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Abstract. In this paper the problem of estimating the ratio of variances, o, in
a bivariate normal distribution with unknown mean is considered from a decision—
theoretic point of view. First, the UMVU estimator of ¢ is derived, and then it is
shown to be inadmissible under two specific loss functions, namely, the squared error
loss and the entropy loss. The derivation of the results is done by conditioning on an
auxiliary negative binomial random variable.
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1. Introduction

In many problems we are interested in comparing the variabilities of two populations
and this can usually be done by infering from their variance ratio. The typical situation
is to assume that the populations are independent. For a decision theoretic approach,
see Gelfand and Dey (1988), Kubokawa (1994), Madi (1995), Ghosh and Kundu (1996),
Kubokawa and Srivastava (1996), and Iliopoulos and Kourouklis (1999) for the point
estimation problem, and Nagata (1989), and Iliopoulos and Kourouklis (2000) for the
problem of interval estimation.

However there are cases where the observations are paired and consequently we
cannot suppose independence. Data of this kind arise in many cases of practical interest.
For example, suppose a pair of observations to be measurements of an individual’s ability
before and after a certain event (such as training) or values of the same characteristic in
twin brothers. Assuming normality (as it is also assumed in this paper), Pitman (1939)
and Morgan (1939) derived the likelihood ratio test for the hypothesis that the ratio, o
say, of two variances is equal to a preassigned value. In contrast, the point estimation
problem of o has not been treated yet.

The main results of this paper are contained in Section 3 where the uniformly
minimum variance unbiased (UMVU) estimator of o is derived and it is shown to be
inadmissible under two specific loss functions, namely, the squared error loss

Ly(t,0) = (3—1)2,

t t
Le(t,0) = o log; -1

and the entropy loss

436



ESTIMATION OF RATIO OF VARIANCES 437

Furthermore, using Stein’s (1964) technique for improving estimators of a normal vari-
ance, improved testimators are also produced. Note that although, typically, the problem
is an extension of that of estimating the ratio of variances of independent populations,
in fact it is different in structure. This is justified by the following. First, the UMVU
estimator is a non—constant multiple of the ratio of sample variances (see Theorem 3.1).
Second, the independence case allows for a unified treatment with respect to the loss
based on the monotone likelihood ratio property which is valid for appropriate under-
lying marginal and conditional distributions. When the two populations are dependent
this property does not hold and thus the problem requires separate treatment for each
loss considered (see Subsections 3.1 and 3.2).

In Section 2 some distributional results of independent interest are obtained by
expanding the 2-dimensional Wishart probability density function (pdf) in a power
series.

2. Distributional results

Let (X1,Y1),...,(Xn,Yn), N > 6, be a random sample from a bivariate normal
distribution with mean vector u= (i1, u2)’ € R? and positive definite covariance matrix

g11 012
Y= ,
012 022

both being unknown. The complete sufficient statistic is the pair (X, 4),

X = )_( A= Ay Aig
Y )’ Aig Agp |’
where X = N1 0, X, ¥ = N7V Vi, Au = 505, (X — X)?, Age = 30, (Y -
V)2, Ax = Ziil (X;— X)(Y;-Y). It is well known that X, A are independent following
No(u, N71X), Wa(n, ) distributions respectively, with n = N — 1.

The problem of estimation of ¢ = 011/092 remains invariant under the group of
transformations (X, 4) — (CX + b,CAC’), with C(2 x 2) diagonal matrix, b € R?,
and the equivariant estimators have the form § = ¢(R?)S, where S = Aj;/A2, R =
A12/(A11422)" /2, and ¢(-) is a positive function. Let p = o12/(011022)!/? be the popu-
lation correlation coefficient. Then A1, Agg, R have common pdf
a111,1/2 1 n/2 1(1 )(n_g)/Q
2n0(1/2)0((n — 1)/2>r(n/2>o?(2a§{2<1 — P2

a11/011 + age/oas — 2pr(a11/011) % (aze/022)/?
i {‘ 21— p?) }

Kk)/2— Kk)[2— - KK
% (11L+ )21 (ntr)/2 1( 2)(n 3)/2p p

N ,goann'r<1/2>r(<n—1)/2>r<n/2>o<"+“>/2 $aT (1 — pryn/2en
coxp { -2l oo

The above equality is obtained by expanding exp{pf"(au/au)l/2 (agz/022) 2 /(1 — p*)}
in a power series. Set now ¢ = p? and T = R? and observe that the terms of the sum

f(an,anﬂ”) =

}, a11>0, a22>0, ~-l<r<l.
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cancel out when & is odd. Then, A;1, A2y, T have density

o0

@) St = 3 w5 Ob(t) s)g"”"(a (1—5))

. 1 ( ag9 >
0_22(1 _ é.) Gn4-2k 0_22(1 — f) y

where b.(-), gn+2x(-) are the Beta(k +1/2, (n—1)/2), x2 .. pdfs respectively and

o I(n/24+kK)
58 = T rpa)

is the negative binomial probability mass function. Denote by K a random variable with

probability mass 7(k;£). Then, from (2.1), it can be seen that conditionally on K = &,
A1, Agg, T are mutually independent with distributions

(1_5)11/2%, Kf:();la21"'a

1 n—-1
A~ 011(1 - f)Xiwm Agg ~ 022(1 - f)Xi+2m T ~ Beta (fﬂ + 3 T) .

The distribution of § = A;;/As; is given by the following theorem whose proof is
straightforward.

THEOREM 2.1. (i) Conditionally on K = &, S and T are independent and S/o ~

Fn+21~c,n+2n-
(ii) The marginal pdf of S/ is given by

o0

F(8) =D w(5:€) faran(s),

k=0
where fni2:(-) denotes the pdf of Friok nios-

Note that this particular form of the pdf of S/o can also be derived from a result
of Finney (1938).

Let E(™ K7 denote the j-th—moment of K when the degrees of freedom of the
Wishart distribution is m. It is quite easy to verify that the following recursive formula
holds.

ng
2(1-¢)’

BRI — g E™|(n +2K)(K + 1) ]

j—-1 . .
_ g 3 Jj-1 I=W\| g
=E K+2(1_€)Z{n( ) >+2<i_1)]5 Ki, j>2.

i=1

EWK =

The above expressions can be used to get the moments of S/¢ in a convenient way, as
the following theorem demonstrates.

THEOREM 2.2. For positive integer v < n/2 the v-th moment of S/o is given by

E(S/o)’ = ﬁ%%gﬁfﬂ"—”) { ﬁ{n + 2K +2(i — 1)]} .
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p+2(i—1)

PROOF. Using the fact that EFy, = [[;_; 220~

we get
E(S/0)” = E™E((S/0)” | K] = E™ [E( 2k ntak | K]

n+2k+2(i—-1)T(n/2+ k) n/a&®
_EH n+ 2k — 2 L(n/2) (1-¢) /2;!‘

r=01=1

__a-9v et (i — D((n=2v)/24+K) ., (n—20)/2§"
. (n = 2) ZH[ 220 -V 9 p

'—M— (n—2v) .
G- 2 E[n'f“QK-}-z(z D}, n>ow

This completes the proof.

=01i=1

Using Theorem 2.2 we obtain the first two moments of S as

_n—2
(2.2) ES = p—— and
2_n(n+2)—8(n-{—2)§—§—24§2 2
e [t R

3. Estimation of the ratio of variances

When £ = 0, i. e the X;’s and Y;’s are independent, the UMVU estimator of ¢ is
known to be fyo = 2S However in our general case, 6y, is no more unbiased as it
is obvious from (2.2). "Derivation of an unbiased estimator of o which is a function of
the complete sufficient statistic can easily be done using the negative binomial random
variable K defined above.

THEOREM 3.1. The UMVU estimator of o is given by

—342T
fy =222 g
n—1
with variance

4(n3 — 5n2 + 3n + 13) — (n® + 2n? — 45n + 102)£ + (7n? — 48n + 89)¢?) o2
(n—-2)(n—4)(n-1)?

PROOF. Recall that conditionally on K = k, S and T are independent. Then we
have

- K
Bty = BiBsy | K] = B{ 22200 Egis K1}
(n - 3)(n+2K)+2(1+2K)
= E (e =
(n-1)(n+2K - 2)
Since 6y is a function of the complete sufficient statistic it is the unique UMVU estimator

of o. The computation of its variance can easily be done using the expressions for the
moments of K.

The maximum likelihood estimator (MLE) of ¢ is the same as in the case of inde-
pendence, i.e. §yrE = S, being the ratio of MLEs of 071 and o92.
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3.1 Estimation under squared error loss
Consider the class of estimators

C={6=[T+c(l1-T)]S;c>0}

and observe that 6y and 6y Lp are members of C with ¢ = (n—3)/(n—1) and ¢ = 1
respectively. The risk of an estimator of the above form under squared error loss is

E(b./o—1)* =c®E(1-T)?S%/o? - 2¢E[(1 - T)S/o — (1 - T)T'S?/o?| + E(TS/o — 1) ,
which is quadratic in ¢ and uniquely minimized at

E(1-T)S8/0 — E(1 -T)TS?*/6* n-5
E(1-T)252/52 T+l

Co =

The last equality can be seen to hold by substituting E(1 — T)S/o, E(1 — T)TS?/a?,
E(1-T)%?5? by E(n—1)/(n+2K —2), E[(n—1)(1+2K)]/[(n+ 2K — 2)(n+ 2K — 4)],
E[(n—1)(n+1)}/[(n + 2K — 2)(n + 2K — 4)] respectively.

The:following theorem establishes the inadmissibility of 6y and éurp and it is a
consequence of the above argument.

THEOREM 3.2. Under squared error loss 8y and g are inadmissible both being
dominated by the estimator

(3.1) §o = LT O+ 6T

n+1

However 4 is inadmissible too as can be seen from the following theorem.

THEOREM 3.3. Assume that the loss function is squared error. If 65 = ¢(T)S is
an estimator of o satisfying

(3.2) Pp(T) < (n—4)/(n+2)] >0,

then it is tnadmissible being dominated by the estimator

-4
83 = max {¢>(T), Zﬁ} S.

PRrOOF. The method of proof is based on the ideas of Stein (1964) and Brewster
and Zidek (1974) for the estimation of a normal variance. The conditional expected loss
of an estimator of the form ¢(T')S given T' = ¢, K = k is quadratic in ¢(¢) and uniquely
minimized at ¢.(t) = E(S | T =t,K = k)/E(S? | T = t,K = ). Now this value
does not depend on t because S, T are independent conditionally on K = k. Hence,
¢u(t) = s = E(S | K = K)/E(S* | K = k) = (n+ 2k~ 4)/(n + 2k + 2). One can
easily check that ¢. > ¢o = (n —4)/(n + 2), for & > 0. Thus, by the convexity of the
conditional risk, ¢(t) < ¢q implies

El(¢(t)S/o—1)* | T =t,K = k] > E{(¢oS/o —1)? | T =t,K =«], k=0,1,2,....

Taking expectations over T', K we obtain the desired result.
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Remark 3.1. Note that §* = ¢S is the best estimator of o of the form ¢(T)S,
when ¢ is known to be zero, i.e. X;, Y; are independent. Thus, 6;‘, is a testimator which
chooses between 6* and 8, depending on whether or not the test for Hp : £ = 0 with
critical region ¢(T') > ¢o accepts Hp.

The condition (3.2) is satisfied by the estimator o and this proves its inadmissibility.
Hence, we have the following corollary.

COROLLARY 3.1. The estimator o in (3.1) is inadmissible being dominated by the
estimator

. n—5+61 n—4
(3.3) 50—max{ i ’n+2}S

In contrast, the condition (3.2) is not satisfied by 6y and dxrE-
For further improving on 6§ consider estimators of the form

(3.4) § = P(Wa, T)S,

where Wy = NY?2/Az, and 9(-,) is a positive function. It is well known that condi-
tionally on X = 7, NV2¥ ~ N(N'/213(2),022(1 — £)), 43(2) = pz + (& — p)ona/om,
and thus, by conditioning in addition on L = ¢, a Poisson random variable with mean
Nup3(2)*/(2022(1 = §)), N Y2 is distributed as o22(1 — €)x3 o, Hence, by conditioning
on X =z, L =4, K = &, and recalling that Ags | K = k& ~ 022(1 — £)x2 25, it follows
that W5 is ancillary.

Now it can be shown that the conditional risk of an estimator of the form (3.4)
given X, W, T, L, K, is uniquely minimized at

E[S]XZSE,Wgzwg,LZE,KZI{] _ n+2k+20—3
E[S2 | X =2,Wa =wo, L=0,K=k] (n+2k+2)(1+w)

¢K),£ (11)2) =

which attains its minimum with respect to &, £ at k = £ = 0. Using now an argument
similar to that in the proof of Theorem 3.3 we obtain the following result.

THEOREM 3.4. Assume that the loss function is squared error. If 6y = p(Wa,T)S
is an estimator of o satisfying

n—3
( +2)(1+ Ws)

[«p(W2,T) < ] >0,

then it is inadmissible being dominated by the estimator

n—3
8 _max{ (W2,T), (n +2)(1+W2)}S

COROLLARY 3.2. The estimator
n—5+6T n—4 n—3
n+l 'n+2 (n+2)(1+ W)

63* = max{

dominates 6§ in (3.3).
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3.2 Estimation under entropy loss

Consider now estimation of ¢ under entropy loss. This loss function has been used
by many researchers for the estimation of scale parameters, as is o for the distribution
of S (see Theorem 2.1). Furthermore one can argue that this loss is more reasonable for
this kind of problem than squared error, since underestimation as well as overestimation
is heavily penalized (it is limy,o Le(t) = limy—co Le(t) = 00). On the other hand,
squared error loss does not penalize underestimation of the scale parameter so much as
lim; 0 Ls(t) = 1, while lim;_, o, Ls(¢) = oo.

Let 6. € C, ¢ > 0, an estimator of 0. The conditional risk of such an estimator given
K==kis

E[(T+c¢(1-T))S/o | K = k] — Ellog(T +¢(1-T)) | K = ] — E[log(S/o) | K = k] — 1,

and, by differentiation with respect to c, is uniquely minimized at ¢ = ¢, satisfying

(35) 0= E[(1-T)S/o|K =] —E{E(l—i;—,%r—T K= m]
. n-1 1 I'(n/2 + k) te=1/2(1 — t)(n-1)/2 &
= n+2/<;——2_/0 T2t ml(n-10/2)  a-p+t

Now, for ¢ € (0,1) replace [c(1 — t) + t]~! by its power series representation about 1,
SR A=) M1 =) Then (3.5) becomes

1 I‘(n/Z + K‘/)tn_l/‘?(l - t)(n—l)/2 oo n—1
(36) 0= /0 T(1/2 + R ((n = 1)/2) é(l ~N -l - s

_ i ( L(n/2 + &)(1 — e)A ' £5=1/2(1 _ g Hn—1)/2gg _n-1
r
A=0

= T'(1/2+ &)I((n—1)/2) n+ 2k —2
e T((n+1)/24+ N (n/2+ K+ 1) n+ 2k
- ZI‘((n+1)/2)I‘(n/2+l€+1+A)(1_C))\_n+2/<.;—2

~T((n+1)/2+ N(n/2 + K +1) N 2

I((
- z_:f‘((n+1)/2)f‘(n/2+n+l+)\)( B S

- Notice that the minimizing value ¢, must be in the interval (0,1) because the right
hand side (rhs) of (3.6) is a strictly decreasing function of ¢ which is positive near 0 and
negative at ¢ = 1.

We will prove now that min, ¢, = ¢g > (n — 3)/(n — 1). For this we need first an
upper bound for ¢.. By (3.6) we obtain after some simplifications

37) 0= {——ﬁi(lt—c,g)—f- (n+1)(n+3) (1*05)2-*—-“} .

n+2k+2 (n+265+2)(n+ 2k +4)
2 1 X 2
_ nt Z(l .
n+2l€—2 n+ 2k 4+ 2 n+26-2

n+1l 1-¢. 2

n+26+2 ¢, n+ 2k —2
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hence,
(n+1)(n+2k-2) _

o < (n+1)(n+2k —2) +2(n+ 2k + 2) = G
say. Since the rhs of (3.7) is strictly decreasing function of ¢ for every «, if it is positive

at a value ¢ then it must hold ¢ < c,.
Now, substituting £ = 0 and ¢ = (n — 3)/(n — 1) in the rhs of (3.7) we get

n+l 2 (n+@m+3) /[ 2 \° 2

{n+2n—1+(n+2)(n+4) (n—l) +"'}”ﬁ—:§
n+l 2 (@+D@+3)/ 2 ' @+D)n+3)n+5) [/ 2 \°
nt2n—1 (n+2)(n+4)<n—1) +(n+2)(n+4)(n+6)<n——1>
2 4(n'+8n®45n® —86n — 24)
n-2 (n-13n-2)n+2)(n+4)(n+6)

>0

(recall that is assumed n > 5). Thus, ¢p > (n—3)/(n—1) holds. In a similar way, taking
k>0and c=2& = (n? —n —2)/(n? +n + 2) we get that

{———E—t—l———(l——ég)—l— (n+1)(n+3) (1_50)2_*_”'}_ 2

n+ 2k +2 (n+2c+2)(n+2x+4) n+ 2k —2

is greater than or equal to a fraction with positive denominator and numerator

(8K — 4)n™ + (32x% 4+ 112k — 72)n8 + (32K3 4 272x% 4 696K — 548)n®
+(64k3 + 73612 + 2496 — 2512)n* + (160x°> + 14882 + 5936x — 7168)n>
+(128k3 + 1504K7 + 8224k — 12224)n? + (128k> + 12167 + 6336k — 11456)n
+(128k% + 1408k — 4806).

It is easy to verify that for n > 5 and & > 1 the above expression is positive, implying
&g < ¢, and hence, ¢y < ¢.. Now, observe that for every  the conditional risk of &, is a
convex function of ¢, and recall that 6§y € C with ¢ = (n — 3)/(n — 1). Summarizing the
above results we obtain the following theorem.

THEOREM 3.5. Under entropy loss by is inadmissible being dominated by the
estimator

(3.8) bo = [T+ co(1l — TS,
where ¢ = cg is the solution to the equation
1 n—1
— K = e
E{c(l—T)—FT‘ 0] n—2

The proof of the following theorem is analogous to that of Theorem 3.3 and therefore
is ommited.

THEOREM 3.6. Assume that the loss function is the entropy loss and 64 = ¢(T)S
is an estimator of o satisfying

(3.9) P[#(T) < (n—2)/n] > 0.



444 ' GEORGE ILIOPOULOS

Then the estimator 04 is inadmissible being dominated by
n—2
63 = max {qﬁ(T) - } S.

Remark 3.2. Analogous comments as those in Remark 3.1 hold in the present case
too. Thus, &} is a testimator which chooses between 6y = %‘Z—QS’, which is the best
estimator of o of the form ¢(T')S when it is known that £ = 0, and 64 depending on
whether or not the test for Hyp : £ = 0 with critical region ¢(T") > (n —2)/n accepts Hy.

The condition (3.9) holds for both 8y (since it holds for §;,) and §y. Hence, we have
the next result which is the analogous to that of Corollary 3.1.

COROLLARY 3.3. (i) The estimator &y in (3.8) is inadmissible being dominated by
the estimator

(3.10) 8y = max {T+co(1 —T),n——g—z}s.

(ii) The estimator

?

n—342T n——2}
S
n-—1 n

(3.11) 6 = ma.x{
dominates the UMV U estimator 6y .

The estimators 63, 67; can be further improved by an estimator of the form (3.4).
The proof of the next theorem is analogous to that of Theorem 3.4 and therefore it is
ommited.

THEOREM 3.7. Assume that the loss function is the entropy loss and &, =
W(Wa,T)S is an estimator of o satisfying
1
——| > 0.
(1+W2)}

Then the estimator by is inadmissible being dominated by

[¢(W2,T) <

55" = max {¢(W2, T), ﬁ;} s.

COROLLARY 3.4. (i) The estimator

n—2 mn-1
8 —max{T+c0(1—T), - ’n(1+W2)}S

dominates 65 in (3.10).
(ii) The estimator

5% — max n—-3+2T n-2 n-1 g
v n—1 "7 n 'na(l+W)

dominates &f; in (3.11).



ESTIMATION OF RATIO OF VARIANCES 445

Table 1. (Squared error loss) Percentage risk improvement of 65 in (3.3) over a1k, v, 60 in
(3.1) under squared error loss for n = 5 and n = 10.

n=2>5 n =10

'3 bmre  bu ) SMLE Sy bo

' 0 89.14 69.59 23.98 " 61.54 36.10 0.46
.1 87.82 66.82 22.03 58.30 33.04 0.39
2 86.18 63.57 19.86 54.68 29.86 0.30
.3 84.13 59.75 17.48 50.64 26.56 0.21
4 81.50 55.22 14.92 46.10 23.15 0.13
5 78.05 49.83 12.21 40.95 19.62 0.08
.6 73.35 43.37 9.40 35.09 15.97 0.04
7 66.63 35.56 6.56 28.33 12.20 0.01
.8 56.29 26.03 3.84 20.46 8.28 0.00
9 38.41 14.32 1.46 11.16 4.22 0.00

Table 2. (Entropy loss) Percentage risk improvement of §5 in (3.10) over 6y, &g in (3.8) and
of 67; in (3.11) over 6y under entropy loss for n =5 and n = 10.

n=2>5 n =10

Estimator &4 8y &5 b7y

3 Sy bo bu Su do by
0 0.62 0.26 1.02 0.04 0.04 0.07
1 0.66 0.25 0.98 0.05 0.03 0.06
2 0.69 0.23 0.91 0.04 0.03 0.05
3 0.70 0.21 0.83 0.04 0.02 0.04
A4 0.70 0.18 0.73 0.04 0.01 0.03
Ri} 0.68 0.15 0.61 0.03 0.01 0.01
6 0.65 0.12 0.48 0.03 0.00 0.01
e 0.59 0.08 0.34 0.02 0.00 0.00
.8 0.49 0.05 0.20 0.02 0.00 0.00
9 0.33 0.02 0.08 0.01 0.00 0.00

3.3 Numerical results and some final remarks

The percentage risk improvements of the estimators &5 in (3.3), under squared error
loss, and 6§ in (3.10), &5 in (3.11), under entropy loss, over the standard ones have been
calculated using Mathematica v.3.0 for n = 5, 10 and £ = 0(.1).9 by taking without loss
of generality o = 1. The numerical study shows that the risk reduces substantially when
squared error loss is used (see Table 1). On the contrary the reduction is very small
under entropy loss (see Table 2). Observe that in the latter case 6}, improves on &y
more than 65 when £ is small whereas 65 behaves better for large ¢’s. However 6 and
6f; have similar risks and this suggests the use of 67, rather than 6§ because of its easier
calculation, especially when small correlation is suspected.

The improved estimators in Corollaries 3.1, 3.2, 3.3, and 3.4 have the ability of
pre—testing whether the nuisance parameters £ and ps equal zero. In particular, in the
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case of entropy loss the improved estimator 6;; is the maximum between the UMVU
estimator when it is known that £ = 0 and the UMVU estimator in the general case.
All these estimators are non—smooth as they are derived by Stein’s (1964) technique.
It would be nice to construct smooth improved estimators for o using, for instance,
Brewster and Zidek’s (1974) idea as Madi (1995) did in the case of independence under
an arbitrary strictly bowl—shaped loss function. Nevertheless, technical difficulties due
to the particular structure of the problem seem to make this pursuit hard to accomplish.
Notice here that the use of Brewster and Zidek’s (1974) technique (by conditioning on
T < t instead of T = t) leads to the elimination of T' from the estimation procedure.
On the other hand, an improved estimator must include T', since when £ = 1 it holds
P(T = 1) = P(S = o) = 1 and thus any estimator of the form ¢(T")S with ¢(1) = 1 (like
UMVU estimator and the improved estimators presented in this paper) has zero risk.
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