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Abstract. In this paper, we study the kernel methods for density estimation of
stationary samples under generalized conditions, which unify both the linear and o-
mixing processes discussed in the literature and also adapt to the non-linear or/and
non-c-mixing processes. Under general, mild conditions, the kernel density estima-
tors are shown to be asymptotically normal. Some specific theorems are derived
within various contexts, and their applications and relationship with the relevant
references are considered. It is interesting that the conditions on the bandwidth may
be very simple, even in the generalized context. The stationary sequences discussed
cover a large number of (linear or ponlinear) time series and econometric models
(such as the ARMA processes with ARCH -errors).
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1. Introduction

Density estimation for dependent observations has received extensive attention in
the literature. A number of papers have investigated it under various mixing conditions,
including Robinson (1983) , Gyorfi et al. (1989), Roussas (1988), Tran (1989) and Irle
(1997). Due to the fact that the mixings cannot cover all linear processes, Chanda
(1983), Tran (1992) and Hallin and Tran (1996) explored the consistency and asymptotic
normality of density estimators for some linear processes. In this paper, we consider
‘kernel density estimators within a more general context which cover most of the time
series models in the literature, unify both the stationary mixing and the linear processes
and adapt to the nonlinear or/and non-mixing processes in practice.

We assume that {X;} is a stationary sequence defined on a probability space (2, F,
P). As may be known, a-mixing is the weakest among the widely used ¢-, p-, 8- and
o~-mixings. For later reference, its definition is given below.

DEFINITION 0. The stationary sequence {X;,t = 0,+1,...} is a-mixing if

(1.1) a(k)= __ sw _ |P(4B)-PA)P(B) -0

as k — oo, where F*, and Fg3, are two o-fields generated by {X;,t < n} and {X;,t >
n + k}, respectively. The a(k) is called the mixing coefficient.
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Under some suitable conditions, the stationary solutions of many time series (linear
and nonlinear) models are o~mixing (cf., for example, Gorédetskii (1977), Pham (1986)
and Tong (1990)). From a practical point of view, however, the mixing concept may
lead to some undesirable features. Firstly, it is not easy to check the a-mixing of the
realizations of a stationary process in practice. Secondly, the requirement of the mixing
dependence imposed upon all events (past and future) rules out some stationary processes
of interests. As emphasized by Tran et al. (1996) and Hallin and Tran (1996), the mixing
does not cover all linear processes. Andrews (1984) showed that the stationary solution of
a simple linear AR(1) model —X; = 1/2X,_;+e; with e;’s being independent symmetric
Bernoulli random variables (r.v.’s) taking values —1 and 1— is not a-mixing. Chanda
(1983), Tran (1992) and Hallin and Tran (1996) thus developed the density estimation
for time series under linear processes covering many important time series models (e.g.,
linear ARMA models and some long-memory fractional processes),

0

(12) Xt = ZaTZt_r,

T

where {Z;} are i.i.d. r.v.’s with EZ; = 0 and EZ? = 6% < co. Finally, a function of
a mixing process is not readily the corresponding mixing. For example, even if {Z;} in
(1.2) is @ -mixing, {X;} in (1.2) needs not be a-mixing. In econometrics, the process
{X:} in (1.2), with {Z,} being a-mixing, is of great interest. The ARMA process with
ARCH errors discussed in Weiss (1984) and Engle (1982) is, for instance, of this form
(note that the ARCH model proposed by Engle (1982) is a-mixing under mild conditions,
cf., Lu (19964, 1996b)). In addition, it is also noticed that the process in (1.2) with {Z;}
being a-mixing may include some long-memory fractional processes with ARCH type
errors (cf., Lin and Li (1997)).

Due to the above shortcomings, in this paper we first extend the concept of the
a-mixing to a more general context in which a nonlinear form includes the linear process
in (1.2) with {Z;} being a-mixing. That is,

(13) Xt = Q(Zt, Zt_l,Zt_2,~--),

where g : R® — R! is a Borel measurable function and {Z;} may be vector-valued.
The i.id. process {Z;} is one of the simplest a-mixing stationary processes. To our
knowledge, the idea of extending a mixing process to a function of the entire mixing
process goes back to Ibragimov (1962) and was also formalized by Billingsley (1968) and
Bierens {1983). We introduce the formal definition as follows:

DEFINITION 1. The stationary process {X,} is stable in Ly norm (Lz-stable for
simplicity) with respect to (hereafter w.r.t.) the stationary a-mixing process {Z;}, if

(1.4) v(m) = E|X, — X™ |2 -0

as m - 00, where Xt(m) = 9m(Zt,- - Zt—m+1), 9m is a Borel function with m arguments
involved and v(m) will be called the stable coefficients.

Remark 1. (a) This definition follows Bierens (1983) except that he defined a
stable stationary process w.r.t. ¢-mixing, a special case of the context here.
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(b) As done in Bierens (1983), it is usually taken that Xt(m) =FE(X¢ | Zey. oy Ztmr1)-
Clearly, {Xfm)} is a-mixing with mixing coefficients a*(k) <1 for k=0, 1,...,m, and
equals a(k — m) for k> m + 1, where a(-) is the mixing coefficient of {Z;}.

(c) Clearly, we may define a L,-stable process w.r.t. {Z;} with a p-th-order expecta-
tion instead of the second order in (1.4). The results in this paper can be easily adapted
to such a situation and so we don’t pursue this generality here.

(d) If g in (1.3) is of a linear form and {Z;} is i.i.d. as in (1.2), then a(k) < 1 for

=0, and = 0 for k > 1. Further, assuming that > oo a2 < 0o, the stable coefficient
v(m) = E|X, — X{™ |2 = E| o2 arZe—r|> = 023 o2 a2, This is also considered
in Chanda (1983), Tran (1992) and Hallin and Tran (1996). When {Z;} is a-mixing,
our model framework covers the ARMA process with ARCH errors discussed in Weiss
(1984) and Engle (1982) as well as some long-memory fractionally integrated processes
with ARCH type errors.

(e) If g is of a nonlinear form, then many nomnlinear time series models fall into
our category, e.g., the bilinear and the random coefficient models in references such as
Granger and Andersen (1978), Nicholls and Quinn (1982), Tjgstheim (1986) and Tong
(1990).

(f) If {X,} itself is a-mixing stationary with EX; = 0 and EX? < oo, then setting
Zy = X and g the identity function leads to the stable coefficient being v(m) = 0 for
m> 1.

In Section 2, we define the kernel density estimators based on the realization of the
Lo-stable stationary process and give a general result which shows the mild conditions
under which the asymptotic normality of the density estimators is ensured. To shed
light on the wide applications of this general result, some specific theorems are derived
in Sections 3 and 4. In Section 3, we are concerned with the specific theorems under
two contexts related with the relevant references, one covering the a-mixing processes
considered in Robinson (1983) and the other deducing a result under linear processes
better than Hallin and Tran (1996)’s (cf. Remark 6 below). It should be pointed out
that the results obtained in Section 2 can also be applied to density estimation for
the stationary sequences which are neither a-mixing nor linear processes. In this case,
some mild specific conditions are also derived in Section 4 to guarantee the asymptotic
normality of the density estimators. To our knowledge, no one has examined this case.
The proofs of the theorems in Section 2 are postponed to Section 5.

2. General result

In the following, we let X1, Xo, ..., X, be a realization of size n from the L,-stable
stationary process {X:} defined in Definition 1. In time-series analysis, estimating a
one-dimensional marginal density is of certain interest (cf., Hallin and Tran (1996)), but
even more interesting is to consider the estimation of a marginal joint density because
a one-dimensional marginal density cannot capture the dependence of the stationary
sequence. For background on estimating the marginal joint density, the reader is referred
to, for example, Tjgstheim (1996). Generally speaking, we may consider estimating a
d-dimensional marginal joint density of (X;—r, ,,...,Xi—r,, Xi), say, where 0 < 11 <
+o < Tg-1 < 400 are positive integers and Y’ denotes the transpose -of vector Y. For
simplicity of notation, we are concerned with ¥; = (X;-g41,...,Xi—1,X;)’ in this paper
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(the results obtained can be adapted for general 74’s). Let f(y) be the marginal joint
density of ¥;. The kernel density estimator of f(y) is therefore defined by

(2.1) faly) = (b S K((y — Yi) ).

i=d

Here K(-) is a kernel function defined on R?, and h, > 0 are bandwidths tending to
ZEero as n — o0.

Our purpose in this paper is to investigate the asymptotic normality of the kernel
density estimators for stable stationary sequences. In this section, we first give a general
result which will be applied specifically in Sections 3 and 4, and its usefulness will be
seen later on. Throughout the paper, C' will denote a generic constant which may differ
at different places.

AssuMPTION 1. {Z,} is o-mixing stationary with the mixing coefficients a(-) sat-
isfying

e o]
(22) kY a(j)—0 as k- oo
j=k
AssuMmPTION 2. {X.} is Lo-stable stationary w.r.t. {Z;} with stable coefficients

v(m) as defined in Definition 1. Let Y; = (X;—441,.-., X¢—1, X:)" have marginal joint
density f(y).

AssuMPTION 3. The kernel function K is a bounded density function with an
integrable radial majorant Q(z), that is Q(z) = sup{K(y) : |ly|| = |lz||} is integrable.
Assume, in addition, that K satisfies the following Lipschitz condition:

(2.3) |K(z) - K(y)| < Clz —yl,
where || - || is an Euclidean norm of R¢.

AssuMPTION 4. (i) The density function f of Y; is Lipschitz continuous, i.e., for
any z, y € R%,

(@24) /@) = FW)| < Cllo -yl
(ii) The joint density f;(x,y) of (Y5,Y;) is bounded uniformly in j (> 0), that is

(25) sup  sup  fi(z,y) < C,
J (z,y)eR*x R4

where if j < d, (Yo,Y;) reads as (X_q41,..., Xj—d41,---, X0y, X;) € RIT,
AssUMPTION 5. The bandwidth h,, satisfies that, as n — oo,
(i) hn — 0, nhd — oo, nh2d 0,

(ii) nh2td - 0.

AssUMPTION 6. There exist two sequences of positive integers, p(n) and g(n), such
that as n — oo,
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(i) p(n) = o0, p*(n)/n—0,
(ii) g(n) — o0, q(n)/p(n)— 0,
(iii) g(n)he — 0,
(iv) na(g(n))/p(n) — 0,
o (v) v(g(n)) = O(h3%+2).

Remark 2. Among the above assumptions, (i) Assumption 1 is the condition on
the mixing dependence by Robinson ((1983), A3.1, p. 189) for density estimation; (ii)
Assumptions 3, 4(i) and 5(ii) with d = 1 are the same as Assumptions 1, 4 and 5 in
Hallin and Tran ((1996), pages 432, 443) respectively; (iii) Assumption 4(ii) on the joint
density is often assumed in the literature (cf., Robinson (1983), A4.5, p. 191) and is easily
satisfied by time series models {cf., Lemma 5.1 of Hallin and Tran 1996, p. 446, for the
linear processes (1.2)). We assume, without loss of generality, that the mixing and the
stable coefficients, a(-) and v(-), in Assumptions 1 and 2 are monotonously decreasing.

Remark 3. Assumption 6 is general but looks cumbersome. In Sections 3 and
4 below, we will specify some more explicit and easily verifiable conditions to ensure
Assumption 6. From them, the existence of p(n) and g(n) will become clear.

The asymptotic normality of the kernel density estimators was studied by Robinson
(1983) under a-mixing and Hallin and Tran (1996) under linear processes. The following
theorems extend their contexts to stable stationary processes w.r.t. a-mixing:

Corresponding to Theorem 3.1 of Hallin and Tran ((1996), p. 443), we have

THEOREM 1. Suppose that Assumptions 1-3, 4(ii), 5(i) and 6 hold and y1,...,yx
are k distinct points of R%, then

(2.6) (k) (fa(®1) = Bfalyr), -, falyr) — Efaly)) 5 N(0,C)
where 0 = (0,...,0)" € R*, C is a diagonal matriz with elements Ci; = f(y;) [ ra K2 (u)du,
i=1,...,k, and “>*7” denotes the convergence in distribution.

The next theorem corresponds to Theorem 3.2 of Hallin and Tran (1996, p. 443).

THEOREM 2. If Assumptions 1-6 hold and, in addition,
2.7) / ]| K (w)du < oo,
R4

then for any k and any distinct points ,...,yx € R%,
(2.8) (k) (falyn) = 1), - - Fulyw) = F(gr)) = N(0,0).

3. Specific theorems related with relevant references

In Section 2, we gave a general result in which p(n) and g(n) are not defined explic-
itly in Assumption 6. Notice that Assumptions 6(iv) and 6(v) are related to the mixing
coeflicients, a(-), and the stable coeflicients, v(-), respectively. Different definitions of
p(n) and g(n) will lead to different conditions on the mixing and the stable coefficients.
In this section, we shall derive some specific conditions which will cover the contexts con-
sidered in Robinson (1983) (a-mixing) and in Hallin and Tran (1996) (linear processes),
respectively. An easily verifiable condition within a generalized context will be provided
in Section 4.
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3.1 Casel for Robinson (1983)

Robinson (1983) considered the setting where X; = Z; with the a-mixing coefficients
satisfying Assumption 1 in Section 2. To keep this condition on the mixing coefficients
hold, we may choose p(n) and ¢(n), as done in the proof of Lemma 7.1 of Robinson
((1983), p. 199), that is

p(n) ~ 1, g(n) ~ 0!, r(n) ~n/(p(n) + 2q(n)),
where a,, ~ b, means that lim,_. a,/b, = 1, and 75, is a positive sequence such that
p(n), ¢(n) and r(n) are nondecreasing, 7, — 0 and

o0
_ ~1/6 ~ .
> max(n 200, where 4= sup en, ev = N Y alj).
>n

j=N

Thus, as Robinson ((1983), p. 199) proved, Assumptions 6(i), 6(ii) and 6(iv) hold;
g(n)hE ~ n1/3p2hd — 0 follows from Assumption 5(i) and, hence, Assumption 6(iii)
holds.

To verify Assumption 6(v), we impose the following condition on the stable coeffi-
cient and the bandwidth:

AssuMmPTION 2’. The stable coefficients, v(-), in Assumption 2 satisfy

(3.1) v(n'/?) = O(K34+2),

Clearly, if we choose g(rn) ~ nl/3n2 > n'/3(n=1/24)2 = /4 then v(g(n)) < v(n'/%)
(recall we assume v(:) is monotonously decreasing). Assumption 6(v) thus follows from
Assumption 2’.

THEOREM 3. If Assumptions 1,2’ and 3-5 hold and, in addition, (2.7) in Theorem
2 is satisfied, then the conclusion of Theorem 2 holds.

If {X;} is a-mixing, then from Remark 1(f) in Section 1, it follows that v(j) = 0
for j > 1. Thus, Assumption 2’ holds naturally.

COROLLARY 1. If {X;} is an a-mizing stationary sequence with mizing coeffi-
cients, o), satisfying (2.1) in Assumption 1 and, in addition, Assumptions 3-5 and
(2.7) (in Theorem 2) all are satisfied, then the conclusion of Theorem 2 holds.

Remark 4. From Corollary 1, Theorem 3 clearly covers the context of a-mixing for
density estimation considered in Robinson ((1983), Theorem 4.1, p. 191) with a positive
definite matrix-valued bandwidth instead of a scalar bandwidth.

3.2 Case Il for Hallin and Tran (1996)

Hallin and Tran (1996) explored the asymptotic normality of the kernel density esti-
mators under linear processes (1.2). Their results cannot be derived well from Theorem
3 above because Assumption 2’ does not always hold under their conditions (see Remark
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7 below). In this subsection, we slightly strengthen the condition imposed on the mix-
ing coefficients but weaken the condition on the stable coefficients. Thus, the specific
theorem obtained will easily produce a better result for linear processes than Hallin and
Tran (1996)’s.

AssUMPTION 1°. The condition on the mixing coefficients, a(-), in Assumption 1
is strengthened to
(3.2) kta(k) -0 (k— o00)

for some 2 < a < co.

ASSUMPTION 2°. The stable coefficients, v(-), in Assumption 2 satisfy

(3.3) v(n?/(F1e)) = O(R3H2),

THEOREM 4. If Assumptions 1°, 2° and 3-5 hold and, in addition, (2.7) in The-
orem 2 is satisfied, then the conclusion of Theorem 2 holds.

Proor. First, take n/p(n) ~ ¢%(n), then Assumption 6(iv) follows from (3.2) in
Assumption 1°. To make p®(n)/n — 0 and ¢(n)/p(n) — 0 in Assumptions 6(i) and 6(ii)
hold simultaneously, we let g(n)/p(n) ~ p3(n)/n. Thus, we may take g(n) ~ n3/(1+4a)
p(n) ~ n/q*(n) ~ n(+a)/(+da) By 5 simple calculation, ¢(n)/p(n) ~ p3(n)/n ~
n~(@=2)/(+4a) 0 for 2 < a < oo and, hence, Assumptions 6(i) and 6(ii) clearly hold.
Assumption 6(v) follows from Assumption 2°. Finally, q(n)hd ~ (nhi H194/3)3/(1+4a) _,
0 follows easily from Assumption 5(i). Now Theorem 4 is clear from Theorem 2 in Section
2.

Hallin and Tran (1996) considered the estimation of one-dimensional marginal den-
sity (d = 1 in the setting of this paper) for the linear processes (1.2) with la,| =
O(r~—4+9) for some § > 0 (as r — o0) in their Assumption 2.

HT’s AssuMPTION 2. The coefficients of the linear process X; (in (1.2)) tend to
zero sufficiently fast that |a,] = O(r~(4+®) for some § > 0 as r — oo. In addition, Z;
(in (1.2)) has mean zero and finite variance and an absolutely integrable characteristic
function.

From Theorem 4, we may easily derive the following corollary:

COROLLARY 2. If HT'’s Assumption 2 above and our Assumptions 3, 4(i) and 5
and (2.7) in Section 2 with d = 1 hold and, in addition,

(3.4) lim inf p3(7+20/(+4a)p5 ~ g for some

n-—ro0

a € (2,(374126)/20) and some § > 1/4,

then the conclusion of Theorem 2 with d = 1 holds.

PRrROOF. First, from Remark 1(d) and HT’s Assumption 2, it follows that

(35) v(m) = o? i O(r~24+8)) = O(m~(7+20))

r=1m
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as m — oo and, hence, together with (3.4),

U(n3/(1+4a)) — O(n—3(7+25)/(1+4a)) — O(hi)

Thus, Assumption 2° with d = 1 is met. Assumption 1° holds naturally since {Z;} is
iid. Assumption 4(ii) is clear by Lemma 5.1 of Hallin and Tran ((1996), p. 446) (cf.,
Remark 2 above). Hence, Corollary 2 follows from Theorem 4.

Remark 5. First, we point out a negligence in Hallin and Tran (1996)’s Assumption
5 and Remark 3.1. From the proof of their Theorem 3.2, it is clear that their Assumption
5 should be nh2 — 0, not nh3 — oo, as n — oo. Hence, the assertion in their Remark
3.1 that “their Assumption 3 (i.e., nh{T20)/(3+28) (loglogn)~! — 0o as m — oo) implies
their Assumption 5 when § < 1” is not right.

Remark 6. From Remark 5 above and the conditions of Hallin and Tran (1996)’s
Theorem 3.2, we know that (13 + 26)/(3 + 26) < 3, i.e., § > 1, should be needed
to guarantee their Assumptions 3 and 5 simultaneously. However, in our Corollary 2,
when § > 1/4, (3.4) may be met for some a (since § > 1/4, 2 < (37 + 126)/20, so a
may be chosen between 2 and (37 + 126)/20, and thus 5(1 + 4a)/[3(7 + 26)] < 2. Our
Assumption 5 with d = 1 and (3.4) may hold simultaneously). Hence, our Corollary 2
improves Theorem 3.2 of Hallin and Tran (1996).

Remark 7. From (3.5), v(n'/4) = O(n~("+28)/4), To make Assumptions 2’ and
5 with d = 1 hold simultaneously, it is necessary that 4 x 5/(7 + 28) < 2, that is
6 > 3/2. Hence, the result following from Theorem 3 cannot always deduce Hallin and
Tran (1996)’s Theorem 3.2 (§ > 1, cf., Remark 6).

4. Explicit conditions under the generalized context

Insofar as the incremental contributions cover nonlinear processes, there is more
interest. In this section, under the generalized context, we will derive some explicit
conditions to ensure Assumption 6, thus the results obtained will apply well practically
for the nonlinear or/and non-mixing processes.

By choosing p(n) and ¢(n) in (iv) and (v) of Assumption 6 to satisfy

(4.1) n/p(n) = g(n)*,  h G = g(n),
where a and b are some positive constants to be specified below, we found

LEMMA 1. The conditions in Assumption 6’ below are sufficient to ensure Assump-
tion 6.

AssSUMPTION 6’. (i) j%a(j) — 0, as j — oo, for some a > 2 ;
(ii) jPv(j) = O(1), as j — oo, for some b > (3d + 2)/d;
(iii) nh(I+a)Bd+2)/b _, o0 ph3e(3d+2)/(20) _, 0 as n — .

PrOOF. First, Assumptions 6(iv) and 6(v) are satisfied by (4.1) and Assumptions
6'(i) and 6/(ii). Next, it follows from (4.1) that g(n) = hy ®**/® and p(n) = na2GH+I/b,
Thus Assumptions 6(i), 6(ii) and 6(iii) are easily checked by Assumptions 6(iii) together
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with a > 2 and b > (3d + 2)/d in (i) and (ii) of Assumption 6’. Note that a > 2 is to
ensure (iii) here, and b > (3d + 2)/d is to ensure Assumption 6(iii).

It is noted that Assumption 6'(i) is the same as Assumption 1°. To guarantee the
conditions imposed on the bandwidth in Assumptions 5 and 6'(iii) hold simultaneously,
the following conditions are necessary:

AssUMPTION 1*. The bandwidth h,, satisfies that as n — oo,
(i) hnp — 0,
(11) n27r:1ax{d,(1+a)(3d+2)/b} — 00,

(lll) nhgin{2d,2+d,3a(3d+2)/(2b)} — 0.

In order to guarantee (ii) and (iii) in Assumption 1*, a and b should be chosen such
that

3a(3d+2)/(2b) > d, 2d > (1 + a)(3d + 2)/b,
2+d>(1+a)(3d+2)/b,  3a(3d+2)/(2b) > (1 + a)(3d + 2)/b.

Thus, a > 2 and

(4.2) (14 a)(3d +2) <b< 3a(3d +2)

min(2d, 2 + d) 2d
(since a > 2 and d > 1, this is not empty). Hence, Assumption 6(ii) needs modifying as

follows:

AssUMPTION 2*. The stable coefficients, v(-), in Assumption 2 satisfy jv(j) =
O(1), as j — oo, for some b satisfying (4.2).

THEOREM 5. If Assumptions 1°, 1*, 2*, 3 and 4 hold and, in addition, (2.7) in
Theorem 2 is satisfied, then the conclusion of Theorem 2 holds.

Furthermore, if we take b = (1 + a)(3d + 2)/d, then Assumptions 1* and 2* become
simpler.

AssUMPTION 1**. The bandwidth h,, satisfies that, as n — oo, (i) hn, — 0, (ii)

nhd — oo, (iii) nhmin{Zd3ed/R2(+a)l} _ ¢

AssuMPTION 2**. The stable coefficients, v(-), in Assumption 2 satisfy

jArCHDy(j) = 0(1), as - oo

COROLLARY 3. If Assumptions 1°, 1**, 2**, 3 and 4 hold and, in addition, (2.7)
in Theorem 2 is satisfied, then the conclusion of Theorem 2 holds.

Remeark 8. It is interesting to note that the conditions on the bandwidth in As-
sumption 1** are very simple, even under our generalized context, in particular nhg — 00
in Assumption 1**(ii) is the same as the well-known condition for the i.i.d. samples.
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Finally to indicate the application of the results in this section, we consider an
example of the ARMA process with ARCH errors, popular in econometrics, defined by

(B)X, = (1— 1B — - — 6,B")X, = 0(B) % = (1— 6, — - — 6,BY)Z,
Zt = 6thi/2, ht = Qg + aIth_l + -t O{thQ_T.,

where X;, Z; and e; are all adapted to the o-field F; of information collection up to
time ¢, {e;} is an i.i.d. standard normal sequence with e; independent of F;_;, B is the
back shift operator, and p, ¢ and r are positive integers. If the ¢;’s, 6;’s, and ao(> 0),
a;(> 0)’s are constants, such that all the roots of ¢(B) and 8(B) are outside the unit
circle and a3 + - - - + o < 1, then the stationary solution {X;} can be expressed as (1.2)
with Z; being a-mixing. Here, it is difficult to embed {X,} into the context of a-mixing
or linear processes, but it easily embeds into the generalized context in this section. The
other conditions in Corollary 3 can also be checked carefully, but these are not written
out in detail here due to our attention being focused on the generalized context.

5. Proofs for theorems in Section 2

5.1 Basic lemmas
For references later on, some basic lemmas are collected in this subsection.

LEMMA 2. If X andY are two random variables which are measurable with respect
to A and B, respectively, and there ezist two constants Ci, C2, such that | X| < Cy,
Y| £ Cy, a.s., then

(5.1) |EXY — EXEY| < 4C,Caa(A4, B),
where A and B are two o-algebras, a(A, B) = sup sc 4 ges | P(AB) — P(A)P(B)|.

PROOF. See the Appendix of Hall and Heyde (1980).

LEMMA 3. If Assumption 3 holds and h, — 0 as n — oo, then for any z,y € R?
with  # v,

(5.22) BAEK (3 - Vi) /h) — f(z),

(5.2D) b BR* (@ = Y/ = f(z) [ K*(u)du,
(5.2c) hy*EK((z - Y1)/R)K((y — Y1)/h) — 0,

as 1 — 0o, Furthermore, if Assumption 4(ii) also holds, then for j > 0,
(5.2d) hAEK((z — Y1) /WK (@ - Yi1)/h) = O(hmin@),
(5.2¢) B BK ((z — Y1)/R)K((y — Yy41)/h) = O(himin(@a)),

where (5.2d) and (5.2e) hold uniformly for j > d.

ProoOF. For the proof of (5.2a) and (5.2b), see Devroye and Gyorfi ((1985), The-
orem 3, p. 8) (cf., Lemma 2.1 of Hallin and Tran (1996)); (5.2¢) is the vector version of
Lemma 2.6 of Hallin and Tran (1996) (see Masry (1986) for the proof); (5.2d) and (5.2¢)
are also easily derived by the conditions. So the proof of this lemma is omitted.



DENSITY ESTIMATION UNDER DEPENDENCE 457

5.2 Technical lemmas

Define
(5.3) K (@) = K(( - Y\)/h) - BK((z - Y?)/h),
where Y(Q) (Xz(q)d 110- Xz(q)1 X (q)) X; (@) is defined in Definition 1 with m replaced
by ¢ = q(n) and ¢(n) are pos1t1ve integers with g(n) — oo as n — oo.

Throughout this subsection, we all assume that Assumptions 1-4 hold. For conve-
nience of writing, set'h = h,, p = p(n) and ¢ = g(n) and r =r(n) ~ n/(p+ 2q). All the
limits are taken as n — o0 except specified otherwise.

LEMMA 4. If h — 0, h=@+2y(q) — 0, then for any z, y € R% with z # y,

(5.42) R4 E(KD )2 - f(z) / K2 (w)du

(5.4b) hEKD(2)KD(y) — 0,

(5.4c) ALK @)Ky @) = O(B™RED) + O((h=(Du(g))1?),
(5.4d) R BIK D (2)K ;)] = O(Rmn@D)) 1 O((h=(@+Dy(q))1/2),

where (5.4c) and (5.4d) hold uniformly for j > d.

PRroOF. Since the proofs are completely similar, we only prove (5.4a) in detail as
follows:
First observe that

(5.5) B(K2(2))? = E(Ai(z) + K((x — Y1)/1))®
~(EA(2) + EK ((z — Y1)/h))?
= B(A1(2))? + 2E(A1(2)K ((z — Y1)/h)) + E(K ((z — Y1) /h))?
~(BA1(2))? - 2BEA1 (2) EK((z — Y1)/R) — (EK((z —Y3)/h))?,

where A;(z) = K((z — Y ?)/h) = K{(z — Y;)/h).
In view of Assumption 3 and Definition 1,

d
(56)  ElA(@)? < Ch2EY? - vi|? = Ch2 Y EIX(Y,, — Xioja?

= O(h~2v(q)).
Hence, by (5.6) and Lemma 5.3,
h=?E(A1(z))? = O(h~C+y(g)),
h™E(A1(z)K((z — Y1)/h)) < h™HE(A1(2))®)2(EK*((z — Y1)/h))*/?
= O((h=+Dy(g))1/?),
WE(K ((z - Y1)/h)? — f(z) / K?(u)du,
h=4(EA1(2))? < h2E(A(2))? = O(h~®TDu(q)),
h™EA(z)EK ((z — Y1)/h)| < h"U(E(A1(2))?)2EK ((z — Y1) /h)

= O((h™*v(¢))'/?),
“HEK((z - Y1)/h)? = O(h%).
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Thus, (5.4a) easily follows from (5.5).

Define n -
FO @) = (k)1 K((y — ¥9)/hn).

i=d
LEMMA 5. If nv(q)/h*t¢ — 0, then

(5.7a) (nhDY2 | fuly) ~ 9 () S 0,
(5.7b) (nh)'2|Ef,(y) — Ef{D (y)|-0.

Proor. First by (5.6), for any € > 0

P((nh*)! 2| fa(y) — £ )| > €) < € 2 (nh®) | fuly) — £ )2

= (&2nh?)E (Z Az(y))

i=d
< (@Y B(A))?
i=d
— O(mo(@)/*+) — 0,

from which (5.7a) follows, where A;(y) was defined in (5.5). (5.7b) may be proved easily.

In the following, we are to try to prove

(5.8) Bn = (nh®)2(f (1) — EfDw1), ..., [ e) — EfP () 5 N(0,0),

where y1, ...,y are distinct points in R¢. This is the key step of our proofs of the main
results. Since g = g(n) changes with n, Lemma 7.1 of Robinson (1983) cannot be applied
directly. For simplicity of exposition, we consider k = 2. Set ¢ = (¢1,¢2) € R2.

(6.9)  ¢'Bn —(nhd)1/2(61( (1) = EFD (1)) + ea(f2(y2) — BFSD (12)))

= (nh) 1/22(c1K<"’(y1 + K9 (),
i=d

where K9 (y) was defined in (5.3).

For our purpose, we adopt Bernstein’s technique.

Set n — d = r(p + 2q) + s, where r = r(n) and p = p(n) were defined right before
Lemma 4, which tend to co as n — oo, and s = s(n) is a positive integer satisfying
0 < s < p+2q and g = ¢(n) was defined right after (5.3). Denote

Ki = a K9 (1) + KD (y2),
rm+p_1
=mh)™? " Ki,  rmo=(m-1)(p+2¢) +d,

I=Tm
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lm+2g—1
Vim = (nhg)_l/z Z Ki, dm=(m—1)(p+2q)+p+d,
1=l
m=12,...,r,
R n
R, =(@mhd)7? N K,
i=r(p+2q)+d
Thus (5.9) can be written as
T T
(5.10) ¢Bp=>) Un+ Y Vm+R,.
m=1 m=1
Now we are to prove, as n — 00,
T
(5.11a) > Vw50, R Do,
¢ L
(5.11b) 3 Un £ NGO, (6 m) + ) [ K2 ().
m=1

LEMMA 6. If the conditions of Lemma 4 hold, and q/p — 0, v(q) = O(R3+?),
gh® — 0,n Y2 a(j) — 0, then (5.11a) holds.

Proor. By stationarity, it is clear that

T 2 r—1
(5.12) E (Z Vm> = Z EVZ+2) TinEvlv;H
m=1

m=1 j=1

T

> EViVi|.

j=1

IA

rEVE +2r

First, consider the first term of (5.12). By stationarity,

2g-1 2
EVZ = mhd)'E (Z Ki>
i=0

2g—-1 29—2 2g-1
= (nhd)~! ZEK2+2(nhd) 1Y N EKGK,
1=0 j=i+1
2q—1
= (n)7'(20)(hs) ' EKT + 207N (RE)TT Y (5 — DEK1 Ky
j=1
é Enl + En2-
From (5.4a) and (5.4b), note that
(5.13a) i EK? = h Y EE(KD (1) + GEKSD (1))

+2c16 EK ) (y1) K89 ()]
— 0(1) + O(1) + o(1) = O(1),
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and from (5.4c) and (5.4d) that

(5.13b) hy*BIK K 41| < by YR EIKD (1)K, ()| + BEIKS (52) K9, ()]

7

+ereal(BIKSD () K1 (12)] + BIKSD (92) K., (00))]
= O(h™in(d9)) 1+ O((h~(4+2y(g))1/2),

where the last equality holds uniformly for j > d. Also, since K(-) is bounded, it follows
from (5.3) and the definition of Kj, that |K;| < 2k*(c1 + c2), where k* = sup, K(z),
and, hence, from Lemma 2, together with Remark 1(b), that
(5.13¢) |EK1Kj11| < O(1)a*(§) = O()a(j —q), for j>gq.
Now, by (5.13a), it is easily known that
Ent = ()"1(2)0(1) = O(g/n);
taking N ~ h_ ¢, by (5.13b) and (5.13c),

Bual < 207 Ca) (W)™ S B K 1)

J=1
N o0
= 2071 (29) Y |(hd) T EK Kyt | + 2 2q) (B2 S |BKGK ]
Jj=1 j=N+1
d N
=2n71(2 Z+ Z ((h=(@+2y (@))/2 + pmin(@9))
J=1  j=d+1
o0
+2n71(2¢)(h3)TTO(1) D a(j—q)
Jj=N+1

Olg/m)ldh + (N = )b + (=G4 2 LN 3 a(j)
’ J=N—g+1

= O(g/n),

where the last equality follows from the conditions of this lemma and the fact that
N — g+ 1~ N due to the condition gh® — 0. Thus,

(5.14a) EV{ < O(g/n) + O(g/n) = O(g/n).
Next, consider the second term of (5.12). By the definition of V; and the stationarity,

r p+d+2q-1 j(p+29)+p+d+29—1

D IBViVial = mh)TT Do) 3 > EK;K,

j=1| i=p+d =j(p+29)+p+d
r  p+d+2q-1j(p+29)+p+d+2g—-1

< (mhg) Y > 3 \EK K|

Jj=1 i=p+d  {=j(p+2q)+p+d
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r pt+d+29-15(p+2¢)+p+d+2g—1—i

= (nh2)~ Z > > |EK; Koy
=1 i=p+d  f=j(p+2q)+ptd—i
r pt+d+29—1j(p+29)+p+d+2¢—1—i

* = (nh%)~ 12 Z Z |EK 1 Kpyq].

=1 i=p+d =j(p+2q)+ptd—i

Set i’ =i~ (p+d) and & = ¢ — j(p+ 2g). Then the right-hand side of the last equality
becomes (for simplicity of notation, i’ and ¢ are still denoted by i and £ below)

r 2q—12q—-1-i

(nhﬁ)—lzz Z [EE1Kj(prag)+et1l-

j=1 i=0 f=—1i

By this, together with (5.13b) and (5.13c), taking N ~ h-%~! and similarly treating
E,» as in the above,

N o0 29—12¢—1—i
Z|Evl Vi| < (nhg)™ (E+ >, ) > O |EKiKpragsen]

j=1 j=1 j=N+1 =0 f=—1
N 2¢q—12q—-1-i
=0M)m) 1Y D D [t 4 O((Rm 2y (g))!/2)]
Jj=1 i=0 {f=-3
co 2q—12¢—1-—%

+O()(nhg)™ > > > alilp+29) +£-q)

j=N+1 i=0 f=~i

15>

En3 + En4,

where if N < 1, the sum Z;V:1 is taken as O (i.e., without this sum), so it is assumed
below that N > 1 in E,3; for E,3, it is clear that

Enz = O(1)n"'Ng*[h? + O(h™(#*2)y(g)) /]
= 0(1)(np) "' ¢*[1 + O(h~CHDu(q))/%] = O(¢*/ (np)),

for Fp4, recalling from Remark 2 that a(-) is decreasing, we have

a(j(p+2g)+£~q) < a(j(p+2q) — 3q), for
—i<f<2¢—1—4and 0<i<2—1,
J(p+29)—3q
(p+2q)0(j(p + 29) — 3q) < > a(y),
e=(j—1)(p+29)—3q

and, hence,

oo 2¢—12q¢—1—1i

En < 0(1)(nhd)? Z Z Z (j(p+29) — 3q)
j=N+1 i=0 f=—i
o<

= 0()(mhE)™" > (29)%a(i(p + 24) — 3q)

j=N+1
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o0 J{p+2q)~3¢
< O(@/mhy* > (p+29)7" > o)
J=N+1 ' ¢=(j—-1)(p+29)—3q
< O(@/(mp)hy® D o)
j=N(p+2q9)—3q
= O(¢*/(np))(Np) > aly)

J=N(p+2q)-3q

= O(¢*/(np)),
where Np ~ h~¢ — oco. Thus, clearly,
(5.14b) > IEV V1] = O(¢*/(np)).
j=1

Finally, it follows from (5.12), (5.14a), and (5.14b) that

v 2
E(zﬁ%)=mmwm+mmwmm
m=1

— Olg/p) + O(*/p?) — O,

from which the first expression of (5.11a) is derived. The second of (5.11a) may be
proved similarly.

To prove (5.11b), we first notice the following lemma:
LemMA 7. If na(q)/p — 0, then

Eexp {zu Z Um} - H E exp{iuUy,}

m=1 m=1

— 0,

(5.15)

where § = +/—1.
PrOOF. The left-hand side of (5.15) is bounded by

T T
Eexp {zu Z Um} — Eexp{iulU;}Eexp {zu Z Um}

m=1 m=2
r -1 r
+Z (H Eexp{iuUm}> Eexp {zu Z Um}
=27 \m=1 m=0

4 ™
_ (H Eexp{iuUm}) Eexp {zu Z Um}
m=1 m=£+1
< 4ra*(2g) < 4na(q)/p,

from which (5.15) follows clearly, where Lemma 2 is applied in the last second inequality.
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Let {U *}i—1 be independent random variables with U;* identically dlstrlbuted as U;,
i=1,...,n. By Lemma, 7, to prove (5.11b), it suffices to check that

(5.16) > U5 5 ¥ (0, (1) + () [ K2(w)au)
m=1
According to Lindeberg’s CLT, we need to check that

(517a) 2 = Zm( 2 =7 = (@) + ) [ K2

(5.17b) 55 Z E(Un)Ljus,|/sa2e) = 0

for any € > 0.
LEMMA 8. Under the conditions of Lemma 6, (5.17a) holds.

PrROOF. By the stationarity,

(5.18) 52 = rVar(U}) = rEU?

d+p—1
r/(nhd)E< +Z Ki>
i=d

2

r/(nh?) {pEK 742 Zp:(j - l)EKlKjH:]
j=1

rp/(nh®)EK? + 20(rp/n)h dz |EK1Kj41]
j=1

A
= Sp1 + Sn2.

First consider s,». Similarly as treating FE,s in the proof of Lemma 6, taking
N = eh™% = ge/(gh?) > 2q for n large enough due to gh® — 0, where € is a positive
constant, since rp ~ n, it follows from (5.13b) and (5.13c) that

d N
$nz = O(1) (Z > ) (h(@20(g)) /2 4 pmintd)

j=1  j=d+1
+O(M)(RE)™ > ali-q)
j=N+1

d P
Y DoKW+ (VPR ERy(g) 2 4 (N = d)a? +h? D ali—q)
=1 j=N+1

(o )+ e(h~CHDy(@N 2 4 e +e7IN f: a(j—q)).

J=N+1
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Thus, first letting n — 0o and then £ — 0, gets s,2 — 0 as n — oco.
Next consider s,;. By (5.4a) and (5.4b) together with the first equality of (5.13a),
it clearly follows that

sn1 — (S f(y1) + c%f(yz))/K2(u)du = 72,
Thus, (5.17a) follows from (5.18).

To get (5.17b), we prove a stronger result.

LeEMMA 9. Under the conditions of Lemma 6, if nh® — oo, p®/n — 0, then
S <1 E(U2)* — 0, and, hence, (5.17b) holds.

PROOF. The proof of this lemma is similar to the proof of (7.9) of Robinson ((1983),
p. 198), but since ¢ here depends on n, it needs to be treated more carefully by (5.13a),
and (5.13b). By stationarity,

T P 4
(5.19) > EU;)* =rE(U)* = r/(nh?)?E (Z K) .
m=1

i=1

It is well known (cf., the equality at the end of p. 198 of Robinson (1983)) that

(5.20) E (Z Ki) =E Z{Kf + ) (KK (K + Ky)

vEuA wHVAUFAL
=EY K!+EY Y K!K,(K;+Ku)
P i uFi

+EY > " KKK,

T uFi vFEufi

+EY > > Y KiK.K,K,

i uFt vFEuAi wtvFuti
Ain + Agn + Asgn + A,

e

where all 4,u,v,w take their values, respectively, from 1 to p. Since A, j = 1,2,3,4,
can be treated similarly, we mainly focus on the most complex term A4, below.
Note that by the definition of K; and the boundedness of the kernel function K(-)
(bearing in mind that O(1) may be different at different places below),
E|K;K,K,Ky| < O(1)E|K;K,|, E|K;K,K,K,|<OM1)E|K,K,|,
E\K;K,K,K,| < OV)E|K,K,|.

Then,

(5.21) Al Y207 >0 Y. BIKK.K K|

i uFi vAUFA whvFuAtl
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p—3 i+d utd vi+d
< 0(1){}: > > ) EIKK.
i=1 u=i+1v=u+l w=v+1l
p—3 itd utd p
: +3 3 > > E|K,Ky
i=1 u=i+1 v=ut+l w=v+d+1
p—3 it+d p—1 v4d
22 X 2 EKK
=1 u=i+1 'u——u+d+1 w=v+1
-3 it+d p—
+Z > Z Z E|K, K|
i=1 u=i+1 v=u+t+d+1 w=v+d+1
p—3 p—2 u-i;d v+d
+Y0> DL D EIKK|
=1 u—i+d+1 v=u+1lw=v+1
—2 u+d
+}: Z > Z E| K, Ky,|
u—z+d+1 v=u+1 w=v+d+1
—1 v+d

+Z }: Z > E|IKK,

i=1 u=i+d+1 v=u+d+1 w=v+1

SN ElKiKul}

=1 u=i+d+1 v=u+d+1 w=v+d+1
8
2om{3 B
j=1

Now we treat Bj,,j = 1,...,8, respectively. For Bi,, setting v’ = u — i (u' is still
denoted by u below) and by the stationarity and (5.13b),

ST 3 MO 4 O((h A (g)) )]

1 v=t+u+1l w=v+1l
< d®ph?[O(h) + O((R™*2)u(g))/?)];

p—3 d itudd v+d
Bin = Z Z E E|K; Kt
i=1 u=1l v=i+u+t+l w=v+1
p—3 d itutd v4-d
DD I ST
i=1 u=1 v=itu+1l w=v41
p—3 d itut+d vtd

=1 u=

for Bo,, setting w’' = w — v (w' is still denoted by w below) and similarly to treating
Bln7

p—3 i+d udd p—v

=X X Y X KKl

i=1 u=i+1 v=u+1 w=d+1
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p—3 i+d u+d p—v

-5y ¥ 5 s

=1 y=i4+1 v=ut+1 w=d+1
-3 i+d u+d p—v

= Z X2 2 H O(hm'““w))w((h <d+2>v<q))1/2)1

=1 u=i+1 v=u+1 w=d+1
< d?p*RHO(R%) + O((h™(*2v(g))/?)];

similarly to Ba,,

Bsn = d*p?hO(h%) + O((h~ 2 y(g)) /),
Bsn = d?p*hO(h%) + O((h~ D y(q))/2)];

for By, setting v’ = v —u (v’ is still denoted by v below) and similarly to treating Biy,

-3 i4+d p-l-u

Z > 2 Z E|K Kyt

i=1 u=i4+1 v=d+41 w=u+v+d+1
—3 i4d p—1l-u

Sy Y B

i=1 v=i+1 v=d+1 w=ut+v+d+1
—3 i4+d p—1-u

= Z Z Z Z hd[O(hmin(d,v))+0((h—(d+2)v(q))1/2)]

=1 u=i+1 v=d+1 w=utv+d+1
< dp®h¥O(h?) + O((h™*+u(g))/2)];

similarly to By,

Ben = dp*h®[O(h%) + O((h~ 4+ (q))'/?)],
By, = dp*hA[O(h%) + O((h™ D y(g))1/2));

finally, for Bg,, similarly to treating B;,,

p—3 p—2—1i

Bsn =Y > Z Z E|K;Kiyul

=1 u=d+1 v—z+u+d+1 w=v+d+1
~3 p—-2—1

Y Y Y mmm

=1 u=d+1 v—z+u+d+1 w=v+d+1
-3 p—2—1

— Z Z Z Z pe O(hmln(du))+0((h (d+2)U( ))1/2)]

i=1 u=d+1 v=i+u+d+1 w=v$d+1
< p*hHO(h%) + O((h~ 42 y(g))/?)).

Thus, it follows from (5.21) that

(5.22a) |Adn| < O(ph?)(h + (A~ Du(g))/2) + O@*h%) (A% + (A~ y(q))!/?)
+O(p*h?)(h? + (R~ Dy(g))/2) + O(p3h%) (R + (h™(4+Du(q))!/?)
+O(P*h%) (A + (A~ D(q))1/2) + O(P*h%) (h? + (A~ (2u(g))1/?)
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+O(P*h?) (h% + (A4 u(q))/2) + O(p*hY) (A% + (A= (+Du(g))}/?)
= O(ph?)(h + (b~ Dy (g))'/%) + O(p*h) (R + (h~ 4Dy (g))1/?)
= O(ph®) + O(p"h®) (b + (h™ () 1/?).

Similarly to Agn, by (5.13a), and (5.13b),

(5.22b) |A1n| = O(ph?),
(5.22¢) |Azn| = O(ph?) + O(P*h?) (h® + (R~ HDu(q))1/?),
(5.22d) |Asn| = O(ph®) + O(p*h?) (W + (h~(#Do(g))/?).

Now it follows from (5.19), (5.20) and (5.22) that

5" B = O(r/(mhdPlph + 22((h~#Du(g)) /2 + h)h?

+p* (A~ 20(9)) /2 + h¥)h? + p* (R u(g)V/? + h)R?)
= O()[(nh?) ™! + (* /n)((h~ CH*Pu(g))'/? +1)] — 0,

which is the desired result.

5.3 Proofs of Theorems 1 and 2

PrOOF OF THEOREM 1. First, by Assumptions 5(i) and 6(v), nv(q)/h?*¢ =
O(nh??) — 0 as n — oo, thus the condition of Lemma 5 is satisfied. The conditions of
the other lemmas in Subsection 5.2 are obviously verified by Assumptions 1, 5 and 6.
Hence, (5.8) is deduced from Lemmas 6-9. Finally, Theorem 1 follows from (5.7) and
(5.8).

PrOOF OF THEOREM 2. By Assumption 4(i), (2.7) and then Assumption 5(ii), it
easily follows that

(nh) 2| Efaly) — F(W)] = O((nht)/?) — 0
as n — oo. Thus, together with Theorem 1, Theorem 2 holds.
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