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Abstract. This paper examines the construction of optimal designs when one as-
sumes a homoscedastic linear model, but the underlying model is heteroscedastic. A
criterion that takes this type of misspecification into account is formulated and an
-equivalence theorem is given. We also provide explicit optimal designs for single-
factor and multi-factor experiments under various heteroscedastic assumptions and
discuss the relationship between the D-optimal design sought here and the conven-
tional D-optimal design.
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1. Introduction

Much of the work on design problems in the statistical literature assumes the model
is known or the mean structure of the response is approximately known. The dispersion
part of the model is usually taken to be known for simplicity although in practice this
assumption is always questionable. In this work, we consider the design problem when
there is concern about the underlying heteroscedastic structure of the model and there is
belief that the mean structure is correctly specified. The optimality criterion of interest
is based on the variance of the unweighted least squares estimator under the assumption
that the true model is a member of a known class of heteroscedastic models. Additionally,
we address the related issues of finding conditions under which the optimal design for
the homoscedastic model is also optimal when there is heteroscedasticity, and conditions
under which the D-optimal designs defined in this paper coincide with the conventional
ones where the model is assumed to be completely known.

We suppose the model that best approximates the relationship between a response
variable, y, and a p x 1 vector of predictor variables, z, is heteroscedastic, i.e.,

=p7 T —1 €
(L) y=FTf@) + e

Here f(x) is a m x 1 vector of linearly independent functions of z, 3 € R™ is a vector
of unknown constants, the ¢;’s are uncorrelated errors with variance 62 and A(z,#) is an
efficiency function. The form of the efficiency function is assumed to be known apart
from the value of # and the values of £ are confined to a given compact design space x.
When A(z,8) is constant on ¥, we have the usual homoscedastic model. Atkinson and
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Cook (1995) provides a good reference to previous works on optimal design for models
with heteroscedastic errors.

If interest were strictly in estimating 3, then 6 would be a nuisance parameter. Some
analytical designs for this situation were obtained by Dette and Wong (1996) where they
assumed f(z) is a vector of monomials. Since the least squares estimate of 3 under the
heteroscedastic model requires knowledge of the nuisance parameter, which is usually
unavailable, the researcher may prefer to use the simpler homoscedastic model:

(1.2) y=B"f(2)+e

for estimating 3 while taking into account the possibility that (1.1) is the more appro-
priate model. Hence with a decision to use the unweighted estimator  under (1.2), one
needs to look at the variance of 3 under model (1.2) as the basis for the precision of this
estimate. This approach is somewhat similar to Box and Draper (1959) who introduced
this design criterion when there is model misspecification in the mean response only.
In this paper, we find optimal designs for estimating # under a corresponding criterion
when the researcher ignores the heteroscedsticity in the model.

We suppose at the outset that a total of N observations is allocated to the exper-
iment and the response at x; is y;, i = 1,2,..., N. The least squares estimate for 8 in
model (1.2) is

~ N ! N
p= [Z f(z,-)fT(zi)} [Z f(xi)yil .
i=1 i=1

Note that an attractive feature of this estimate is that it does not depend on the unknown
nuisance parameter. _

Let £ denote the design which takes n; observations at the support points z;,
i=1,2,...,n, s0 that ) ;. n; = N. It is straightforward to show that the variance-

covariance matrix of 3 under model (1.2) is proportional to
Var(B | 8) = M3 ()M (0,§) My () = V(6,6),

where
Mu(8) =Y nif@)fT(z) and MG, =3 nA\(z:,0)f(z:) 7 @).
i=1 i=1

The matrix V(8,£) will play a crucial role in the rest of the paper. In what is
to follow, we adopt Kiefer’s approach and focus on continuous designs. This means
we consider designs of the form {z;,p;}?., where we now permit each p; € (0,1) and
S h 1P = 1. The implemented design then takes approximately Np; observations at
z;, 4 = 1,2,...,n subject to the constraint ) .. ; Np; = N. Consequently, an optimal
design is determined by the number of support points (n), the location of each z; in x
and its mass p; at ¢;, i =1,2,...,n.

Section 2 discusses the determinant and the linear optimality criteria and presents
equivalence conditions for checking if a design is optimal under our setup. In Section 3,
we consider various heteroscedastic structures when the mean response is linear, and
optimal designs under the mean-squared error criterion are found. Section 4 contains
a discussion of our results and Section 5 extends some of the results in Section 2 to
multi-factor experiments.
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2. Optimality criteria and equivalence conditions

To further simplify the optimization problem, the criterion is chosen to be a convex
function to facilitate the search of the globally optimal designs. This implies that if
our criterion is ®[V(6,£)], we assume ®[V'(8,£)] is a convex function of the design &.
An optimal design is one which minimizes this function over the set Z consisting of all
designs (probability measures) on .

Let & and & be any two designs on x and let £ = (1 —a)&; + afy, where 0 < o < 1.
The following inequality (Fedorov (1972), p. 20):

My (E)M (6, €)My (€) < (1 —a)Mn(&)M~1(0,&) M1 (&)
+aMy (E2) M1 (0,&2) My (&)

ensures that ® as a function of V! is also convex. (Note that we have used the same
notation for information matrices of continuous designs.) It follows that equivalence
theorems for the optimal designs sought here can be given.

Let us first consider the determinant optimality criterion given by

@[V (8,£)] = log|V(6,8)|
= log |M(0,&)| — 21og | M11(£)-

We call a design which minimizes this criterion over the set of all designs on Z
a D-optimal design. To distinguish this D-optimal design from the conventional one,
we will refer to the latter as the standard D-optimal design. (The standard D-optimal
design is found assuming that the model (1.1) is given and # is known.) The verification
of a standard D-optimal design is straightforward and well known, see Fedorov ((1972),
p. 71) for example.

To find the D-optimal design, we first let

d,\(:l,', 5) = ’\—l(zv o)fT(z)M—l(o’ f)f(x),

and let di(z,£) = fT(z)M7'(€)f(x). Using directional derivatives considerations as
described in several design monographs, Fedorov (1972) and Pukelsheim (1993) for ex-
ample, we have the following conditions are equivalent:
(i) & minimizes log |V (8,£)| over all £ in E;

(ii) mins max, {2d;(z,&) — dx(z,£)} = max, {2d:(z,£*) — da(z,£*) )

(iii) max, {2d(x,£*) — da(z,£*)} = m, where the maxima occur at the support
points of £*.

We will apply part (iii) of the equivalence conditions to find the optimal designs in
Section 3. When x is an interval, condition (iii) above can be easily verified by means
of a graph.

Note 1. It is clear that multiplying A(z, 8) by any constant factor does not change
expressions (ii) and (iii), thus preserving these equalities which are necessary and suffi-
cient for optimality. Consequently, the optimal designs are invariant to change of scale
in the ignored true efliciency function.

Note 2. The optimal design is also invariant to nondegenerate linear transforma-
tions of f(z). Suppose ¢(z) = L~ f(z), where |L| # 0. The regression function n(z, )
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can also be written in a reparametrized form of model (1.1) as 7(z,8) = pT ¢(x) =
pT L~ f(z) where p = LT 3. The variance of the estimate for p, say p, is

Var( | §) = Var(L3 | 6) = LT Var(3| )L, ~ and
| Var(p | 6)] = |L[*| Var(8 | 6)| = |LI*|V(8,€)]-

Consequently, the design £* that minimizes |V (8,£)| is the same design that minimizes
| Var(p | 6)|-

Note 3. Condition (iii) is useful for checking whether the D-optimal design for the
homoscedastic model is also optimal under certain heteroscedastic assumptions. Recall
that £p is a standard D-optimal design for the homoscedastic model if and only if
maxzcy d1(Z,Ep) = m, see Fedorov ((1972), p. 71). Hence, in order to check whether the
standard £p is also D-optimal when the true efficiency function A(z, 8) is non-constant,
one only needs to verify whether

(21) max|[d;(z,£p) — di(z,€{p)] = 0.
zEX
It should be noted that condition (2.1) is only sufficient for optimality of {p.

Another popular design criterion is L-optimality; see for example Cook and
Nachtsheim (1982), where they applied this criterion to design a calibration experi-
ment. This criterion seeks to find a design £* such that £* = Argmingtr[AV(6,£)],
where A is a user-specified matrix. For instance, if A is the identity matrix, we seek
an optimal design to minimize the average variance of the estimated parameters. On
the other hand, if A = f(2)f(2)%, we seek a design to minimize the variance of the
estimated response at the point z. Since trace V (@, €) is a convex function with respect
to £, corresponding equivalence conditions can be similarly formulated. To do this, let
936, 3) = fT(2)M; () AV(6,€)f () and h(z, ) = fT(z)M () AM (€)f(@). The
following statements are equivalent:

(i) the optimal design £* minimizes tr[AV (8, )] over all £ in &;

(ll) mingz ma.xx[Zg(z, E) A) - A_l(zv g)h(za ‘S) - tI‘AV(o, g)] =

max[2g(z,£*, ) — A7 (z, 0)h(z, £) — trAV(8,€")];
X
(iii) max,[2g(z,£*, ) — A~ (z, 0)h(x,£)] = trAV(#,£*), with the maxima attained
at the support points of £*.
3. Examples

In this section we present examples when the assumed model is the homoscedastic
simple linear regression model:

(3.1) ¥i = Bo+ Pz +€, z€[-1,1]

but the true model is heteroscedastic. In each example, we provide the optimal design
when the known efficiency function is ignored. Thus, these optimal designs can be
viewed as robust designs under a preselected class of efficiency functions. Example 1
gives a simple set of conditions whereby our optimal designs remain optimal whether
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there is heteroscedasticity or not and also shows that a design can be D and L-optimal
simultaneously. Example 2 presents a case involving a monotonic efficiency function
where our D-optimal design is independent of the value of the nuisance parameter 6.
Example 3 shows our designs can have support points other than at the extreme ends of
the design space.

Erample 1. Suppose that the efficiency function A(z,#) is symmetric and nonde-
creasing in |z|. The standard D-optimal design, £p, for model (3.1) is equally supported
at 1 and it is easy to show that the equivalence condition (iii) in Section 2 is the same
as requiring for every z € [—1,1],

(3.2) Az, 8)[22%] < A(L,0)[1 + 3.

This inequality holds since 22? < 1 + 2 and by assumption, A(z,8) < A(1,8) for every
z € [-1,1]. Hence, {p is also optimal for the D-criterion defined in this paper. Similarly,
it can be shown that condition (2.1) from Note 3 is satisfied by £p for this case, which
leads us to the same conclusion.

Consider now the linear criterion with A = I and set £* = {p in the equivalence
condition (iii) for the L-criterion. After some algebra, we verify that we have

22711, 0)[1 + 22 — A7z, 8)[1 + 2% < 2071(1, )

for every x € [-1,1] if A(z, 6) is symmetric and nondecreasing in |z|. The above inequal-
ity also reduces to (3.2), which implies the same design is L-optimal for this problem as
well.

In this example, we verified that the standard D-optimal design is optimal under
both the log determinant and linear criteria defined in this paper whenever \(x,8) is
symmetric and nondecreasing in |z|. More generally, it is easy to see that if we have an
efficiency function with its maximum occuring at the endpoints of the design region, the
standard D-optimal design is also optimal under the determinant and linear criteria.

Ezample 2. Suppose that the efficiency function is now A(z,8) = 1/(z + 6) and

0>1.
If we use the same design £p as in Example 1, direct algebra shows that condition

(iii) for the D-criterion reduces to

0+

g (02" — 20 +0) <2

(3.3) 2(1 +z%) ~
for every x € x = [-1,1]. Since 6§ > 1, (3.3) can be equivalently written as (6 — z)(z* -
1) < 0, which is clearly true whenever |z| < 1. So, £p is D-optimal. Note that condition
(2.1) from Note 3, being only a sufficient optimality condition, is not satisfied in this
case.

Ezample 3. Suppose the efficiency function is given by A(z,6) = e~ 97" By sym-
metry, we search for the optimal design among all symmetric two-point designs of the

form
-8 8
(1)
2 2
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For these designs, condition (iii) for the D-criterion becomes
(3.4) h{z;8) <2

where h(z;6) =2(1 + —,—) — P =) (1 + —2')

Note that for any given s, equality in (3 4) is attained whenever 12 = s2. Since we
want the extrema of h(z;#) to occur at the design point s, we find s € (—1, 1) such that
the first derivative of h(x;6) is 0 at the point z = s. This gives

Oh(z;6) _

2_ .2 I2 I 2_ .2
o —~20zef® s)(1+§)+2§(2—e9<m ) =0,

(3.5)

if 82 = 29 To ensure that the maximum is attamed at z2 =2 = 9 and s? < 1, a direct
calculation shows that £ is D-optimal if s = T whenever ¢ >

Next, we observe that when s = 1, we have h(z;6) =2 + 23: — @ -1(1 + 22) in
(3.4) and h(=£1;6) = 2 for any 6. However for the inequality in (3.4) to be true for all
€ [-1,1], h(z;6) has to be decreasing at = = —1 (ie., —a%ﬁl |z=-—1< 0) and it has
to be increasing at z = 1 (i.e., % |z=1> 0). Omitting the calculus, it can be shown
that whenever § < %, h(z;6) does behave in this way. In summary, {p is D-optimal for

all efficiency functions of the form A(x; ) = e=9%" provided 6 < 1. When 6 > %, the
design with equal mass at the points {—ﬁ, ﬁ} is D-optimal.

We point out that the above D-optimal design is also the standard D-optimal design
given in Wong (1995). The same argument can be used to show the coincidence of these
two types of optimal designs for the following efficiency functions: = + 6, e~ 9 — 22,

— |x|, where 6 > 1.

4. Discussion

In the previous examples, the optimal designs sought here for the determinant cri-
terion always coincide with the standard D-optimal design. This is not always the case
as the following shows.

Consider the simple linear regression problem, where f(z) = [1,z|7 is defined on
the design region x = [—1,1] and the efficiency function is A(z,8) = 2 + cos(6x), where
6 = 4. It can be verified that the design, £};, which minimizes log |V (8,&)]| is equally
supported at 1 with |V(8,£})| = 0.5517. However, the standard D-optimal design (for
minimizing log | M (8, £)| ™!, where M(6,£) = [, A(z, 8)f(z)fT(x)¢(dx)) is:

e[ -1 0 1
D~ 104535 0.0929 0.4535 [’

with [M(8,£5)|~! = 0.5459 and no two-point D-optimal design exists. Note that for this
example, ming [M(8,£)|™! < ming [V/(9,£)] for & = 4. This implies that using ordinary
least squares estimator with the MSE-based optimal design &3 is not as efficient as using
the appropriate weighted least squares estimator and the standard D-optimal design £},
for this type of heteroscedasticity. However, when § = 2 the optimal design under both
criteria is the same; it is a two-point design with the same value for the two criteria, i.e
ming |M(6,¢)|™* = ming [V(6,£)|, assuring the same efficiency under both criteria. To
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quantify the robustness properties of the ordinary least squares estimators and standard
designs under the homoscedastic model to the presence of heteroscedasticity, the concept
of model validity introduced in Fedorov and Hackl (1997) and Fedorov et al. (1998) may
be helpful.

The following result gives a condition under which the D-optimal design defined in
this paper coincides with the standard D-optimal design for a heteroscedastic model. In
essence, it says that the two types of D-optimal designs are the same, provided that for
each criterion there exists an optimal design supported on the smallest number of points
for which the information matrix is non-singular.

THEOREM 1. Let f(z) = [fi(2), fo(T),. .., fm(®)]T and assume that the compo-
nents of f(z) are linearly independent. Suppose that the efficiency function is \(z,0)
and there ezists a m-point design &, which minimizes log |V (6,€)|. If there also ex-
ists a m-point design £}, which minimizes log|M(0,£)|7}, then & = & = & and
V(6,€%)| = [M(6,€%)| for all 6.

PROOF. Let £ be a design with support points {1, s, ...,%} and corresponding
weights {p1,p2,...,Ppm}. Let A; = A(z;,0). Then by Corollary 1 (2.3.3) of Fedorov
((1972), p. 84), it is clear that

1M©,0)1 = ][ »: [IMIFP,

=1 i=1

14,01 =[] [N'1FP  and M@l = []plFP,

i=1l i=1 i=1

where F = [f(z1), f(Z2), ..., f(Zm)] . Hence, for all 6,

V(9,8)] = 1M(6,6)l/IMu1 (&) * = 1/ I:HPiH’\ilFlz} =M (6,6
i=1

and the desired result follows.

Conditions under which a minimally-supported optimal design exists can be given
using a similar argument in Fedorov ((1972), pp. 85-87). We state one set of such
conditions here without proof:

THEOREM 2. Suppose the mean response is a polynomial of degree m, x = |a, b]
and the efficiency function is A(z,6). For fized 8, the design which minimizes
log|V'(8,€)|, is concentrated at m points if the system of functions

{1,z,22,...,22™2 A~ Yz,0), \"(z,0)z,..., A" (z,0)z?™ 2}
= {¢1(x), 92(2), ..., d202m-1)(2)}
is such that any linear combination Z?ﬁm_l)
roots in the interval x = [a,b].

c;¢i(x) has no more than 2m — 1 distinct
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5. Extensions to multi-factor experiments

In this section, we find D-optimal designs for multi-factor experiments. This is a
difficult design problem in general, especially when heteroscedastic errors are involved.
Optimal designs for the multi-factor experiments can be found from optimal designs for
each of the single factor experiment only under stringent conditions, see Lau (1988),
Rafajlowicz and Myszka (1988, 1992) and Wong (1994). Frequently, optimal designs for
multi-factor experiments are found for the Kronecker product models. These models are
built from smaller models by exploiting the nice properties of the Kronecker product
(see Eaton (1983), p. 36, for example) and are the easiest to study analytically.

It is instructive to first consider the case when two factors are involved. Suppose &;
is optimal for the problem (x;, fi(z;), Ai(:,6:)), i = 1,2 and the dimensions of fi(z;)
and fo(x2) are m; and my respectively. If fi{z1) x f2(z2) denotes the Kronecker product
of f; and f,, it is straightforward to show that the product design &; x & is D-optimal
if 2d1(x1,&1)d2(z2,£2) — di, (21,&1)dx, (T2, 82) < mymg for all 71, 72 € x1 X x2- In
particular, we have

(5.1) 2d, (21, &1)d2(x2, £2) — da, (71, €1)dr, (72, 62)
< (2di(m1,61) — di, (z1,61)) % (2da(x2,62) — di, (22,€2))
< myme

provided that either (i) d;(z;,&) > da, (i, &) for all z; € xi, ¢ = 1,2 or (ii) di(zi, &) <
dy,(z;,&) for all z; € x;,© = 1,2. Consequently, if one of these conditions holds, the
product design £&; x & is the D-optimal design for the multi-factor experiment.

Here are some examples of D-optimal designs for two-factor experiments. In each
case, we assume x; = [—1,1], fi(z:) = (1,2:)T, i = 1,2 so that fi(z1) x foz2) =
(1,1, T2,2122)T on x1 x x2 = [1,1]2. The optimality of each design can be verified
directly using inequality (5.1).

Ezample 4. Suppose the efficiency function is A(61, 82, %1, 22) = e—0181-0223  The
proposed D-optimal design is & X & where

—Si 5
(5.2) € = { 11 }
2 2

and s; = 1if 6; < § and, sy = 4 if 6; > 3,i=1,2.

Ezample 5. Consider now when the efficiency function is A(61,02,z1,z2) = (6; —
z2)(0; — r3), where 6; > 1 and 6, > 1. The D-optimal design is & x & where §; is
defined by (5.2) with s; = 1 whenever §; > 3 and s; = ,/%i when 1 < 8; < 3.

Ezample 6. Suppose the efficiency function is A(61,62,21,22) = (62 — a:g)e‘olxg,
G >1and 0< 6 < % The D-optimal design is £&; x &, where §; is defined by (5.2)

with s; =1 and, s, =1if 6, >3 and s, = /% if 1 < 6, < 3.

When there are more than two factors in an experiment, an argument similar to the
two-factor experiments can be used to construct the D-optimal design. We omit details
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and state the following result. Let x = x1 X x2 X -+- X x% and let & be D-optimal for
the design problem (x;, fi(z:), Ai(0:,2:)), ¢ = 1,2,..., k. Then the D-optimal design for
the problem (x, f1(z1) X fa(x2) X -+« X fi(zk), HLI Ai(6;, ;) is & x - - x & if and only
if 2[5, di(ei, &) — TTiy da (20, &) < Tl mi
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