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Abstract. For a family of uniform distributions, it is shown that for any small
€ > 0 the average mean squared error (MSE) of any estimator in the interval of 8
values of length £ and centered at 6p can not be smaller than that of the midrange up
to the order o(n™2) as the size n of sample tends to infinity. The asymptotic lower
bound for the average MSE is also shown to be sharp.
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1. Introduction

Estimation of the mean 8 of the uniform distribution with known range, which may
be assumed to be equal to 1, is simple but a typical case of non-regular estimation. It is
known that the variance of the locally best unbiased estimator at any 8 = 6y is equal to
zero even when the sample size is equal to one (see, e.g. Akahira and Takeuchi (1995)),
while the best location equivariant estimator

é*zl(min X; + max Xi)

2 \1<i<n 1<i<n

has the variance equal to 1/{2(n + 1)(n + 2)} for all 8. There are several ways to
construct unbiased estimators with zero variance at a specified value 8 = 8y, but they all
have variance larger than that of 6* for other values of §, and when the size of sample is
large, even for values arbitrarily close to 8. The purpose of this paper is to show that for
any small & > 0 the average mean squared error of any estimator 6 in the interval of 6
values of length & and centered at 8 can not be smaller than that of 6*. More precisely
we shall prove that for any estimator # based on the sample of size n

Bo+e/2 .
lim lim = n’Eg[(6 — 0)*)df >

e—0n—o0 € Jgy—¢/2

B | bt

This means that in a sense asymptotically 6* can be regarded as uniformly best.
The result can be generalized to the case of estimation of the unknown location
parameter 6 with the density f(z — @), where f has the following conditions:
(i) f(z) >0 fora <z <b, f(z) =0 otherwise.
(i) limg—qqo f(z) =limy 4o f(z) = A > 0.
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(iii) f is continuously differentiable in the interval (a, b).
Indeed, it is derived from the fact that the estimator which minimizes

Oo+e/2 .
/ Eq[(6 — 0)%)do
8

0—8/2

is the Bayes estimator with respect to the uniform prior over the interval [0y — (¢/2), 6o +
(e/2)], and that is asymptotically equivalent to the one with respect to the prior over
the entire interval and asymptotically equal to the estimator 6* = (minj<i<n X; +
maxj<i<n X;)/2. The logic of the proof is nearly the same as is shown, in this paper,
from the rectangular distribution.

The related results to the above are found in Vincze (1979), Khatri (1980) and
Moéri (1983). In particular, the Mdri type inequality is shown to be derived from the
information inequality in this paper.

2. Information inequalities

Suppose that X be distributed uniformly over the interval [0 —(1/2), 60+ (1/2)]. Let
6(X) be an unbiased estimator of 8, i.e.

0+1/2
/ f(z)dz =0 forall 6eR.
0-1/2

Denote the variance of 4 by
. 0+1/2
(2.1) v(8) = Vo (6(X)) = / {6(z) — 0)2ds.

9—1/2

Now we have the following.

THEOREM 2.1. Foranyd e R

0+1/2 172 /2 1/2 1
/ o(t)dt = / o(t)dt = / (0(z) — 2)2dz + / 22dz > Vy(X) = .
0-1/2 ~1/2 —1/2 ~1/2 12

ProOF. Denote R
P(z) :=0(z) — x.
Then 9(z) is a periodic function with periodicity 1, i.e. ¢(z + 1) = ¢(z) for almost all
x. Indeed, since

0+1/2
/ Y(z)de =0 forall #eR,
0-1/2

by differentiation we have

1 1
1,/)(9‘{—5)""110(9—'—2'):0 a.e.

This shows the periodicity of ¥(z).
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Now we have

9+1/2
(2.2) () = /0_1/2 {¢(z) +z — 6}%dx

: 0+1/2 9+1/2 9+1/2
= / ¥ (x)dz + 2/ (z — 0)¢(z)dx + / (z — 6)%dz.
0

—1/2 6172 9-1/2

Since 1 is a periodic function, if we express 6 by n + p with an integer nand 0 < p < 1,
we have

0+1/2 p+1/2 1/2 p+1/2
2 _ 2 _ 2 2
(2.3) /0 ¥*(z)dx -—/ ¥*(z)dz —/ P (:v)d$+/1/2 ¥*(z)dz

—1/2 p—1/2 p—1/2

1/2 p—1/2 1/2
:/ Y2 (z)dx + / Y (z)dx = »?(z)dx
J-1/2

p—1/2 -1/2
and 9+1/2 p+1/2 p+1/2
(2.4) /0 s (ac—H)w(:c)da:—/ " (x — p)t[)(m)dz—/“l/? zp(z)dz
1/2 p+1/2
2/ mz/)(w)d:c+/ zp{x)dx
p—1/2 1/2
1/2 p—1/2
_ / z(x)de + f (@ + 1) (z)dz
p—1/2 ~1/2
1/2 p—1/2
:/ m,b(a:)dx+/ P(z)dz
-1/2 -1/2

From (2.2), (2.3) and (2.4) we have
1/2 1/2 1/2 -1/2
v(0) =v(p) = Y2 (z)dz + / ridx + 2 {/ xY(x)dx + /p w(x)dm} .
~1/2 -1/2 -1/2 -1/2

Therefore, if we can prove that

1 1/2 p—1/2
(2.5) / { / w(z)dz + / w(m)daz} dp =0,
, 0 -1/2 —-1/2
then the theorem is established. We denote
: p—1/2
(2.6) U(p) := / Y(z)dx.
Ve -1/2

Then we have ¥(0) = ¥(1) = 0, and it is shown that
1/2 1/2
(2.7) / {/1/2 zY(x) da:} dp = ‘/_1/2 zp(z)dx
1 1 1 1
= /0 ( ~ 5) W (p— 5) dp=/0 (p - 1)¥(p)dp
1
- - [ v
0
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From (2.6) and (2.7) we get (2.5). O
For estimators not necessarily unbiased, we have the following.

THEOREM 2.2. Let M(6) be the mean squared error (MSE) of an estimator 6(X)
of 8, i.e.

9+1/2
M(6) = /0 IR UCRLEE

Then for any 0y € R

1 1
Bo+e/2 — (e - -) for e>1,
(2.8) / M (6)d6 > ig 52
Oo—e/2 = _ < <
1 (1 2) for <1,

PRrROOF. We assume 8y = 0 without loss of generality. Then we have for e > 1

. pef2
(2.9) M(6)do
—e/2

e/2 0+1/2

- / do (6(z) - 6)2d
—&/2 0—-1/2
e/2 o+1/2 )

= / do {6%(x) — 200(z) + 6}dx
—e/2 6-1/2

{6%(2) — 2y6(x) }dzdy

//{(m,y)llxwld/?,0<w<(s/2)+(1/2)}
o . 3
+ / / {(6%(z) — 2yd(z)Ydudy + =
{(z)llz—yl<1/2,~(e/2)—(1/2) <z <0} 12
3
&
=: Iy + o+ ﬁ’

where

I = {6%(x) — 2y6(z)}dydz,

//{(x,y)l|Sc—y|<1/2,0<W<(€/2)+(1/2)}

I = {6%(z) — 2yb(z)} dydz.

//{(x,y)IIﬂc-yl<1/2,—(€/2)-(1/2)<$<0}

Then we have

e/2-1/2 pz+1/2 e/2+1/2 pef2 . .
(2.10) I = (/ / +/ / ) {6%(z) — 2yb(x) }dydz
0 z—1/2 e/2-1/2 Jx—1/2

e/2-1/2 R
- /0 (6°(z) — 200(x) }dz

€/2+1/2 £ 1\ . € 1 € 1\ 4
z - %) - (2 — I -z
e (G 2) F@ = (520 5) (Gromg) i) e
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e/2-1/2 £/241/2 2
—/ dex——/ l<E—aﬂ+l) (~€—+x—-l> dz
0 e/2-172 4 \2 2/ \2 2

_ 4 3_ 1,2
= 24(6 1) 48(65 8 + 3)

v

1
= E(—253 +2—1),

where the equality holds for

z for 0<ax< c_ l,
b(z) = 2 2
-1— < +2x 1 for e 1 <z< £ + 1
2 \2 2) T gTgstE3 Ty
Similarly we obtain
1
(2.11) ‘ I > @(—253 + 2 —1).

From (2.9), (2.10) and (2.11) we have the inequality (2.8) for € > 1. For ¢ < 1, we have

re/2 . .
(2.12) / M(6)do = / / {6%(x) — 200(z)}dzdo
—&/2 {(z,0)|jz—0]<1/2,|0|<e/2}
s .

— Il II i__
1T+ 75
where I} and I} denote Iy and Iy, respectively. Then we obtain
/2 pO0+1/2 .
(213) I = / / (6%(z) — 206(z)}dzdd
9-1/2

—e/2+1/2 e/2+1/2 e/ N .
- ( / / [T ) 0@ - i avas
—e/2 e/241/2Jx—1/2

—e/2+1/2 e/2+1/2 e 1
= / €0%(z)dz —/ (— —z+ —-)
0 —e/2+1/2 \2 2

1/6/2+1/2 (E 1> (5 1)2
> —= ——z+- )zt —5) dz
4/ _cpo172 \2 2 2 2
__e
48"
Similarly we have .
€
14 L > ——.
(214) e

From (2.12), (2.13) and (2.14) we get the inequality (2.8) fore < 1.0

COROLLARY 2.1. For the case when the range is equal to £ instead of 1, let My(6)
be the MSE of an estimator 0(X) of 9, i.e.

0+e/2
Mo(0) = /0 {6(z) - 6)2dz.

—e/2
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Then for any 0y € R

3
Bo+e/2 L <E2e - —) for >4,
/ My(8)do > { 12 2
é

o—¢/2 % (1 - gz) for e</¥.

OUTLINE OF THE PROOF. Let Y := X/f and ¢ := 6/¢. Then it follows that Y
is uniformly distributed on the interval [6' — (1/2),6' + (1/2)]. Letting 6} := 65/¢ and
€' :=¢/{, from Theorem 2.2 we have

63

Bo+c/2 ﬁ (% — % for e>¢

/o /2 Me(6)d0 = B reN3 €

o—¢€ - (= S <

(7)) (1-g) for exe
3
1 Pe — E_ for >/,
= 2 O

€ €
—(1- = <
12 (1 2@) for ex¢

3. Asymptotic lower bound for the average mean squared error

Now suppose that Xi,...,X, are independently, identica,lly and uniformly dis-
tributed over the interval [§ — (1/2),8 + (1/2)]. Let Y := = (Xq) + Xn))/2 and R =
Kin) — X(l), where X(;) 1= min;<;<, X; and X(n) = maxXi<i<n X;. Then it is shown
that the pair (X(1), X(n)) is a sufficient statistic, and given R, Y is uniformly distributed
over the interval [0 — {(1—R)/2},6+{(1—R)/2}]. Let § := O(X(l),X(n)) be an estimator
of 4. Define

- / 5[0 — 0)?]do
{ A 0>21R]d6}
5/2

From Corollary 2.1, we have

2 %{(1—3)25—%(1—1@3} for e>1-R,

(3.1) /Eg[(9—9)2|R]d92 23 .
—e/2 —_— e <1-—R.
12{1 2(1—R)} for e<1—-R

The density of R is given by

3.2
(3:2) 0 otherwise,

f(R):{n(n—l)R"—z(l—R) for 0<R<1,
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hence it follows that for any ¢ <1

LI |
L. 12

tn(n— 1)/01 ) fg {1 - ﬁ}m*u — R)dR

(33) J.>n(mn-1) {e(l - R)? - —(1 - R) } R™%(1 - R)dR

?

= m - —17—;—5(1 —e)" 4 i(n —1De(l —e)"
ZEnJr 3 (=)™ + 1112((72 +12)) (=)™
(n+1 mi2)n+3) 24 (1—E)n - %(n— DA -e)”
e o et
+%63(1 —g)t - E(n - 1)63(1 —e)" — %e‘l(l 3
Then we havé the following.
THEOREM 3.1. For any estimator 0 = é(X(l), X))
(3.4) %n%nzé =%n%o?;/j;%[(é_9)2}dez %

The proof is straightforwardly derived from (3.3). We also have somewhat weaker
result.

COROLLARY 3.1. For any estimator 8 = 6(X (1), X(n))

3.5 lim lim sup ———Eg 69
( ) e—04 00 |oj<e/2 € [( ) ]

MID—‘

The proof is omitted since (3.5) is easily derived from Theorem 3.1. Note that the
equalities in (3.4) and (3.5) are attained by

- 1
0% = —z-(X(l) + X(n)).
Indeed, since the probability density function of 6* is given by
n(l—2ly—60)*! for 60— L <y< 9+1,
f5:(y) = 2 2
0 otherwise,

it follows that

(3.6) Es[(6"— 0)?] = 1

2(n+1){(n+2)°
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Since J; = E/{2(n +1)(n + 2)} by (3.6), it is easily seen that

A n? 1
- lim lim n*— = lim lim =~
e=0po00 € e0po02(n+1)(n+2) 2

which implies that the equality in (3.4) is attained by 6*. Since by (3.6)

2

lim n® sup Eo[(6* - 0)] = li = =
A n® sup Bol(6" = 00] = B oY)

DO} =

the equality in (3.5) is seen to be attained by 6*.
Finally we shall show that the Mdri type inequality is easily derived from the in-
equality (3.1). Letting ¢ = £/2, we have from (3.1)

E,,[(o 6) | R]d8 > — {20(1—— )—%(1-3)3} for ¢>(1—R)/2,

hence

(3.7) | /_ c E¢[(8 - 6)?)do = EF [

> %ER [20(1 ~R)? - -;-(1 - R)3]

’ Es[(6-9)% | R] de]

-—C

for large c. Since by (3.2)

6
(n+1)(n+2)’
24
(n+1)(n+2)(n+3)’

ER[(1-R)’] =

ER{(1- R)Y| =

it follows from (3.7) that

1 [ - 1 1

20 ) FolO =001 > G — T N+ 2)nT3)

for large ¢, which implies

1
cl—l»xgo_c/ Ep[(8 - 0)° “2(n+1)(n+2)

This type inequality is given by Méri (1983).
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