72), in Part 1; nG(u1n,ven) — T2, in Part 2;

G(vn) _ Ga(van) Gi(vin)
VG1(v12)Ga(van) <\/G1('U1n) + \/Gz(’vzn) \/Gl('Uln)GQ(Uzn)>

-1

ve o ok
N Bt if k2—>ce(0,oo),
0, if %1- —c=0 or oo;
2
in Part 3;
G(u1n,V2n) — Ga(van) G2(V2n)V F1(15) G2 (v2n)

— 0,

VF1(uin)Ga(van) TG (u1n) + G2(v2n) — G1(v1n)G2(v2n)

in Part 4 and G(7;) — MA2/(A1+ A2 — Ada), ie, prz = VAt (1= A)(1 = A2)/
(A1 + A2 — A1X9), in Part 5. Therefore, in Part 3, when k;/k; — ¢ € [0,00] and in all
remaining parts, the d.f. of bivariate o.s. converges if the marginals converge. Moreover,
in Part 3, if k;/k2 — 0 or oo, and in all remaining parts except Parts 1 and 5, the limit
d.f. splits into the product of the limit marginals.

Ezample 3.3 (Gumbel’s type I exponential distribution) For this distribution we
have G(Z) = e ™17 2270122 ) < g < 1, 71,22 > 0, i.e., we have G(Z) = G1(z1)G2(x2)
e—elnGl(wl)lnGQ(EQ). Thus, TLG(E,:) ~ T1G2(’Ugn)€_0 InG1(vin) In Ga(v2n) ., TgGl(’Uln)
e~ 0 Gi(vin)InG2(van) 0, in Part 1; (nG2(v2n))G1(Uin)e /MM & nGy(vg,) —
(note that Gy (u1n) ~ 1 — l1/n, Go(ven) ~ T2/n), in Part 2; G(v)/+/G1(v1n)Ga(van) =
VG101, Caluzn) €010 Gr(01n)10Galu2) _, 0 (note that Gi(vin) ~ ki/n — 0,1 = 1,2),
in Part 3;

eI Gin) InGalvan) — o=0¢(1 4 (1)), if (1 - ﬁ) ln—lfg — —c <0,

n n
ie.,
ttn, vn) = Galomn) /5 G Y Golmn) 0, i =0,
Fy (uln)G2('U2n)
-1
Glu1n, v2n) — Ga(vzn) _\/"’_2 (1 _ ﬁ) e% 0, if 0<ec<oo,
Fi(©10)G2(v2n) n n
(note that (k2 /n)(1—ky/n)™ ~ (1—ky/n)~t e=e=F1/m)™" 0 if0 < ¢ < 00), in Part 4
and G(m) — )\1)\26_01n Aln >‘2, ie, pi2 = ——\/)\1/\2/((1 - )\1)(1 — /\2))

(1 — e @lnMlnde)y < 0 in Part 5. Therefore, in Part 4, when (1 — ki/n)Inks/n —
—¢,0 € ¢ < 0o and in all remaining parts, the d.f. of bivariate o.s. converges if the
marginals converge. Moreover, in Parts 4 and 5 if ¢ = 0 and § = 0, respectively and in
all remaining parts the limit d.f. splits into the product of the limit marginals.

Ezxample 3.4. (Standard bivariate normal distribution, with correlation p) In this
example we need the following facts (for the first fact, see Example 5.3.1 of Galam-
bos (1978) and for the second fact, see Esary et al. (1967) and Joag-Dev and Proschan
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(1983)):

—Gcf—jg—z)—»O, i=1,2, asi—%ob(%——a&asfc—»—ob)

and F(Z) > Fi(z1)Fa(z2)(G(Z) > G1(x1)Ga(x2)) (i.e., positively quadrant dependent),
if p > 0. Thus we can show that, nG(7y,) ~ 11 (G(75)/G1(v1n)) ~ T2(G(Vn) /Ga(van)) —
0, in Part 1; 1 > F(u1n,van)/F1(t1n) > Fa(va,) — 1,i.e.,nF(U1n,Von) ~ nFy(u1,) — I,
if p > 0, in Part 2; G(T5)//G1(V1n)G2(v2n) = v/ G(0) /G 1(v10) /G (Tr) /G2 (van) — 0,
in Part 3; 0 > (G(u1n,v2n) — G2(V2n))/ vV Fi(u1n)G2(v2n) > —+/F1(t1n)G2(van) — 0,
if p > 0, in Part 4 and G(7) — A2, where G(R) = A2, i = (u1,pe) and G;(u;) =
Ai{Ad12 = Ao, if p = 0), in Part 5. Therefore, in Parts 2 and 4, if p > 0 and in all
remaining parts the d.f. of bivariate o.s. converges, whenever its marginals converge.
Moreover, in Parts 2 and 4, if p > 0, in Part 5, if p = 0 and in all remaining parts the
limit d.f. splits into the product of the limit marginals.

Ezample 3.5. (The correlation of the marginal ranges) Many authors.have consid-
ered the correlation of the marginal ranges Ry.,, Ro.n,, where R;.,, = Xinn — Xiim, 1 =
1,2 for samples from a standardized bivariate normal distribution, e.g., Hartley (1950),
Smith and Hartley (1968) and Barnett (1976). For any d.f. F(Z) and real sequences
{in} = {(u1n,u2a)}, {Un} = {(Vin,v2n)}, if NG (Vin) — Tiy, nFi(usn) — yi = 1,2,
nG(Tn) — 73,nF(ln) — l3,nF(u1p,v2,) — 1} and nG(uin,ven) — 74, we can show
that
3 l3 To — T 3:’ l1 - lg

)
+ + :

(Note that 70 — 73 = l; — l3.) Therefore, in Examples 3.1, 3.2, 3.3 and 3.4 we have,
respectively lim, .o, cor(Ry, Ry) = zero, \/Ti72/ (11 + 12) + Vl112/(l1 + l2), zero and zero
if p>0.

lim cor(Ri.n,Ron) =
nN—00
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