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Abstract. Mixed interval-censored (MIC) data consist of n intervals with end-
points £; and R;, i =1, ..., n. At least one of them is a singleton set and one is a
finite non-singleton interval. The survival time X; is only known to lie between L; and
R, i=1,2,...,n. Peto (1973, Applied Statistics, 22, 86-91) and Turnbull (1976, J.
Roy. Statist. Soc. Ser. B, 38, 290-295) obtained, respectively, the generalized MLE
(GMLE) and the self-consistent estimator (SCE) of the distribution function of X
with MIC data. In this paper, we introduce a model for MIC data and establish
strong consistency, asymptotic normality and asymptotic efficiency of the SCE and
GMLE with MIC data under this model with mild conditions.

Key words and phrases: Asymptotic normality, generalized maximum likelihood es-
timator, mixture distribution, strong consistency.

1. Introduction

Interval censoring refers to a situation in which, X, the time to occurrence of an
event of interest is only known to lie in a half-open and half-closed time interval (L, R],
where the pair (L, R) is an extended random vector such that —co < L < X < R < co.
Interval-censored (IC) data may occur in medical follow-up studies when each patient
had several visits and the event of interest was only known to take place either before
the first visit, between two consecutive visits, or after the last one. Thus an IC data, set
may consist of strictly interval-censored (SIC) observations (i.e.,0 < L < R < oo}, and

right-censored (R = o00) and/or left-censored (L = —o0) observations. Examples of IC
data can be found in cancer research and AIDS studies (see, e.g., Finkelstein and Wolfe,
(1985)).

Case 1 data (or current status data, see Ayer et al. (1955)) is a special case of IC
data when each patient had only one visit. Observations in a case 1 data set are either
left-censored or right-censored. Doubly-censored data (see Chang and Yang (1987))
consist of case 1 data and uncensored observations. It is clear that neither case 1 data
nor IC data contain uncensored observations. Furthermore, doubly-censored data do
not contain SIC observations. A data set may be a mixture of uncensored observations
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and IC data which contain SIC observations. We call such data mized interval-censored
(MIC) data.

MIC data arise in clinical follow-up studies. In a cancer follow-up study, a patient
whose tumor marker value (for instance, CA 125 in ovarian cancer) is consistently on
the high (or low) end of the normal range in repeated testing is usually monitored
very closely for possible relapse. If such a patient should relapse, then time to clinical
relapse can often be accurately determined, and an uncensored observation is obtained.
However, if a patient is not under close surveillance, and would seek help only after some
tangible symptoms of the disease have appeared, then time to relapse most likely has to
be specified to be within the dates of two successive clinical visits.

Another situation in which MIC data can occur is in the usual right-censored survival
analysis where actual dates of events are not recorded, or missing, for a subset of the
study population, and can be established only to within specified intervals. An example
from the Framingham Heart Study was presented by Odell et al. (1992). In this large-
scale longitudinal heart disease study, times of occurrence of coronary heart disease
were recorded for almost every participant. However, time of first occurrence of the
coronary heart disease subcategory angina pectoris was only recorded for about 20% of
the participants who suffered from angina pectoris, and may be specified only as between
two clinical visits, several years apart, for the other participants.

For censored data, Peto (1973) proposed a Newton-Raphson algorithm to obtain
the generalized MLE (GMLE) of the distribution function (cdf), F. Turnbull (1976)
obtained a self-consistent estimator (SCE) of the cdf via an EM-algorithm. A detailed
discussion of more efficient algorithms for obtaining the GMLE is given in Wellner and
Zhan (1997).

For IC data, Groeneboom and Wellner (1992) formulated the case 2 model; Wellner
(1995) formulated a case k model, where k > 1; Schick and Yu (2000) modified Wellner’s
case k model by further assuming that &, the number of visits by a patient in a follow-up
study, is a random integer and the observation (L, R) is a mixture of various case k
models.

Various asymptotic distribution results of the GMLE have been obtained for cen-
sored data. For case 1 model the GMLE is asymptotically normally distributed (a.n.)
and the convergence rate is n'/2 if the underlying censoring distribution is discrete (Yu
et al., (1998b)), but the GMLE is not a.n. and the convergence rate is n'/® if cdfs have
positive derivatives (Groeneboom and Wellner (1992)). For case 2 model the GMLE
is a.n. with rate n'/2 if the censoring vector takes on finitely many values (Yu et al.,
(1998¢)), and Groeneboom and Wellner’s (1992) conjecture that under certain smooth-
ness conditions the GMLE has a pointwise convergence rate of (nlnn)'/3. For more
recent development on the latter conjecture, we refer to Groeneboom (1996) and Van
De Geer (1996) .

For MIC data, several models have been proposed, and the asymptotic properties
of the GMLE have been investigated under the assumptions that either the censoring
vector takes on finitely many values (see Petroni and Wolfe (1994), and Yu et al. (1998a,
2000)), or the censoring and survival distributions are strictly increasing and continuous,
and they have “positive separation” (see Huang (1999)).

In this paper, we shall use the model in Yu et al. (1998a) to establish asymptotic
properties of the GMLE based on MIC data under the assumption that all underlying
distributions are arbitrary with some mild conditions. Since a GMLE is also an SCE
(but an SCE may not be a GMLE; see Yu et al. (1998a)), and our proofs basically use the
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properties of SCEs, we shall focus on the asymptotic properties of SCEs for MIC data.
The main results are given in Section 2. The consistency result is proved in Section 3 and
the asymptotic normality result is proved in Section 4. Some detailed proofs of lemmas
in Sections 3 and 4 are relegated to Appendices A and B.

1

2. Main results

We introduce a mixture interval censorship model to characterize MIC data. Let
(T,U,V) be a random censoring vector and K a random integer taking values 0 and
2. Assume that X and (KC,T,U,V) are independent. The observable extended random
vector (L, R) is generated by a two-stage experiment. In the first stage, a value of K is
selected, then the random variable (L, R) corresponds to the observation from a right
censorship model if X = 0 and from a case 2 model if £ = 2, i.e.,

(2.1) (L, R) = (X, X)1x<r) + (T, 0)1x>1) if £=0,
) ) (=00, UN(x<vy + (U, V)1wex<v) + (V,00)1(x5vy if K=2,

where 1(4) is the indicator function of the set A and (-,-) stands for a vector. The
notation (-, -} may stand for an open interval later, but it would be clear from the context
or otherwise we would point out. MIC data in (2.1) can be considered as a “mixture”
of right-censored data and interval-censored data. It is known that in order to estimate
F, we only need to observe (L, R) (see Peto (1973)). Thus, in our model, X, K, U, V
and T' may not be observed. Let mp, = P(K = k) > 0, k =0, 2, and mg + 7 = 1. Denote
(L1, Ry), ..., (Ln, Ry) a random sample from the random vector (L, R).

Denote the cdfs of X, (L,R), (U,V), L, R, T,U and V by F, Q, G, Qr, @Qr, Gr,
Gy and Gy, respectively. Define 7, = sup{z : F(z) = 0}, 7, = sup{z : Gv(z) < 1},
7o =sup{z: Gr(z) <1} and 7 =inf{z : F(z) =1 or Gr(z) = 1}. An SCE of F is
defined to be a solution H,, of the equation

(2.2) Ho(z) = /QO%mdQn(z,rH dQ.(,r) and H, €O,

1 r<z

where © = {h: h is a nondecreasing function from [—o0,00] to [0,1], h(—00) = 0 and
h{oco) = 1} and @y, is the empirical version of Q (Li et al. (1997)),

Remark 2.1. There are two more ways to define an SCE of F: (1) a subdistribution
function which is a solution to the integral equation in (2.2) (Turnbull (1976)); (2) a
solution to the integral equation in (2.2) without additional assumption. Since there
exists a non-monotone solution to the integral equation in (2.2) (see Yu and Li (1999)),
definition (2) is not suggested. It is desirable that an estimator of the cdf is right
continuous. However, a solution of (2.2) may not be right continuous. Even if we
restrict our attention to all right continuous solutions of (2.2}, their limiting functions
still cannot be guaranteed to be right continuous based on Helly’s selection theorem.
Furthermore, by Theorem 2.1, the non-right-continuous solutions of (2.2) are consistent
estimators of F. In view of these facts, we define © as is.

For each SCE, there exists a unique SCE of F' that is a right continuous step function
with discrete points only at R;’s and the two SCEs are identical at all L;’s and R;’s.
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THEOREM 2.1. Let Hy, be a solution of (2.2). Suppose that
(AS1) () <7, and (b)if F(ri—)<1 then P{T or V =7} > 0.

Then limp .0 SUPg>o [Hn(2) — F(z)| = 0 a.s. if F(7) = 1, and lim,,_.oc sup, <, |Hn(z) —
F(z)| =0 a.s.

In clinical follow-ups, a study typically lasts for a certain period of time. Thus it is
often true that F(7—) < 1. In this regard, Gentleman and Geyer ((1994), Theorem 2)
claimed a vague convergence result, and Huang ((1996), Theorem 3.1) claimed a uniform
strong consistency result for IC data or case 1 data. Schick and Yu (2000) showed that
both theorems as stated are false and can be corrected by adding assumption ASL.b
to their theorems. A counterexample similar to that in Schick and Yu (2000) can also
be constructed to show that the GMLE is not consistent if AS1.b is deleted from our
Theorem 2.1.

Remark 2.2. ASl.a basically says that if we are not able to observe exact observa-
tions in the region (73, +00), we would not observe IC observations neither. For Theorem
2.1, this assumption may not needed, but it is needed for asymptotic normality.

A point z is called a support point of a function f if there exists a sequence of
points 2 — z such that |f(zx) — f(z)| > 0. Denote Sy the set of all support points of
f. It is well known (see Peto (1973)) that a GMLE F,(t) is not uniquely determined for
t € (Ls,R;) if Ly < Rj, (Ly, R;) N {L1,...,Ln, R1,...,Ra} = 0 and F, (L) > Eo(R;).
For the convenience of our proof of normality, we restrict our attention to the following
SCEs:

(2.3) H, is right continuous, Hp(c0) =1 and Sy, C {R1,...,R.}.

Under convention (2.3) the GMLE Fis uniquely determined. However there are still
SCEs that satisfy (2.3) but are not the GMLE. For convenience, we say a constant c is
a normal variate with mean ¢ and variance 0.

THEOREM 2.2. Let Hy, satisfy-(2.2) and (2.3). Suppose that AS1 holds and (AS2)
either (a) F(1) > 0 and (Sg, USg, ) C Sp

or (b) Sq, USqy is finite and F(r) > F(l) if l € Sg,,7 € Sgp and | < r.
Then for x < T, v/n(H,(z) — F(z)) converges in distribution to a normal variate.

The theorem under assumptions AS1 and AS2.b was established in Yu et al. (1998a).
The rest proof of the theorem follows from Theorem 4.1, in which the SCE is considered
as a process. AS1 and AS2 are much weaker than the assumptions made in Petroni and
Wolfe (1994), Huang (1999) and Yu et al. (1998a). If F is strictly monotone on [0, 00),
then AS2 holds. We suspect that AS2 can be replaced by the assumption

F(ry>F(l) if 1€S8g,, reSg, andl <.

For technical reasons, we replace it by AS2.a.

Remark 2.3. Under Assumptions AS1 and AS2, H, is also efficient. The proof is
analogous to that of Theorem 3 of Gu and Zhang (1993) and is skipped here.
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Remark 2.4. Without AS1.a, the convergence rate of the GMLE on (7, 00) maybe
n!/3, as in the situation of case 1 model (see Groeneboom and Wellner (1992)), or maybe
n!/? as in the situation considered by Yu et al. (19985,1998¢). If AS2 fails then the GMLE
is not asymptotically normally distributed, as in the case when the random vector (L, R)
‘'only takes values (2,2), (6,6), (1,4), (3,7), (—00,3) and (4, 00).

Remark 2.5. In a follow-up study, each patient has N visits, where N’ > 1 is a
random integer (rather than assuming that each patient has exactly 2 visits (M = 2)
as in the case 2 model). The inspection times are Y; < --- < Y. It is reasonable to
assume that X and (N, {Y; : ¢ > 1}) are independent. Then, on the event {N = k},
modify (U, V) in (2.1) as

k

(24) (U,V)=(Y1,Y2)1(x<vi) + (Y1, Ya) L (x>v,) + Z(Yé—l,Y})lm-mxgm,
=2

where Yy = 0. Thus, a more realistic model for MIC data is the model of a mixture of
a right censorship model and a modified case 2 model where (U, V) is specified by (2.4),
instead of assuming that X and (U, V) are independent. This model includes our model
(2.1) (in which N = 2 with probability one) as well as Huang’s model (in which N is
a fixed positive integer and T = c0). It is reasonable to assume that A/, the number of
visits, is bounded. In such a model the Proofs of Theorems 2.1 and 2.2 are similar to
the proofs given in Sections 3 and 4. Thus it suffices to study model (2.1).

3. Strong consistency

We shall prove Theorem 2.1. In our proof, we need Theorem 3.1 below to establish
consistency and Proposition 3.1 to establish uniform consistency.

THEOREM 3.1. Suppose that F' € ©, F is right continuous and H is a solution of

<z<r H(T) - H(l)

Then H(z) = F(z) for all x < 1 if AS1 holds; and H(z) = F(z) for all z < 71 if

(3.1) H(z) = /l Hlw) = HD o) + / e, Hee.

(AS3) Fin)<l, 7, <7 and F=F(r) on [z, 00), wherez, < 7.

In (3.1), if H(z) = H(r) = H(l), then we encounter J in the integrand. Hereafter,
define 3 =1 and 3-0 = 0. If F satisfies AS3, it can viewed as the cdf of an extended
random variable X which equals oo with positive probability.

PROPOSITION 3.1. Suppose that {fn}n>1 i a sequence of monotone functions on
an interval [a,b) and f(z) is a bounded monotone and right continuous function on the
same interval. If lim, . fo(z) = f(z) V z € [a,b) and lim, . fr(z—) = f(z—-)V z €
(0,, b]7 then hmn—»oo Supxe[a,b) ]fn(x) - f(x)l =0.

We shall present the proof of Theorem 3.1 after we prove Theorem 2.1. We omit
the proof of Proposition 3.1 as it is similar to Lemma 3 of Yu and Li (1994).
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PROOF OF THEOREM 2.1. Let Q be the event {limQ,(l,7) = Q(I,r) uniformly
V1 < r}. For each w € Q, let H, be a solution of (2.2). We shall prove the theorem in
2 steps. )

Step 1. (limp—oo Hy(z) = F(z) and lim, oo Hp(z—) = F(z—)Vz < 7) Since
{Hp}n>1 is bounded and monotone, for each subsequence of natural numbers, by Helly’s
selection theorem, there exists a further subsequence, say {ny}, such that limy, oo
H,,(z) = H(z) and limp, —,c0 Hn, (z—) = H*(z) pointwisely for some H and H* € O,
respectively. Thus it suffices to show that H(z) = F(z) and H*(z) = F(z—) for all
< T.

Since Q,, converges uniformly to @, and H,, satisfies (2.2), by the bounded con-
vergence theorem (BCT) H satisfies (3.1) and H* satisfies a similar equation like (3.1).
Theorem 3.1 yield the first desired equation H(z) = F(z) on (—00,7].

By ASl.a, r > 7 = r = oo and thus H(r) = F(r) = 1 as H € ©. Then equation
(3.1) and its analog for H* yield

F(.’II—) - -/l<ac§r —F-F(—%E))T—F%chg(l’r) * r<z dQ(l, T)

(as fl<a:<'r + frs:z: = fl<z:§r + fr<g;)7

. H*(z) - F(})
O | TOFD A 820

as H = F on (—o0, 7] U {oo}. The latter two equations yield
(3.2) H*(z) — F(z—) = (H*(z) — F(z—))c(x), where

1
e(z) = /l<x§r mdQ(l7T)-
By AS1,
. 1—7]'0P(T>.'L')<1 if z<r,
c(z) = 1-P(L=71)<1 if z=7and F(r—) < L.

It follows from equation (3.2) and ¢(z) < 1 that H*(7) = F(7—) if F(r—) < 1,
and H*(z) = F(z—) ¥V z < 7. In order to show that H*(r) = F(7-) if F(r-) =
1, let 2 1 7. Note Hp(zi) < Hy(r—) < 1. It yields H(x) < H*(1) < 1. Now
limy o0 H(zg) = limg—oo F(zk) = 1. Thus H*(7) =1 = F(r-).

Step 2. (Conclusion) By step 1 the sequence {H,}n>1 and F satisfy all the con-
ditions for {f,}n>1 and f in Proposition 3.1, respectively, where (a,b) = (—o0,7). By
Proposition 3.1, imy, e SUpy<, |Hn(z) — F(z)| = 0V w € Q. Since P{Q2} = 1 by
Glivenko-Cantelli theorem, Theorem 2.1 follows. O

The solution H(z) to (3.1) is unique for £ < 7; if AS3 holds by Theorem 3.1, but
Theorem 2.1 is false if only AS3 holds, as fl<n<r W)—l_mdQ(l,r) =1ifPT<mn)=1
and P(V < 1) = 1. The rest of the section is devoted to prove Theorem 3.1.

The theorem is trivially true if F(7) = 0, so without loss of generality (WLOG), we
can assume F(7) > 0. The outline of the proof is as follows. We first define a functional
¥ (h) for b € ©. We then show that h = F' uniquely maximizes 1(h) for A € © (Lemma
3.1) and that each solution H of (3.1) in © is a maximum point of ¢(-). Thus H must
equal F. To this end, some notations and lemmas are needed.
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Verify that there are at most countably many intervals (y, z) such that (1) y < 2
and y < 7, (2) F(y) = F(2—), and (3) y,2 € Sp. Let p(z) = [F(z) + Gu(z) + Gy (z) +
Gr(z)]/4. For i > 1, denote D; the collection of intervals (y, 2) satisfying (1), (2), (3)
above and p(z—) — u(y) > 1/i, then D; contains finitely many intervals since u(-) is a
cdf. Thus U;D;, the collection of all such intervals, is countable. Denote D$ the set of
left endpoints of intervals in D;.

For o =1,2,..., denote B, the collection of all possible j27* x 100 percentiles of
the distribution x (1 < j < 22) which are contained in (—o0, 7]. Note that for each j such
that j27* < u(r) the corresponding percentile is given by y = sup{z : u(z) < j27°}.
Let By = (Ba,1 UDE) U {7} and denote by < --- < bg = 7 to be the elements of B,.
Verify that

(33) /‘L(bl_) - /L(bz——l) < 2—&) i= 2a R 7ﬂ'

Define by, = b; and b;, =sup{z: z < b;, F(z) = F(b;—1)}, i = 2,...,3. Moreover,
if 7 < 00, then denote bgr1.« = 7 and bgy1 = co. For b;,b; € B, define

B+1 .
[ Biobi] i b > by,
(34)  Ta=) blmepibiy e bi] = {(bzi*,bZ] it by = by, 2

i=1

Ua, Vo) = (bs,b5)  if b SU <bjy1, bj1 <V <b;,i <j<B.
Then P{X € (bj_1,b:]} = P{X € |bix, b;]} as P{X € (b;—1,bix)} = 0. Define an interval

(—00,b;] f K=2and X <b; =U,,

(bi,bj]  if K =2, X € (bi,b;] and (Ua, Va) = (bs, b;),

(bi,00] if X > b; and either L =2 and V, = b; or K =0 and T,, = b;,
[_bi*,bi] if X € Lbz*,bz], K=0and T, > b;.

(3.5) I =

Then the number of distinct realizations I, p of the random interval I, is finite.
Denote the joint cdf of the random vector (U,, V,) by G4 and the cdf of T,, by G, . Let
L* and R* be the endpoints of the interval I, Qo (l,7, k) the joint cdf of (L*, R*, K),
and gonk = P(Ia = Ion, K = k). Abusing notations, let Q(I,r,k) be the joint cdf of
(L, R,K). Thus Q(I,7) can be viewed as the marginal cdf of the random vector (L, R).

For H € O, define uy to be the measure induced by H and

(36)  Ya(H) = Elln(un (Ia)/pr(la))] (= Zqa,h,kln{mr(Ia,h)/uF(Ia,h)]) :

h,k

Here we interpret In0 = —oo, 0In0 = 0 and Olnoo = 0. It is obvious by construction (see
(3.3), (3.4) and (3.5)) and by ASl.a that the measures dG,, dGr, and dQ, converge
setwisely to dG, dGr and dQ, respectively. We call ¥(H) a limit of {¢o(H),a > 1} if a
subsequence of {1, (H)} converges to ¥(H), where ¢¥(H) may be oo.

The proofs of the following 2 lemmas are given in Appendix A.

LeEMMA 3.1. Suppose that H € © and either AS1 or AS3 holds. Let ¥(H) be a
limit of {¢¥o(H)}. Then (1) ¥(H) = 0 if and only if H(z) = F(z) for all z < 7, and
H(ry) = F(1;) in the case F(s—) <1 and P(T or V =1) > 0; (2) ¥(H) <0.
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A real number z € [1,, 7] is called a left point of increase of F € © if F(z) — F(z —
€) > 0 for each € > 0. Let L be the set of all left points of increase of F'. Denote
_P(X€(a,b],X<T,K=0)
[ OR ) R—

LEmMA 3.2. Suppose that H is a solution of (3.1), AS1 or AS3 holds, andb € L.
Then

Yu<r <r) . )
(E.1) | T b =1 if Fr) <1
(E.2) vu(a,b) <1  for each a<¥;
Toeq,

(E.3) dQ(l,r) + hm vu{a,b) —1=0.

I<r H(T) H(l)

PROOF OF THEOREM 3.1. Let H be a solution of (3.1). We shall assume that
H(z) # F(z) for some z < 7 but AS1 holds, or H(z) # F(z) for some z < 7 but AS3
holds; and show that it leads to a contradiction.

Let ¥(H) be a limit of ¢ (H). WLOG, assume lim,_, o ¥o(H) = ¥(H). Since
H # F for some to < 7, ¥(F) = 0 > 9(H) by Lemma 3.1. Therefore, there exists an
integer a; such that ¥, (F) > ¥, (H) + 6, for all a > «a;, where § = —9(H)/2 > G. For
each a > ay, let p; = pp(|bi, bi]), i =1,...,5, and pgyq =1 — F(7). It is seen that b;,
3, and p; all are functions of a. Then, for a > a;, the above inequality yields

(3.7) 6 < —a(H) + Yo(F)
H.Lu@ba(H) + i?u_ﬂwa(F) - ":ba(H)

i v
< lig}x Yo (H'"H Al IZ_“F) YolH) (since —In(-) and hence —1,(-) is convex)
Z'kqdjklnif—ﬁ—;_“—w = 3k Qo In =)
_ %{% Jok 103 sr{la,;) - 3ok 100E T pp(a,5) (by (3.6))
upr(le )
_ 2 2k ook [In(1 4+ Jredl) — In(1 4 w))] (s BA2E — L g )

u

lim
ul0
-3 prlag)
Tk kb 123:4 (I 4)

F(r) — F(1) O\ g
= dQ.(l,, E i ——e e — 1,
/l<r and k=2, or r=00 H(’f’) - H(l) Q ( " 2) * i—1 P /'LH(I_bz*,bz]) !

where j; is such that [y, = |bis,bi], i = 1,...,8. Let ha(l,r) = Fi0=E0) and

o€,

ha(bis, bi) = 5% By (E.1), (E.2) and (E.3) in Lemma 3.2, [ e —gmd@(L ) <
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1, thus

e Loeqr
3.8 oo > lim ——2E0_4Q(l, T by the BCT
( ) a_)oozpj l<r H(T‘) _ H(l) Q( ) ( Y )

+

S / lima o0 37 Pi (b,
" Jicr H(r) — H(l)

= hi(l,m)dQ(l, 7).

<r

e(l,r]) dQ(l7 r) (by Fatou’s lemma)

Since h; is a nonnegative measurable function, (3.8) implies that it is integrable. Since
(3.9) 9o,ji0 < P(X € [bis, b)), X < To,K =0)

by the definition of U,, V,, T, and I, (see (3.4) and (3.5)), (E.2) and (3.9) imply that
[ha(bix, b;)| < 1, and thus Zle piha(bix, bs) converges by the BCT as a — oo. Then

0 < 6 < expression (3.7)

a—r 00

8
< lim {/ hi(l,7)dQa(l,m, k) + > piha(bis, bi) — 1
l<r and k=2, or r=00 =1

i

B
hi(L,7)dQ(l, ) + lim Z piha(bin,b;) — 1 (since dQq — dQ setwisely)

I<r a=00

< hl(l rdQ(l, ) + lim Zp,fyH(bl*,b)—l (by (3.9))
@00 =
s, Lve@,r) — <
< QIET;O sz 7o) - agy Qb + im ;pi'YH(bi*ybi) -1 (by (38))
. 1
— (bee(lyr]) oy
< T30 | [ me aeatn + ) -1] ey @)
_ Lve(r) , _
_ /[w][ )y Q) + lim e (a,0) 1] dF()  (by the BCT)

Thus we reach a contradiction 0 < § < 0. This concludes the proof of Theorem 3.1. 00
4. Asymptotic normality

If F(t) = 0, the GMLE F(7) = 0 w.p.1. If F(r) < 1, F(t) is not identifiable for
t > 7. Thus it suffices to estimate F. defined by

F@) if t<r
F.(t)=4q F(r) if 7<t<oo,
1 if t=o00

and assume that F(7) > 0. Here F,. € © but may not be a cdf and Theorem 3.1 does
not require F be a cdf.
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There are two equivalent forms for equation (3.1): H = By (Q) and H = Ry (F),
where

@) Bu@ = [ FH=THAeun + [ 0t ®RES of 31)

42 Ra(P@)= [ {FEHEPE - RO - P - FO))

-dG*(l,r) + F(z),

7r2dP(V < l) -+ WodGT(l) if r=o0,
(4.3) dG*(l,r)={ mdP(U < 1) if 1=-o00,
modG(l, 1) if —oco<l<r<oo,

dQ(l,r) = [F(r) — F())dG*(I,r) = [Fr(r) — F-(D]dG*(l,7) if | < 7.

LEMMA 4.1. By, (Qn—Q) = Ru, (H,—F;) for each SCE H,, which satisfies (2.3).

The proof of the lemma is in Appendix B.
Let ‘D be the collection of all real-valued functions A defined on [—o00,00] that are
right-continuous, have left limits at each point and satisfy that

(4.4) Va<b<oo, Frla—)=F.(b)= h(a—)=h(b).

Define Dy = {h € D : F(z) = 0 = h(z) = 0, F;(z—) = 1 = h(z—) = 0}. Verify that
(D, - ) and (Do, || - ||) are both Banach spaces, where || - || is the supremum norm. Let
(Da, || - 1|) be a Banach space of real-valued functions defined on [—co, 00]? such that the

Banach space contains all bivariate cdfs. Note that AS1-AS3 are basically assumptions
on (F,G,Gr). We say (H,G,Gr) satisfies AS1 etc., if H € © and H replaces the role
of F'in AS1 etc. Let ©, = {H € ©ND: Sy C Sp, (H,G,Gr) satisfies AS1 or AS3}.
For each H € ©,, Ry(-) and By(:) are linear operators on D and Ds, respectively.

THEOREM 4.1. Suppose that AS1, AS2 and (2.3) hold. Then ’R;Tl erists as a
bounded operator from D to D and the SCFE satisfies

(4.5) Va(H, - F.) 5 Rp B, (W) in D,

where W is the Gaussian process specified by /n(Qn(l,7) — Q(l, 7)) Bw.

We first state 3 more lemmas, with their proofs relegated to Appendix B.

For a F' € ©,, let C, be the collection of all the distinct points among ¢ ;'s, where
Ck,i = inf{z : ﬁ‘(a:) >i/2%},i=0,...,2% k > 1. Let F} be a step function in ©, such
that Fy(c) = F(c) for each ¢ € Cy and its discontinuity points belong to C. Denote Dy,
(Dyo) the subclass of D (D) such that each member is a step function with the collection
of discontinuity points being a subset of Sg,. Obviously, D, Cx and Fi depend on F.

LEMMA 4.2. If F € ©,, then the linear operator R;,: exists as a map from Dy
onto Dy.

LeEMMA 4.3. Assume that AS1, AS2 and (2.3) hold. For each w € Q, H, € ©,.
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LEMMA 4.4. If F € ©,, then [R5, (-)|| < 1 for all possible k.

Proor. We give the proof of asymptotic normality in 4 steps.

Step 1. (Existence of ’R,;,l, Fe ©,, as a linear operator from D to D) For each
g€ Dand k > 1, let gx € Dy, be such that gi(z) = g(z) if z € C. Then |lgr —g|| — O,
since Sy, and S; C S and C = UgCy is dense in Si. By Lemma 4.2, ’R,;.: exists,
so there exists a unique hy € Di such that g = Rp. (hg). VK > kand V h € D,
Dy C Dk, ||Fx — Fx|| < 1/2% and Rp, (h) — Ry (h) converges to 0 as k — co by the
BCT. |Rz ()|l < 1 by Lemma 4.4, thus limg_.oo[Rp, (h) — R (h)] =0V h € Dy and
V k > 1. Furthermore,

Ik — kil < IR7H(gk) — REL (g0 + IREE (9) — REL (95l
< IRz Hgk) = Rin (gl + IRFLN - gk — gx ]l 0 as &k — oo,

by the assumption ||gr — g|| — 0, Lemmas 4.2 and 4.4, and the BCT. That is, ||hg] is
a Cauchy sequence. Since D is a Banach space, there is a function h, € D such that
ik — holl — 0. By the BCT, g = limy oo R, (hi) = Ri(ho). Define ho = RZ1(g).

Step 2. (Strong continuity of {R5' : H € ©,}) Let g/, € D and H,, € O, be such
that ||g,, — gl — 0 and ||H,, — F:|| — 0 as m — oco. Then

IR (9m) = RE (@) < IR R, (9m) = R (gm)ll + IR F (97) = Rz )
< Ra,, = Retll - lgmll + IREH - g — gll = 0 as m — co.

Step 3. (Strong continuity of {By : H € ©,}) Let h be a simple function in Dy. It
follows from (4.1) and the BCT that By (h) — B, (h) in D as H — F. Since ||Bg| < 4
V¥ H € ©, and the collection of simple functions is dense in Dy, we have strong continuity.

Step 4. (Conclusion) By Lemma 4.3, H, € ©,. Thus Rl}i exists by Step 1. It
follows that v/n(H, — F;) = Ry B, (v/n[Qn — Q]) by Lemma 4.1. By Theorem 2.1
limy 00 |Hn(z) — Fr(z)| = 0 a.s. By Steps 2 and 3, {Fy = R5'By : H € ©,} is strongly
continuous. As a consequence of the above 4 statements, and the Banach-Steinhaus
theorem, sup{||Fu,(h) — Fr,(h)|| : b € A(e)} — 0 a.s. as n — oo and then ¢ — 0+ for
all compact set A C Dy, where A(e) = {h € Dy : ||h — h'|| < € for some h’' € A}. By the
central limit theorem, W,, = \/n[Qn, — Q] B W in D, {W,} is uniformly tight (Pollard
(1984), p. 81). As a consequence, |v/A(Hn — Fr) - Fr, (W)l = (i, — Fr, )Wyl =
0p(1), which implies (4.5) by the continuous mapping theorem (Pollard (1984), p. 70).0O

Remark 4.1. Our proof of the normality (not the consistency) relies on the form
(2.3). It can be shown that Theorem 4.1 are actually true without (2.3), and Theorem
2.1 (not Theorem 4.1) are true without ASl.a. For the sake of simplicity, we skip the
details.

Theorem 2.2 is a consequence of Theorem 4.1 and Yu et al. (1998a), Theorem 2.
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Appendix A
We shall prove Lemmas 3.1 and 3.2. A lemma is needed to prove Lemma 3.1.

LEmMMA A.l. Assume that AS1 or AS3 holds. Let Y(H) be a limit of {¢o(H)},
H € ©. Then y(H) = 0 if and only if (1) H(t) = F(t) and H(t—) = F(t—) V t €
Sr NUaBy N (—00,7), (2) H(r—) = F(r—) if F(v—) < 1 and (3) H(r) = F(7) if
F(r—) <1 and AS1 holds. Moreover, Y(H) < 0.

PRrOOF. (=) Verify that ¢ (F) = 0 for all @ by AS1.a, and thus lim,—,co ¥ (F) =
0. Then conditions (1)-(3) above imply that o (H) = ¥o(F) = 0 for all & > 1. Thus
P(H) =0.

(<) We first show that 9(H) = 0 implies condition (1). It suffices to show that
P(H) < 0 if for some tg € Sp N UgB, N (—00,7) either (1.a) H(tg) # F(to) or (1.b)
H(to—) # F(to—). Condition (1.a) implies that for each sufficient large «, there is a
point by, € Sp N B, such that b, = to. Verify that

(A1) Yo (H) = E{E(In(pa(ls)/pr(la)) | Us, Va, Ta, K)}
=7r2/ fa,g(z,y)dGa(z,y)+7r0/fa,0(t)dGT,a(t), where
frales) = P +1F) = I g 558 + (1 - F)ins =5,
J

)
5= L H ) ' Pt (B, B])
Jealt) = FOInpgy = 2t (e WDl )

1 — H(b;)
1-F(b;)’

+ [1 — F(b;)]In

and bg, to and b; € B,. Note tg is fixed but the index h of b, =ty depends on . Define

A2 o) = {(I)T(to)ln o) 4 [1— F(to)|in =2 ;ftfl‘; svitée
Then

B H(to) 1— H(to) H(to) 1 — H{to)
0=1In [F(to) Flioy T~ Py | > Pl + (1 = Flto)lng—5

= ¢(0,t), for t>to,

as —In(.) is strictly convex and F(ty) # H(to). Moreover, P{T or V > to} > 0asmo > 0
and tg € (—oo, 7). It follows from the above two statements that

(A.3) P{0>g(K,T)}>0.

It is obvious that (1.a.1) g(2,t) > fq,2(u,v) for each (u,v,t) and (1.a.2) 0 = ¢(0,¢t) >
fao(t) for t < to. We shall show that, (1.a.3) 9(0,t) > fo 0(t), for t = by > to, where by, €
B, and a is sufficiently large. Let [ gdG¥ = w3 [[ g(2,t)dGo(u,v) +mo [ 9(0,8)dGr. (t),
and define [ gdG" in an obvious way. Then (l.a.1), (1.2.2) and (1.a.3) imply that
[ gdG¥ > ¢, (H). Since dG¥ converges to dG¥ setwisely by observing that dG, (dGr,)
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converges to dG (dGr) setwisely and g(k,t) is a binary function in (u,v,t, k), the desired
result follows from (A.3) and 0 > [ gdG* = limg—eo [ gdG¥ > limysoto(H) > Y(H).

We now establish (1.a.3). Let ¢, = by < b; =t for some integer a,. It is easy to see
by our construction that B,, C By, if a1 < o and hence ty, t € B, for all o > o,. For
each z = b; € B,, such that z < tg, verify

| H(z) F(z) | (H{to) - H(2)) Flto) - F(2)
® QM”ZP“““{HAFw> (Fo) —F()  F@o) }

(H(H) - H(to)) F(t) — Flta) | 1 H(t) 1 F()
*“'Fm“m{wv%4w$>l—me 1—F@1—F@ﬂk

@ WHEO-H@ | FG)-Fe), BHE-H@ | FO-F@), A - HE)
F(b) ~ F(a) = F(b) — F(a)  F(z)— F(a) F(b)—F(a) F(b)- F(z)

forall z € (a,b).

In view of (i) and (ii), (1.a.3) follows by an induction argument.

Now consider condition (1.b). If ¢, is a point satisfying condition (1.b), then either
(].b].) to € SpN (UaBa) n (UaB;)7 where B; = {ZE cx =Dbjw > bi_1,b,0;1 € Ba}, or
(1.b.2) tg € Sp N (UgBa) N (UaBL)¢, where A€ is the complement of the set A.

First assume (1.b.1). For each sufficiently large o, there exists a bp. = to € Bx.
Thus replacing tg by to— in the proof for situation (1.a) yields ¥(H) < 0.

On the other hand, in view of (3.3), (1.b.2) implies that F(to—) > F(t) for each
t < to and hence there exists a sequence of points z; € SFpNU,(B,UBZ) such that z; 1 ¢o
with either H(.’EZ) 7é F(.’IIZ) (lf Z; = bj* = j——l) or H(.’L‘Z—) 7é F(.’Ez—) (lf ;= bj* > bj_l).
In either case, it reduces to situation (1l.a) or (1.b.1). Thus, we have ¥(H) < 0. This
concludes the proof for condition (1.b).

The proofs for conditions (3) and (2) are similar to that for conditions (1.a) and
(1.b), respectively, except in the proof for condition (3) replacing in the above proof the
statement P{to < T} > 0 by P{T or V =7} > 0 (as AS1 holds). We omit the details.

Verify that we actually show that either Y(H) = 0 or ¢(H) < 0. Thus (H) < 0.0

ProOF oF LEMMA 3.1. Statement (2) follows from the last statement in Lemma
A.1. To prove statement (1) , it suffices to show that conditions (1), (2) and (3) in
Lemma A.1 imply H(z) = F(z) ¥V z < 7, i.e. the sufficient and necessary condition in
Lemma 3.1.

If z is a discontinuity point of F and z < 7, then there exists an integer N such
that F(z) — F(z—) > 27 for all @ > N. This implies that z is a certain j2~V x 100
percentile of  and thus ¢ € B,NSF. It follows that SpNU, B, contains all discontinuity
points of F' which belong to (—o0,7]. Thus conditions (1), (2) and (3) of Lemma A.1
imply H(z) = F(x).

Suppose now z is a continuity point of F. Let u, = inf{y : F(y) = F(z)} and
vy = sup{y : F(y) = F(z)}. If both u; and v, belong to Sp N UyB,, we are done, as
F(z) = F(ugy) = H(u) < H(z) < H(vy—) = F(vy;—) = F(z) by conditions (1), (2) and
(3) in Lemma A.1.

If neither u, nor v, belongs to Sp NU, B, then from the above discussion both u,
and v, are continuous support points of F satisfying F(u,) = F(v;) = F(z), and there
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exist two sequences of support points of F', say {z;};>1 and {y;};>1, which are contained
in Sp NUgB, such that z; T u; and y; | vy. Consequently, F(z;) = H(z;) < H(z) <
H(y;) = F(y;) by conditions (1), (2) and (3) in Lemma A.1. This yields H(z) = F(z)
as F(z;) — F(ugz) and F(y;) — F(vg). '

For simplicity, we skip the proof for the case that only u, or v, belongs to Sp N
(UaBq). This concludes the proof of the lemma. 0

A lemma is needed for proving Lemma, 3.2.

LemMMA A.2. Suppose that H is a solution of (3.1) and A is an interval (a,b] C
(—00,7]. Then pr(A) > 0= ug(A)>0.

Proor. Equation (3.1) is equivalent to

(Ad) pal(ab]) = /l ) “fg((i)blr}{(él; Dagu,r) + P(X € (0,8, X < T, K =0),

If H is a solution to (3.1), then for each interval A = (a,b] C (—o0, 7] such that ur(A) >

0, we have pg(A) > P(X € A,X <T,K =0) > 0 by the assumption my > 0 and b < 7.
This concludes the proof of the lemma. I

Proor oF LEMMA 3.2. Assume that H is a solution of (3.1) and b € Lr. By
Lemma A.2, px((a,b]) > OVa < b. Dividing both sides of equation (A.4) by ug((a,b])
yields
P(X € (a,b], X <T,K=0)

H(b) - H(a) ’
a<b.

~ pr((a, b N (1, 7))
(A5)1= /KT [H(®) — H(a)|[H(r) — H(Q)]

aQ(l,r) +

For each a < b, (A.5) yields (E.2) as the two summands in (A.5) are nonnegative.
Denote

0 if par((a, ] 0 (1, 7]) =0,
o0H a,b,l,r = { ({a,b]n(l,r]) .
( ) [H(b)‘ihfrf(z)]gH((r)_ H{] otherwise.

For each pair (I,7) such that [ < b < r, we have H(r) — H(l) > 0 by Lemma A.2.
Moreover,

1 -
BH(a,b,l,r)T—ﬁ-(—%E_(ig—(l—) asalb if be(l,r), and dH(a,b,l,r) | Oasabifb>r.

Thus by the monotone convergence theorem, as a 1 b, we have

1beq,m)
OH{a,b,l,r)d =/ OH(a,b,l,r)dQ+ 8H(a,b,1,7)d —»/———————i———dQ.
[ o e bR | OH(@ b LR = [y

The desired equation (E.3) follows from (A.5), (E.2) and the above equation.
Assume now 0 < F(7) < 1 and AS1 holds. By ASl.a, I <1, <r = r = 00, thus

dQ(,r)  (by AS1 and (A.4))

> / dQ(l,r) = (1— F(r))P(L=7) >0 (by ASLb).
l=r<r
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Dividing both sides of equation (A.6) by pm((7¢, 00]) yields (E.1) under ASI.

On the other hand, assume that 0 < F(7) < 1 and AS3 holds. Note that even if we
encounter J, “—H—%%)l————%ﬂ—)l[%gq) = 1 by convention. By AS3, P(z < T < m) >0
for each z < ;. (A.4) yields

(a0 e = [ el E i agun

> (1= F(n)P(T € (z,]) >0, Vz €|z, 1)

Then dividing both sides of (A.7) by pg((z,00]) and taking limits yield

1 = lim :U'H(("E’OO] n (l,T‘])
otre Ji<r wu((2,00))(H(r) — H(l))

(as 7, < 7¢ and thus | < 7y < r=>r = 00), which is (E.1). O

1(l§'r.«. <r)

dQ(l,T) = m

dQ(l,r)

Appendix B

In this appendix, we prove lemmas in Section 4.

PROOF OF LEMMA 4.1. Theorem 3.1, (4.1), (4.2) and (2.3) yield By, (Qn)(z) =
H,(z) and Rp, (F;)(z) = Fr(z)Vz. Furthermore,

Haa) = B o o ) P0G
/zgm () —H ) Hn() = )] = (o) = - (O]}G" (1)

- /l _[B(e) ~ Ha(0)dc @,7)

Hy(2) = Ha(l) 1oy .
- /IS:L‘<1‘ Hn("’) - Hn(l) [FT( ) FT(Z)]dG (l, )
Hu(z) — Ha(l)

= /KN[Hn(:c)—Hn(l)]dc*(l,r)— /Smmdcg(z,r) (by (4.3))

i

=A;<WM@—EMWm@m—Bm@Nw+HR§ﬂ (by (4.1))

- /K _ (o) = Ha(DIdG"(1,7)

~Bg, (Q)(x) + [Br, (Qn)(z) — Ha(z)] (since Br,(Qn) = Hy)
+P@%[;<E@—Emﬁﬂm)(:HRS@%R:RMR»

= Bir, (@n — Q)(2) — [Ha(z) — F2(2)
+ /l @) = F ()] - [Ha(0) = F-0)}4G

Translating certain terms in the first and last expressions of the above equations yields

_ Ho(z) = Hal) 11r (03— ()] — ~ .
_/zgm ) B () = B )] = [Ha(l) = B (O1}dG ()
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+[Hn(z) — Fr(2)] - / {{Hn(z) - Fr(2)] — [Ha(l) — Fr(D1}dG* (I, )

ILz<r

[ (B ) g
__‘/l<x<r (Hn('f') -—Hn(l) {[Hn( ) Hn(l)] [F.,-( ) Fr(l)]}

—{[Ha(z) — Hn()] = [Fr(z) — Fr(l)]}> dG*(l,7) + [Hn(z) — Fr(z)]

=Ru, (Hn - F.,-)(.’L‘) (by (4'2))' o

LEmMMA B.1. IfF € ©, and Rp(h) =0, where h € D, then h € Dy.

PRrOOF. For each h € D, by (4.2),

(B.1) Re(b)(z) = [

I<z<r

F(z) - F(1) :
) {m[h(r) — h(1)] - [A(z) ~ h(l)]} dG*(l,r) + h(z).

If F(z) =0, then h = h(z) on (—o0,z] by (4.4). Thus

0=Ra(h)(z) = - / (h(z) — h()]JdG* (L, ) + h(z) = h(z).

I<z<r

Moreover, if Fr(z—) = 1, then h = h(z—) on [z,00] by (4.4), and 0 = Rg(h)(z—) =
Jicwerlh(r) = h(z=)]dG*(l,r) + h(z—) = h(z—). Thus h € Dy. 00

PROOF OF LEMMA 4.2. Note F € ©,. Since Ry, is a linear operator on the finite
dimensional linear space D, it suffices to show (1) R, is 1-1 and (2) R, (D) C Dg.

Step (1). Suppose Rp, (k) = 0, where h € Dy. We shall show that A = 0. Denote
a =3 .cc, IMc) = h(c-)] and m = min{m, : m. = Fi(c) — Fr(c—) > 0,c € Ci}. Note
that m > 0 and « is finite as Cj contains finitely many points. Choose v > 0 such
that ya < m. Let H = Fy 4 yh. Since Rp, (k) = 0 and F € ©,, h € Dy by Lemma
B.1. As consequences, (1) H(1,—) = Fi(1,—) + 0 =0 and H(co0) = Fi(00) + 0 = 1; (2)
H(c) > H(c—) for all ¢ € Cy, [as H(c) — H(¢c—) > m — y(h(c) = h(c—)) > m —ya > 0];
(3) H(z) € Dy.

It follows from statements (1), (2) and (3) that H = Fy + vh € ©, N Dg. Then
Rr (H)(z) = Rp, (Fx)(x) + RF, (vh)(z) = Fx(z) + 0 for each z. That is Fy, = Rp, (H).
Note that (H,G,Gr) satisfies AS1 or AS3 as H € ©,. Thus Fy, = H = F; + vh by
Theorem 3.1, which implies h = 0 as v > 0. As a consequence, R, (-) is 1-1.

Step (2). It suffices to show that A = Rp, (h)(b) — Rp.(h)(a) = 0 if h € Dy, and
ur, ((a,b]) = 0. Define pp((a,b]) = h(b) —h(a). By definition of Di, ux((a,b]) = 0. Then

- NFk((lvr] n (G,, b])
4= ). [ ur (7]

un((t,) = (7] 1 (@, bn] 4G (1,7) + un((,8)) = 0. O

ProoF oF LEMMA 4.3. We fix w € Q, as H,, is random. We shall verify that H,
satisfies the properties of ©,. First, by AS2 7, < 7.

Ifa < band F(a—) = F(b), then [a,bjNSF = 0. It follows that {Ry,..., Ry}N]a,b] =
§ by AS2 and thus H,, satisfies (4.4) and H, € D by Convention (2.3).
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If H,(r—) = 1 then (H,,G,Gr) trivially satisfies AS1 and thus H, € ©,. More-
over, if F(ry—) < 1, then P(T or V = 7;) > 0 and thus (H,,G,Gr) also satisfies
AS1. Tt follows that H, € ©,. Hence, WLOG, we can assume that F(r;—) = 1. and
H,(r:—) < 1. Then either PR =7) >0or P(R=7)=0. f P(R=m7) > 0,
then P(V = 1,) > 0 as F(r—) = 1. Le., (H,,G,Gr) satisfies AS1 and H,, € ©,. If
P(R = 1) = 0 then with probability one R; # .. WLOG, we can assume that R; # ;.
Let z, be the largest R; that is smaller than 7. Then (2.3) implies that py, ([z,,7]) = 0.
Moreover, 7, < 7¢ by AS1. Hence, (H,, G, Gr) satisfies AS3. It follows that H, € ©,. 0

PRrROCF OF LEMMA 4.4. Let 01,..., 0, be all the discontinuity points of Fi. Then
Dy, is an m-dimensional linear space. Define h;(x) = 1(3>0,). We shall show that

(B.2) Ap, = Rp, (hi)(0;) — RE, (hi)(0;—) > 0 for each j and for each h;.

Verify that Rp, (h;) € Dy (by Lemma 4.2), Rg, (h:)(0—) = 0 and Rp, (hi)(c0) = 1.
Then

(B.3) Rp.(hi), 4=1,...,m, are a base of Dy and ||Rp (h;)| =1,
by Lemma 4.2, as Dy, is an m-dimensional linear space, and
(B.4) ‘ hi,i =1,...,m, are a base of Dy and | h;]| = 1.

(B.3) and (B.4) imply that ”’R;:H =1.
The proof of the lemma will be completed after we prove (B.2). Letting z = oj,
h= hi, F = Fk, (B.l) yields

_ F(z) - F(l) , F(r) — F(z)
Ret) = [ |5 R0 R e
where B(z) = mo(1 — Gr(z))h(z). Moreover, {{ <z— <r}={l <z <r}and
®9 e = [ [Fo=r0" 0wy = 0] 00

B / {F(x—) = FW) 0 4 FO = F), (1)}
l<e<lr

h<z>] dG*(1,7) + B(a),

F(r) - F(I) F(r) = F(D)
-dG*(l,r) + B(z) — B(z—)

_ (F(z) = Fz=))(a(r) = h1) 4y .. L
_ /Km ey dcr(, )+/l=mh( )G (1,7)

F(z—) — F(l) F(z) — F(z-)
.. [ @) 70 O F@ - Q) ”‘”]

dG(1,7) + B(z) — B(z—).

Replacing F' and h by Fj and 1(;>,,), respectively, equation (B.5) yields

Ar, > /z= . h(z)dG*(l,r) — / h(z)dG*(l,r) + B(z) — B(z—-)

l<z=r

= moP(T = z)h(z) + mo(1 — Gr(z))h(z) — mo(1l — Gr(z—))h(z—)
= 7mo(1 — Gr(z—))(h(z) - h(z—))
> 0, which is (B.2).0O0
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