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Abstract. An extension of univariate quantiles in the multivariate set-up has been
proposed and studied. The proposed approach is affine equivariant, and it is based
on an adaptive transformation retransformation procedure. Bahadur type linear
representations of the proposed quantiles are established and consequently asymptotic
distributions are also derived. As applications of these multivariate quantiles, we
develop some affine equivariant quantile contour plots which can be used to study the
geometry of the data cloud as well as the underlying probability distribution and to
detect outliers. These quantiles can also be used to construct affine invariant versions
of multivariate Q-Q plots which are useful in checking how well a given multivariate
probability distribution fits the data and for comparing the distributions of two data
sets. We illustrate these applications with some simulated and real data sets. We
also indicate a way of extending the notion of univariate L-estimates and trimmed
means in the multivariate set-up using these affine equivariant quantiles.

Key words and phrases: Bahadur representation, L-estimates, multivariate ranks,
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1. Introduction

The problem of finding out suitable analogs of quantiles for multivariate data has
a long history in statistics. Univariate quantiles are quite popular for their usefulness
in constructing useful descriptive statistics like the median, the inter-quartile range and
various measures of skewness and kurtosis. They are also used in constructing robust
L-estimates of location. As there is no inherent ordering in multidimension, extend-
ing the notion of quantiles poses a big problem. In a classic paper, Barnett (1976)
reviewed different possible techniques for ordering multivariate data (see also Plackett
(1976) and Reiss (1989)). Brown and Hettmansperger (1987, 1989) have proposed a
notion of bivariate quantiles based on Oja’s simplicial median (see Oja (1983)). Eddy
(1983, 1985) proposed an interesting approach to define multivariate quantiles using cer-
tain nested sequence of convex sets. Very recently, Chaudhuri (1996) and Koltchinskii
(1997) proposed the notion of geometric or spatial quantile which generalizes the no-
tion of spatial median that has been studied by earlier authors (see e.g. Brown (1983)
Chaudhuri (1992)). Chaudhuri (1996) indexed multivariate geometric quantiles, based
on Euclidean distances, using the elements of d-dimensional open unit ball. The corre-
sponding quantiles not only give the idea of ‘extreme’ or ‘central’ observations but also
about their orientations in the data cloud. He also presented a Bahadur type representa-
tion for the geometric quantiles and indicated various ways of extending these quantiles
to L-estimates, regression quantiles etc. Recently, Marden (1998) proposed some analogs
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of bivariate Q-Q plots based on geometric quantiles. These bivariate Q-Q plots can
be used in comparing a sample to a given population distribution and they may reveal
differences in location, scale and skewness, as well as outliers.

Whether the notion of multivariate quantiles would be based on some univariate
concept of ordering or on some vector valued concept of ranks is a debatable issue. In
many ways it seems to be a good idea to make use of the orientation information in
any version of multivariate quantile. That is the only way in which one can talk about
the ‘high points’ and the ‘low points’ in a multivariate data cloud. In a multivariate
situation an observation may have ‘high’ values in some direction but ‘low’ values in
some other direction. To capture these intrinsic geometric features of the multivariate
data cloud, it seems reasonable to index the multivariate quantiles by some multivariate
quantities, which will give us a way of measuring the closeness (or deviation) of a specific
data point to (or from) the center of the data cloud as well as its spatial orientation with
respect to the data cloud. Brown and Hettmansperger (1987, 1989) introduced a notion
of bivariate quantile which is based on their definition of multivariate ranks derived from
Oja’s criterion function (cf. Oja (1983)). The problem with their approach is that the
criterion function used by them is not ‘self-normalized’ in the sense that it is the gradient
vector of Oja loss function based on simplicial volumes and is not bounded. For certain
losses and distances, the gradient leads to ‘self-normalized’ orientation information. For
instance, the gradient vector of the function f(zy, z2, ..., z4) = |z1|+|z2|+- - - +|z4] (ie.
the ly-norm) is the coordinatewise sign vectors for which each coordinate is bounded by
1. If f(z1,%2,...,24) = (23 + 23 + -+ + 22)1/2 (i.e. the l-norm), the gradient is a unit
direction vector [see Mottonen and Oja (1995) and Méttonen et al. (1997) for the notion
of the ranks of the data points constructed using such a gradient]. The advantage of
using ‘self-normalized’ orientation information is that it becomes easy to interpret what
is ‘high’ and what is ‘low’ in a multidimensional setting.

The problem with geometric quantiles (Chaudhuri (1996), Koltchinskii (1997)) is
that they are not equivariant under arbitrary affine transformations though they are
equivariant under rotations of the data cloud. Due to lack of affine equivariance, these
geometric quantiles do not lead to any sensible estimate when the different coordinate
variables of the data-vectors are measured in different units or they have different de-
grees of statistical variations. In this paper we have used a transformation retransforma-
tion approach based on a ‘data-driven coordinate system’ (cf. Chaudhuri and Sengupta
(1993)) to construct affine equivariant estimates of multivariate quantiles. In Section 2,
we introduce the notion of l,-quantiles and a proper indexing for them. Then with the
help of transformation retransformation methodology, we extend l,-quantiles to a fam-
ily of affine equivariant multivariate quantiles and explore their basic properties with
regard to uniqueness, existence and computation. In Section 3, we discuss asymptotic
behavior of multivariate quantiles. We establish a Bahadur-type linear representation
and use it to derive asymptotic distributions of sample quantiles. In the same section,
we indicate a procedure to select a suitable ‘data-driven coordinate system’ and discuss
a few interesting results related to that. In Section 4, we present some applications of
our proposed quantiles. In particular, we discuss construction of quantile based contour
plots for distributions and indicate a procedure for multivariate generalization of Q-Q
plots and demonstrate with some simulation results and real data sets about how they
can be used in comparing a multivariate sample to a given distribution. We also con-
struct L-estimates and trimmed mean estimates for multivariate location based on these
multivariate quantiles. All the proofs are relegated to the Appendix.
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2. [,-Quantiles and transformation retransformation

It is easy to see that given any « such that 0 < @ < 1 and u = 2a — 1, the sum
S {IXs — Ql + u(X; — Q)} is minimized when Q is the sample a-th quantile based
on the real-valued observations X;’s. In this article, we generalize this concept to d-
dimensional I, spaces for 1 < p < oco. Define, the open unit ball Bz(,d) in I, space as
{u:ue R lull, < 1} where u = (u1,...,uq)T and |ull, = (JualP + -+ + |ug[P)'/?
and |jul|cc = max(|u1),...,|uq|). For 1 < p < oo, and for any u € B,Sd), t € R?, where
1/p+1/q =1 with the convention that ¢ = co when p = 1, let us define

(2.1) @, (u,t) = ||t]], + u't.

Then the l,-quantile QS’ ) (u) corresponding to u is defined as
n

2.2 ) () = arg min D,(u, X; — Q).

(22) Q) = rs in, 3 (0. X; ~Q)

Observe at this point that a vector w for which |u]|, is close to one corresponds
to an extreme quantile whereas a vector u for which |Ju|l; is close to zero corresponds
to a central quantile. Since the vector u has a direction in addition to its magnitude,
this immediately leads to a notion of directional outlyingness of a point with respect to
the center of a cloud of observations based on the geometry of the cloud. Kemperman
(1987) introduced and extensively studied a notion of median in Banach spaces. Observe
that the second term in the definition of ®,(u,t) can be viewed as a real-valued linear
functional with norm less than one. In other words, quantiles in a Banach space will be
indexed by the elements of the open unit ball around the origin in the dual Banach space
of real-valued linear functionals. This yields a generalisation of Kemperman’s (1987) idea
of median into a notion of quantiles in Banach spaces. It is also noteworthy that if we
view the d-dimensional space R? equipped with [,-norm as the dual of the Banach space
R4 equipped with [,-norm where 1/p+ 1/q = 1, our index vector u is an element of the
open unit ball in that dual space.

It is easy to observe that for 1 < p < o0, l,-quantiles are not equivariant under arbi-
trary affine transformations of the data vectors and they are not even equivariant under
orthogonal transformations unless p = 2 (for rotational equivariance in the case p = 2 see
Chaudhuri (1996)). Thus when the coordinate variables are measured in different units,
or they have different degrees of statistical variation l,-quantiles do not make much sense.
This lack of affine equivariance makes l,-quantiles very much dependent on the choice
of the coordinate system, which is not at all desirable. To resolve the problem of lack of
affine equivariance of the vector of coordinatewise medians, Chakraborty and Chaudhuri
(1996) introduced a transformation retransformation methodology. Chakraborty et al.
(1998) adopted the same methodology to develop an affine equivariant modification of
spatial median.

Let us now consider n data points X1,Xs,...,X, in R? and assume that n >
d+ 1. Let a = {io,41,...,iq} denote a subset of size (d + 1) of {1,2,...,n}. Consider
the points X;,,X;,,...,X;,, which will form a ‘data-driven coordinate system’, where
X, will determine the origin and the lines joining that origin to the remaining d data
points X;,, ..., X;, will form various coordinate axes. The d x d matrix X (a) containing
the columns X;, — X;,,...,X;, — X;, can be taken as the transformation matrix for
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transforming the remaining data points X;’s 1 < j <n, j € o to express them in terms

of the new coordinate system as Y;a) = {X(a)}71X;. If the X;’s are i.i.d. observations
with a common probability distribution that happens to be absolutely continuous w.r.t.
the Lebesgue measure on Rd, X (@) must be an invertible matrix with probability one.
To compute the u-th l,-quantile for 1 < p < oo and |jull; < 1 with 1/p+ 1/g =1 define

(X))
¥(@) = TX(@)} Tl
=0 for u=0.

lully for u#0

Let R{® (u) be the v(a)-th I,-quantile based on Yg-a)’s withl < j<mn,j¢&aas
defined in (2.2). Then define the multivariate transformation retransformation (TR)
l,-quantile QP (u) for the original data by retransforming R (u) as QP (u) =
{X(a)}RSf”p ) (u). Note that as we transform the observations in the new coordinate
system, we need to suitably modify the orientation of the index vector u. In the new
coordinate system, the vector u should be transformed to {X(a)}~'u, but it may not be
in the open unit ball Béd). To preserve the l,-norm of the vector u, we rescale {X(a)} 'u
by multiplying it with [[u|/,/|[{X(c)} 'ul,. In the transformed coordinate system, we
compute v(a)-th [,-quantile based on transformed observations and then retransform it
back to the original coordinate system. In other words,

(23) QP (u) = arg Din, D IHX (@} X = Q)lly + {p(@)} {X (@)} (X - Q)] -
i€o

We now state a Theorem demonstrating the equivariance of the TR [,-quantile under

arbitrary affine transformations of data vectors.

THEOREM 2.1. Let the d-dimensional random vectors X1,Xs,..., X, be transfo-
rmed to AX; +b,AX>+b,...,AX,, +b, where A is a d x d nonsingular matriz and
b is a vector in R®. Then for w = (llullq/|Aully)Au, the w-th TR l,-quantile based
on AX; +b,...,AX, +b is given by AQ\™" (u) + b, where QP (u) is the u-th TR
lp-quantile based on X1,X,,...,X,,.

It is easy to see that, if we take p = 2 and A happens to be an orthogonal matrix,
then Au-th quantile based on AX; +b,...,AX, + b will be given by AQ? () +b
where Q,(f"m(u) is the u-th transformation retransformation geometric quantile based on
X,,X,,...,X, (cf. Fact 2.2.1 of Chaudhuri (1996)).

It should be noted that general M-quantiles defined by Koltchinskii (1997) are not
affine equivariant in nature and we can employ this transformation retransformation
strategy to general M-quantiles also to make them affine equivariant. But we have de-
cided to restrict ourselves to [,-quantiles here mainly because in many practical situations
l1-quantiles and spatial (or I3) quantiles turn out to be adequate to explore different sta-
tistically important geometric aspects of a multivariate data cloud, some of which we
will see later. The mathematical treatment of [,-quantiles is not much different from
those of lo-quantiles and for each p > 1 the [,-norm leads to a notion of multidimen-
sional symmetry and associated symmetric probability distributions will have contours
that coincide with the balls defined by the /,-norm. The existence and uniqueness of TR
l,-quantiles are given in the following Facts.
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Fact 2.1. Consider observations X;,X5,...,X, in R? and a = {io,%1,...,%d} C
{1,2,...,n} such that the matrix X(a) as defined earlier is invertible. Then the TR [,-

quantile @ (u) exists for any given u in the open unit ball B{?, where 1/p+1/¢ = 1.
Further, for d > 2 and 1 < p < o0, it will be unique if the X’s, ¢ & « are not all carried
by a single straight line in R

Efficient algorithms for computing spatial median have been extensively studied
by Gower (1974) and Bedall and Zimmermann (1979). Chaudhuri (1996) suggested an
algorithm to compute geometric quantiles which is a minor modification of Newton-
Raphson algorithm for finding roots of multivariate equations. We now state a fact
characterizing TR [,-quantiles in terms of data points from which it is computed.

Fact 2.2. Consider X1,X3,...,X, in R and a = {io,i1,...,i4} C {1,2,...,n}
such that the matrix X(a), as defined earlier, is invertible, and QS{’”’ ) (w) is the u-th TR

l,-quantile based on these observations. If QP () # X, for all i ¢ o, we have for
l1<p<ooand1l/p+1/g=1

v[{X (@)} (X — Q5P (u))]
2.4 . e et o
Y ; {X (o)} 1X; — Q%"’P)(u))”g—l ( Jv(a)

On the other hand, if @) (u) = X; for some i & o, we will have
3 { VIX(@} X - QPP @) U(a)}
i xopoen HX(@}PH (X - QP (w5~

< (1 + (@) o) i : Xi = QU P (w), i & o},

where v[(z1,z2,...,2q4)T] = (sign(z1)|z1|P7L, ..., sign(zq)|za/P~ )T, v(a) as defined ear-
lier, and # denotes the number of elements in a set.

(2.5)

This fact implies that one can use iterative methods like Newton-Raphson type
method to compute Qﬁf”p ) () for 1 < p < co. For p = 1, l;-quantiles are nothing but
coordinatewise quantiles. Thus, after transformation, one has to compute coordinatewise
quantiles of the transformed observations and then retransform it back. This shows the
simplicity of the computation involved in TR [,-quantiles once the transformation matrix
is fixed. Both of Facts 2.1 and 2.2 follow from some minor modifications of some of the
fundamental results in Kemperman (1987) and Chaudhuri (1996), and we will skip their
proofs here.

3. Large sample properties: main results

Let us begin by introducing some notations. For any z € R? and u € B((]d), we will
write @, (u,z) = v(z)/|[z]|2~! 4+ u for  # 0 and ¢, (u,0) = u. Note that ¢,(u,z) is the
gradient or first order derivative of the function ®,(u,z) w.r.t.  when z # 0. Let ¥,(z)
denote the d x d Hessian matrix or the second order derivative of ®,(u,z) for 1 < p < 0.

So for x # 0,
v(@){v()}”

Tp(@) = (p — Dzl |Wa(z) ~ ErE
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where W,(z) is the diagonal matrix diag(|z1[P72,..., |z4/P~2). We will adopt the con-
vention that ¥,(0) = 0 = the zero matrix. Note that when p = 1, ¢, (u,z) becomes

(sign(z1), . . .,sign(z4))T +u and ¥,(z) is identically equal to 0.

3.1 Asymptotic behavior of TR l,-quantiles
Let us define QP (u) as

QP (u) = arg Zuin, E®[@,(v(a), {X(2)} 1 X - Q) — 2p(v(e), {X(a)} ' X))

where E(®) denotes the conditional expectation given the X;’s for which i € a and v(«)
is as defined in Section 2. In this Section, the observations X;’s will be assumed to be
i.i.d. observations with a common probability distribution having density h(z) on R*.
Let us define

DEP(Q) = E@{T,({X(a)} (X - Q))},
and

D7 (@) = B [{p,(v(a), {X(2)) (X — Q)}He,(0(e), {X(a)} X - @)},

THEOREM 3.1. (Bahadur type representation of TR li-quantiles) Assume that
X1,X2,...,X,,... is a sequence of i.i.d. observations with a common density h(zx).
Fiz a = {ig,i1,..-,i4} C {1,2,...,n} and the matriz X(o) and assume that the j-th
marginal g; of the density f(y) = |det{X(a)}|hH{X(a)y} is differentiable and positive at
Qf(u), where Qf (u) is the j-th element of {X ()} 1Q*V(u) fori=1,...,d. Then for
any u € R? such that |Jul|le < 1, and given the X;’s with i € a, we have

(31) QY@ - ()
="' X(a){Ds(@)} ' D {Sign[{X(a)} " {Xi - @V (w)}] +v(e)}
i€a
+Rn(u),
where Dy(a) is the diagonal matriz diag(2g Qfw)y,..., 2gd{Qf (uw)}), Sign denotes the
vector of coordinatewise signs, and as n — 0o, the remainder term R, (u) is almost surely

O(n=3/%(logn)%/4).

THEOREM 3.2. (Bahadur type representation of TR ly,-quantiles, 1 < p < 00)

Assume that X1,X2,...,Xn,... 18 a sequence of i.i.d. observations with a common
density h(z) which is bounded on every compact subset of R? withd > 2. Fiz o =
{d)

{i0,41,.--,ia} C {1,2,...,n} and the matrizc X(a). Then for any fired u € By, where

1<p<ooand 1/p+1/q =1, the expectation defining the matriz D&“"’) QP (ar)] will
exist as a finite and invertible matriz, and given the X;’s with ¢ € a, we have

(32) QW -QP(v)
_ n—lx(a)[Dﬁ"”’) QP (u))] ! Zcpp['u(a), (X(@} X - QP (u)}]
R (u), iga
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where as n — 00, R,(u) is almost surely O(logn/n) if d > 3, and when d = 2, R, (u) is
almost surely o(n=?) for any fired B such that 0 < B < 1.

It will be appropriate to note here that Chaudhuri (1996) established a Bahadur type
representation of nonequivariant /-quantiles and Koltchinskii (1997) considered general
non-equivariant multivariate M-estimators and obtained their asymptotic distributions
using empirical processes. The following Corollaries are easy consequence of the above
two Theorems.

COROLLARY 3.1. Under the assumptions of Theorem 3.1, for any fized u € R?
such that ||ul|ec < 1, the conditional distribution of ﬁ{@,(za'l)(u) — Q@D ()} given the
© X, ’s with i € o converges weakly to a d-dimensional normal distribution with zero mean
and dispersion matriz

{X(a)HD ()} [DE*P (@ (w), w|{ D ()} " {X ()}

COROLLARY 3.2. Under the assumptions of Theorem 3.2, for 1 < p < oo and
for anyu € B((,d) where 1/p + 1/q = 1, the conditional distribution of \/n{Q%™ (u) —
QP (u)} given the X;’s with i € o converges weakly to a d-dimensional normal distri-
bution with zero mean and dispersion matriz

{X(@)}DEPHQEP) ()}~ [DEPHQ P (u), u}] [DIPH{QP) ()}~ {X ()} T

It may be useful to note here that the above corollaries can be used to construct
large-sample confidence ellipsoids for Q(*P) (u), provided that we can construct a reason-
able estimate of the limiting dispersion matrix of \/ﬁ{ng"p ) (u)—Q™P ()} from the data.
For co-ordinatewise sample quantile vector, Babu and Rao (1988) discussed a consistent
method of estimating the asymptotic variance covariance matrix. We can apply the same
method to the transformed observations to estimate {Djy(a)}~![DS*(Q*V (u),u)]
{D#(a)}~! when p = 1. For p = 2, Chaudhuri (1996) discussed a simple but n~1/2
consistent estimate of the asymptotic dispersion matrix of the geometric quantiles. The
same methodology can be extended very easily to estimate the asymptotic dispersion

matrix of \/ﬁ{Q,({”p)(u) — QP (y)} for 1 < p < 0.

3.2 Selection of o

The asymptotic normal distribution of Q%a P) (u) established in the preceding section
and the form of the associated dispersion matrix clearly indicates that the performance
of the TR l,-quantiles will depend upon the choice of the transformation matrix X(a).
Hence it is important to select a suitable subset of indices a. Before we state any
formal method for selecting the transformation matrix X(a), the following Facts, which
are direct consequences of the main results in Chakraborty and Chaudhuri (1998) and
Chakraborty et al. (1998), in the special cases of [; and I TR medians will provide
some valuable insights into the problem. Let us assume that X;,X5,...,X,,... are
independent and identically distributed random variables with a common elliptically
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symmetric density |det(X)|~/2f{(z—0)TZ ! (zx—8)} where T is a d x d positive definite
matrix, § € R? and f(27z) is a density in R%.

Fact 3.1. Assume that the density function f, as defined above, is such that any
univariate marginal ¢ of the spherically symmetric density f(z”z) is differentiable and
positive at zero. Then for any given subset a of {1,2,...,n} with size d + 1 and given
the X;’s with 7 € «, the conditional asymptotic distribution of \/H{Q%a’l) (0) — 6} is
d-dimensional normal with zero mean and dispersion matrix

V(@) = o£2(I(a)} ™ {D(@)}{[T ()]} 22,

Here ¢ = {2g(0)}72, {Z71/2X(a)}! = R(e)J(a) with the rows of J(c) having unit
length and R(a) is a diagonal matrix, and D(a) is the d x d matrix whose (i,j)-th
element is (2/7)sin™! v;;, vi; being the inner product of the i-th and the j-th row of
J(a). Further, det{V(a)} > det{cX} and equality holds if J(a) = I4.

Fact 3.2. For any given subset a of {1,...,n} with size d + 1 and given the X;’s
with i € «, the conditional asymptotic distribution of \/E{an‘z)(O) — @} is d-variate
normal with zero mean and variance covariance matrix A{f, X, X(a)} that depends on
f, ¥ and the transformation matrix X(a). Here the positive definite matrix A is such
that the difference A{f,Z,A} — A{f,X,B} is non-negative definite for any f, ¥ and
any two d x d invertible matrices A and B such that BTS !B = A, where A >0 is a
constant, and I is the d x d identity matrix.

The main message communicated by these facts is that for u = 0 (i.e. in the case
of multivariate median) and p = 1 or 2, we need to choose X(a) in such a way that
{X(2)}* =X (a) becomes as close as possible to a matrix of the form A4, which is a
diagonal matrix with all diagonal entries equal. In other words, the coordinate system
represented by the matrix £~1/2X(a) should be as orthonormal as possible. It also
implies that when {X(a)}TEZ~!X(c) is chosen to be close to a diagonal matrix with all
diagonal entries equal, the asymptotic efficiency of the estimate ng"’p ) (0) becomes close
to that of the l,-median under spherically symmetric models, and it will be more efficient
than [, median in elliptically symmetric models for p =1 or 2.

Keeping in mind the fact that the above selection procedure provides “the most
efficient transformation” for the multivariate median problem, we propose to select the
transformation matrix X(a) in such a way that {X(a)}7Z"1X(a) becomes as close
as possible to a diagonal matrix with all diagonal entries equal. Here ¥ is the scatter
matrix associated with the underlying distribution of the X;’s which may not necessarily
be elliptically symmetric. If the second moments of the underlying distribution exist,
¥ can be taken to be the variance covariance matrix of that distribution. Since ¥
will be an unknown parameter in practice, we have to estimate that from the data,
and we will need an affine equivariant estimate (say i]) After obtaining 3, we will
try to choose X(a) in such a way that the eigen values of the positive definite matrix
{X(a)}TE£1X(c) becomes as equal as possible. To achieve this, our strategy will be
to minimize the ratio between the arithmetic mean and the geometric mean of the
eigenvalues. Since the arithmetic mean and the geometric mean of the eigenvalues of a
symmetric matrix can be obtained from its trace and the determinant respectively, we
do not need to compute individual eigenvalues. Instead of minimizing the ratio over all
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possible subsets o with size d+1 of {1,...,n}, one can substantially reduce the amount
of computation by stopping the search for optimal X(a) as soon as the ratio becomes
smaller than 1 + ¢, where ¢ is a preassigned small positive number. In our simulations
and data analysis, we did not observe such an approach to cause any significant change
in the statistical performance of the procedures though there was considerable gain in
the speed of computation. The algorithm leads to stable estimates with small sample
sizes even when the dimension is large.

Define now X*(a) = |det(X(@))|~/9X(a) and £* = {det(£)} /4% where ¥ is
a positive definite matrix computed from the data. Note that, the absolute values of
the determinants of the newly defined matrices X*(a) and £* are both equal to 1,
and the operation can be viewed as a way of normalizing matrices. Then to select the
optimal a according to the above mentioned criteria, we only have to minimize the
trace of {X* (2)}T£*~1X*(a). Suppose that for the subset of indices &, the trace of
{X*(a)}T 81X~ (o) is minimized, that is, & is our optimal subset of indices used to
construct the optimal transformation matrix.

THEOREM 3.3. Assume that, the random vectors X,,X,,...,X, are independent
and identically distributed with a common density h(z) which satisfies

/ {h(@)}**! dz < oo.
Rd

Further assume that &* converges in probability to a positive definite matriz £*. Then
det(X*) = 1, and trace[{X*(&)}T=*~1X*(&)]/d converges to 1 in probability as n — oco.

Clearly, the integrability condition imposed on A in this Theorem will hold if A
happens to be a bounded density on R%. In the case of elliptic symmetry with h(z) =
{det(Z)} Y2 f{(z — )TZ~'(z — 0)}, this condition translates into an integrability con-
dition on f, whlch is again trivially satisfied for any bounded spherically symmetric
density f on Re. It is interesting to note that if the second moments of the distribution
of X,’s exist, & can taken to be the usual sample variance covariance matrix and £*
will converge in probability to * where X* is the normalized version of the variance
covariance matrix of the distribution. In the case of elliptically symmetric distributions,
one can use any consistent affine equivariant estimate of the associated scale matrix ¥
upto a scalar multiple.

As an alternative affine equivariant modification of spatial median, Isogai (1985) and
Rao (1988) suggested spatial median based on observations transformed by the square
root of the usual variance covariance matrix. While transforming the data points by the
square root of the sample variance covariance matrix is a popular approach, the resulting
coordinate system does not have any simple geometric interpretation. Further, such a
transformation cannot lead to an affine equivariant modification of multivariate location
estimates which are obtained by minimizing the general /, distances for a p different
from 2, (see Chakraborty and Chaudhuri 1996), and the limitation of that approach is
primarily due to the fact that there does not exist a way to extract an affine equivariant
square root of the sample variance covariance matrix. On the other hand, observe that
in a sense our selection procedure gives an “affine equivariant estimate” of the matrix
¥1/2 which is further justified from our next result.



MULTIVARIATE QUANTILES 389

COROLLARY 3.3. Under the conditions assumed in Theorem 3.3, the matriz
X*(@){X*(&)}T converges in probability to the matriz £* as n — oo.

Our results hold for any consistent and affine equivariant estimate of ¥ (or £*) and
one can use robust estimates of scale as discussed by Davies (1987), which however are
computationally quite intensive. Note that, this ‘data-driven coordinate system’ is a
widely applicable tool for converting non-equivariant (or non-invariant) procedures into
equivariant (or invariant) procedures, which is not limited to only l,-quantiles. Besides,
it has a very nice and intuitively meaningful geometric interpretation, and an attractive
feature of this data-based transformation retransformation strategy is the clean and
elegant mathematical theory associated with the approach.

4. Applications

4.1 Quantile contour plots

In the univariate set-up the quantiles uniquely determine the population distribu-
tion, and the sample quantiles provide a fair idea about the shape of the distribution.
While exploring a multivariate data cloud, one may be interested to find out quantile
contours, which join the quantiles for which the length of the index vector u is a constant,
to get ideas about the shape of the underlying population distribution. Thus quantile
contours can be described by the sets {Q{*" (1) : |lul; = r} where 0 < r < 1. Forr =0,
it comprises of only one point—the TR [, median. In principle, quantile contours can be
constructed for any dimension d > 2, but for practical purposes, it is easier to visualize
things only for bivariate data.

It is interesting to note that, for the optimal selection of the transformation matrix
X(a), the population quantile contours corresponding to p = 2 are nothing but the
level sets of the probability density function (or, probability density contours) when
the underlying distribution is elliptically symmetric with density {det(X)}~/2f{(x —
6)TZ1(z — 8)}. The optimal selection of X({a) provides an estimate of the matrix
¥1/2 ypto a scalar multiple and premultiplying the observations by {X(a)}~! makes
the data spherical. As probability density contours characterize a distribution, the affine
equivariant TR [5-quantile contour plots can be used to measure the closeness of the data
to a specific elliptically symmetric probability distribution. Even when the underlying
probability distribution is not elliptically symmetric, Koltchinskii (1997) observed that
the spatial quantile process uniquely determines the population distribution. Vector of
coordinatewise quantiles determine the marginals of the joint multivariate distribution.
However, marginals do not uniquely determine the joint distribution. Thus TR [;-
quantile contour plots cannot be used as a tool for measuring proximity to a multivariate
distribution. Nevertheless, they can provide some insights into the geometry of the
multivariate data cloud and help in identifying possible outliers.

To illustrate quantile contour plots, we simulated 100 observations from bivariate
normal populations with zero means, unit standard deviations and varying correlation
coefficients p = 0.0,0.5 and 0.95. In Fig. 1 (a), (b) and (c), we have plotted TR [;-
quantiles for r = 0.1,0.2,...,0.9. To construct quantile contours, for each r, we have
taken 32 values of u such that ||ullcc = r and joined the corresponding quantiles. In
Fig. 1 (d), (e) and (f) we have similarly plotted TR ls-quantiles for » = 0.1,0.2,...,0.9.
For each r, we have computed quantiles corresponding to u = (rcos 8, rsin6)T where
0 = 7k/16, k = 0,1,...,31 and joined them. We notice that as the TR quantiles are
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(a) rho =0.0 (d) rho=0.0

Fig. 1. Quantile contour plot for bivariate normal.

affine equivariant, quantile contours nicely capture the shift of the distribution from
spherical symmetry to elliptical symmetry. The regions enclosed by quantile contours
can be viewed as multivariate analogs of box and whisker plots used for univariate data.

Another interesting application of these quantile contours is in detecting outliers
in the multivariate data. In multidimension, it is really difficult to detect the outliers.
Here we suggest a simple procedure. We compute the quantile contour for some r
close to 1 (the choice of r depends on the problem and the user’s preference), and if
a particular observation lies outside this contour, then we will call it an outlier. We
demonstrate the methodology in a real data set. Reaven and Miller (1979) examined the
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Fig. 2. Quantile contour plots for Overt diabetic patients.

relationship between chemical, subclinical and overt nonketotic diabetes in 145 non-obese
adult subjects. The three primary variables used in the analysis are glucose intolerance,
insulin response to oral glucose and insulin resistance. In addition, the relative weight and
fasting plasma glucose were also measured for each individual in the study conducted at
the Stanford Clinical Research Center. We have taken only 48 overt nonketotic diabetic
patients and in Fig. 2 we have shown the TR l>-quantile contours by taking two variables
at a time and r = 0.0,0.1,...,0.9. These quantile contours clearly reveal that there are
some outliers in the data set. Note that affine equivariance of the quantiles is crucial in
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outlier detection as the outlyingness of a data point should not be judged differently in
different coordinate systems.

4.2 Multivariate Ranks

In univariate set-up, the concept of ranks and quantiles are closely related. Jan and
Randles (1994) and Mottonen and Oja (1995) considered some notions of multivariate
ranks which are closely related to geometric quantiles (or l2-quantiles). Chaudhuri (1996)
suggested the d-dimensional direction vector n=1 " Xty 1 Xi—yll2 1(X; —y) as the multi-

variate rank of y € R%. We may define affine invariant notions of multivariate ranks based
on our transformation retransformation approach as follows. Consider the d-dimensional
direction vector based on lp-norm n~' 3y o {X(e)} X — )17 {X (@)} 1 (X —
y) or alternatively based on li-norm n™' 3"y .o, Sign[{X(a)}~!(X; — )], which can
be viewed as descriptive statistics that determine the geometric position of the point
y € R? with respect to the data cloud formed by the observations X;,X5,...,X, and
these lead to vector valued concepts of multivariate centered ranks corresponding to TR
l> and ly-quantiles. Similarly, from the gradient vectors of the other I,-norms, one can
construct different versions of multivariate ranks. However, it is rather easy to interpret
and geometrically visualize things for p = 1 and p = 2. Observe that the multivariate
rank vectors associated with TR l,-quantiles lie inside the unit ball Bgd) where as usual
1/p+1/q = 1. There are some attempts to construct ranks as univariate quantities
based on different data depth concepts like Tukey’s half-space depth (Tukey (1975))
and Liu’s simplicial depth (Liu (1990)), but they fail to take into account the orienta-
tion of a point in the data cloud. Univariate concepts of ranks can distinguish between
‘extreme’ points and ‘central’ points but they do not provide the information whether
the ‘extreme’ observations are ‘low’ or ‘high’ observations with respect to some specific
directions. For these limitations multivariate notions of ranks are often preferred over
univariate notions. Based on these affine invariant multivariate ranks one can construct
different rank related methodologies in multidimension extending univariate rank based
methodologies.

These affine invariant notions of multivariate ranks may be used to construct tests
for multivariate location. Chakraborty and Chaudhuri (1999) discussed affine invariant
rank tests in one sample and two sample location problems based on the I;-ranks. Similar
methods can be constructed for other l,-ranks also. This vector-valued notion of multi-
variate ranks is also useful to generalise rank regression in multi-response linear models.
Chakraborty and Chaudhuri (1997) considered a few specific cases of multivariate rank
regression using /;-ranks. In the next sub-section, we will use [,-rank vectors to construct
multivariate Q-Q plots. In fact, with the help of this notion of multivariate ranks, one
can generalise most of the rank based methodologies from the univariate set-up to the
multidimension.

4.3 Multivariate Q-Q plots

Q-Q plots are popular and useful diagnostic tools in univariate data analysis. With
their help, it is possible to assess graphically the closeness of a sample to a particular uni-
variate distribution or the closeness between two independent samples. The idea behind
Q-Q plots is to compute and plot a finite number of quantiles from the sample and cor-
responding quantiles from the comparing probability distribution or from the comparing
sample. Now we can generalize this concept to define multivariate Q-Q plots. At first, we
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Fig. 3. Bivariate Q-Q plot for Iris data.

transform the data points by {AX(a)}~! where 32 = trace[{X(a)} 1E({X(a)}T)"1]/d.
After that [,-ranks of the transformed observations are computed as discussed earlier.
As we know that these [,-rank vectors lie in Béd), and one can compute corresponding
lp-quantiles of the comparing probability distribution with scatter matrix Iy and loca-
tion parameter 0 by taking the rank of the observation as the index vector u. Then
we plot the arrows from the l,-quantiles of the given distribution to the transformed
observations. We have noted earlier that a proper selection of the transformation matrix
X(a) leads to an estimate of the scatter matrix ¥ and A~2{X(a)}'Z{[X(a)]T} ! is
expected to be close to a d-dimensional identity matrix. If these arrows are very small in
length and randomly oriented, then one may conclude that the sample does not deviate
much from the chosen probability distribution. But if most of the arrows are directed
towards a particular direction then the sample is more skewed in that direction, and if
in general arrow lengths are large then the sample obviously does not conform with the
given distribution. Marden (1998) also used a similar technique to define bivariate Q-Q
plots but they are not affine invariant in nature and thus the presence of high correla-
tions among the coordinate variables will often lead to inappropriate inference. It would
be wise to note here that the TR Q-Q plots can be constructed for any dimension d in
principle, but in practice it is not possible to visualize the plots for dimensions d > 3.
So, for dimensions greater than 3, one suggestion is to make a Q-Q plot matrix, taking
all pairs of variables. But, definitely, we lose some features of the multivariate data cloud

with this suggestion.
The TR Q-Q plots, which are affine invariant, can be used to construct tests of
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Fig. 4. Q-Q plots for comparing Overt diabetic patients and normal patients.

goodness of fit to a given multivariate distribution. There is no known good way of test-
ing in practice whether the observed data is from a specified multivariate distribution
or not. Both of the well-known x2-goodness of fit test and Kolmogorov-Smirnov test
have serious practical limitations and are not very useful for multivariate problems. We
suggest the following test procedure. At first, we make the data spherical by transform-
ing the observations by {AX(c)}~! and then subtract the l,-median of the transformed

observations from them. Let us call these observations zga”’ Vs for i ¢ a. Thus, we
have transformed observations with location parameter zero and identity as the scale
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matrix. Then we compute [ -ranks of each of these transformed observations and cor-

responding [,-quantiles of the population distribution (say, Ql(.a’p ) ’s). In the case p =2,
these population l,-quantiles can be computed using the formula given in M6ttonen et
al. (1997) for spherically symmetric distributions. After that, let us consider the statistic
TP = 2iga l|Z§a'p ) Qz(-“’p Y|, which is nothing but the sum of the length of “directed
arrows” as discussed earlier. If the observed data is close to the given distribution,
the statistic T,(f"p) should be close to zero. Thus T,(Ia’p ) can be used as a test statistic
for testing goodness of fit of a multivariate distribution. As an illustration, we have
constructed bivariate affine invariant Q-Q plots for Iris Setosa, Iris Virginica and Iris
Versicolor of the famous Fisher’s iris data using TR l3-quantiles. We have considered
only two variables sepal length and sepal width for the demonstration purpose and com-
pared them with bivariate normal distributions in Fig. 3, where the plots indicate fairly
good fits. Méttonen et al. (1997) provided a result for computing geometric quantiles of
the bivariate normal distribution, and we have used that for our calculations.

As discussed earlier, we can also construct tests of equality of the underlying distri-
bution of two multivariate samples in a similar fashion. Here we compute transformed
observations for both the samples and based on the ranks of the observations of one
sample, we compute the quantiles of the other sample and draw directed arrows. Sum
of these directed arrows provides us a test statistic for testing equality of the underlying
distribution of two samples. To illustrate the comparison between two samples using
Q-Q plots, we again used the blood sugar data example which we have used earlier to
demonstrate quantile contour plots. In Fig. 4, we construct Q-Q plots for comparing
normal patients with overt nonketotic patients by computing multivariate affine invari-
ant lo-ranks of the first sample and corresponding geometric quantiles of the transformed
observations of the second sample. We have taken two variable at a time. From these
Q-Q plots, it is quite apparent that the underlying distributions of the normal patients
and overt diabetic patients are quite different. Large arrow lengths in all the plots sug-
gest that there are possibly differences in locations and scales of the distributions and
also the arrows are oriented towards a common direction indicating possible differences
in the shapes of the distributions.

4.4 L-estimates

In the univariate set-up, linear combinations of order statistics or L-estimators have
played an extremely important role in the development of robust methods for the one
sample location problem. Serfling (1980) gave a detailed account of various important
univariate descriptive statistics (e.g. trimmed mean, inter-quartile range etc.) by for-
mulating them as L-statistics and derived their asymptotic properties. It is possible to
extend the concept of L-estimators of univariate location to a multivariate set-up using
TR l,-quantiles in a natural way. To construct L-estimators we have to form suitable

weighted averages of Q%a’p ) (u)’s as u varies over an appropriate subset of Béd). One has
to keep in mind that a u with |[u||; close to zero corresponds to a central quantile and
for a u with ||ul|, close to one corresponds to an extreme quantile.

Suppose that g is an appropriately chosen probability measure on Bc(,d) supported
on a subset S of B((,d). Then an L-estimate of multivariate location will have the form
Is Ol?) (w)u(du). Specifically, if we consider J(u), a bounded, real-valued continuous
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function defined on Bgd) , we may define L-estimate corresponding to the function J as,

(4.1) 6\>?) = J(w)Q'*P) (u)du.

B

By considering different forms of the function J(u), one can construct various in-
teresting descriptive statistics of the multivariate data cloud. One can define analogs
of trimmed mean or inter-quartile range for a multivariate set-up. In the above set-up,
if we consider S to be the [,-ball with center at the origin and radius r, where r is a
constant such that 0 < r < 1, (ie. is § = {u | u € R?, llully < r}) and the probability
measure /4 is chosen to be the uniform probability measure on S, [ O (u)pu(du) will
be a typical definition of trimmed mean by taking J(u) = (A(S)) 153 (u), where S is
the l,-ball of radius r as defined above and A(S) is the Lebesgue measure of the set S.
Thus the r-trimmed multivariate mean is given by

ala,p) —_ 1 A(a,p)
(4.2) 5 = 15 /S QP (u) du.

As the transformation retransformation l,-quantiles are equivariant under arbitrary

affine transformations, the L-estimators 9(Ja’p ) or the trimmed multivariate mean 9&%”’ )

are also affine equivariant. Some recent attempts to construct and study various ver-
sions of trimmed mean estimate of multivariate location using different ideas can be
found in Donoho and Gasko (1992), Gordaliza (1991) and Nolan (1992). Recently,
Koltchinskii (1997) showed that the geometric quantile process converges asymptotically
to a Gaussian process under some suitable conditions. Using that result, he proved the
asymptotic normality of the L-estimates based on non-equivariant geometric quantiles.
We can establish similar results for our TR [,-quantile processes and derive asymptotic
normality of affine equivariant L-estimates based on them.
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Appendix A: The proofs

ProoF OF THEOREM 2.1. As d-dimensional random vectors X7y, ..., X, are trans-
formed to AX; +b,...,AX,, +b, where A is a d X d nonsingular matrix and bis d x 1
vector, the transformation matrix X(a) gets transformed to AX (). For u € B((Id), define
w = (||lully/||Aull;)Au. Note that the index vector v(a) based on original observations
and corresponding to u is defined as [|ju||¢/||{X ()} " u||4]{X ()} lu and that based on
transformed observations and corresponding to w is given by

{AX(a)}'w {AX(a)} 1Ay

TtAK (@)}l 10 = T{aX(a)} 1A, M = ¥

v'(a) =

Also, note that the Yga)’s will be transformed to Z§"> = Yz(-a) + {AX(a)}~'b, and the
v(a)-th [,-quantile is equivariant under a location shift of the data points. Hence, the
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v(a)-th ,-quantile based on ZEQ) 's is transformed to RP (w) = R (u) +
{AX(a)}~'b. Consequently Oler) (w), the w-th TR [,-quantile based on transformed ob-
servations, which is defined as {AX(a)}R®P (w), will be equal to AQS™" () +b. Thus
the w-th TR [,-quantile based on transformed observations (AX; 4 b) is AQ®P (u) +b,
where Q%P (u) is the u-th TR [,-quantile based on original X;’s. O

Before we prove Theorem 3.1, we state an asymptotic representation of Q%l)(u),
which is the non-equivariant vector of coordinatewise sample quantiles. Consider QW (u)
as the vector of marginal quantiles of the population distribution function F.

LEMMA A.l. Let the j-th marginal distribution F; of F' be twice differentiable and
fj(le)(u)) > 0 where f; is the j-th marginal density for 1 < j < d and QY =
@ ®),...,Q ). Then

(A1) QW) — QY (u) =n"'D; IZslgn(x - QW(w) +u] + R (u),

=1

where Dy is the diagonal matriz diag(2f; (le)(u)) 2fd(Q‘(11)(u))) and asn — 0o, the
remainder term R, (u) is almost surely O(n=3/*(log n)3/ 4.

The above Lemma follows almost directly from Bahadur (1966) representation for
sample quantiles in the univariate case and thus we omit the proof of this Lemma. For
the vector of marginal quantiles, the asymptotic normality can be derived with weaker
conditions and it is studied in detail by Babu and Rao (1988).

PROOF OF THEOREM 3.1. Define the transformed observation Z\*) as Z{® =

{X(a)}~'X;. Then, given the X;’s for which ¢ € a, the transformed observations Zz(-a)’s
with 4 & «a are conditionally iid. random vectors with common density
|det{X(a)}|h{X(c)z}. The conditions of Theorem 3.1 implies that the conditions of
Lemma A.1 holds for the density of transformed data. Thus using Lemma A.1 for the

coordinatewise quantiles of transformed observations Zga)’s for1 <i<n,i¢ga we
have the representation in (3.1) for the TR I;-quantile Q,(f’l)(u). m]

Before we prove Theorem 3.2, let us prove a lemma on asymptotic representation
of non-equivariant l,-quantiles Q(p )(u) for 1 < p < oo. Let Q(p)(u) be the popula-
tion I, quantile and define the matrices D(p ) (Q) = E{¥,(X - @)} and D(p) (Qu) =
E{lp,(u, X - Q)llp,(u,X - Q)]T}. Note that, D(“J )(Q) will be positive definite unless the
distribution of X is completely supported on a straight line in R?, and the expectation
defining D§” ) (Q) will exist finitely for d > 2 whenever X has a density that is bounded
on compact subsets of R®. These facts can be verified directly.

LEMMA A.2. Assume that X,,Xs,...,X,,... is a sequence of independent and
identically distributed random vectors in R? such that their common density is bounded
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on every bounded subset of R%. Then for any fized u € B,gd), where 1 < p < oo and
1/p+1/q = 1, we have the following Bahadur type representation for the u-th l,-quantile:

(A2 QPw-QP ) = [DP QW)™ Y ¢, (u, Xi - Q) () + Ra(u),

i=1

where as n — 0o, Ry(u) is almost surely O(logn/n) if d > 3 and when d = 2, R,,(u) is
almost surely o(n=?) for any fired B such that 0 < B < 1.

PROOF. We present the proof of the lemma following arguments similar to those
used to prove the main results in Chaudhuri (1992, 1996) with suitable modifications.
We split the proof in several parts to expose the key ideas. Koltchinskii (1997) obtained
a similar representation theorem but with slower rate of convergence for the remainder
term R,(u). It follows form his result that there exists a constant K; > 0 such that we
have almost surely HQ%I’ ) (w) — QP ()|}, < K, for all n sufficiently large.

Now observe that ) 1", ¢, (u, X; — oW (u)) is bounded {ef. Kemperman (1987),
Chaudhuri (1996)] with the convention ¢, (4, 0) = u. Consequently, an easy extension of
Proposition 5.6 of Chaudhuri (1992) implies the existence of a constant K5 > 0 such that
almost surely ||QP) (u) —Q®) ()|, < Kan~'/2(logn)'/? for all n sufficiently large. Recall
here that QP (u) satisfies E [, (u, Q" (u))] = 0, and lemmas 5.3 and 5.4 of Chaudhuri
(1992) can be suitably modified to imply that the magnitude of the d-dimensional vector
Yo ¢, (4, X; — Q) will explode to infinity almost surely as n — oo, unless @ lies inside
a ball in R? with center at Q% (u) and radius of the order O(n~1/2[log n]'/?).

Let B, be the subset of R? defined as
12 for

1<i<d}.

By ={(v1,...,va) | n*v; = an integer and |v;| < Kon~'/2(logn)

For Q € R?, define
AQ) = B{p,(w. X1 - Q)} + {DPP Q™ () HQ — @) ()}
and for Q € B,,, define
A (QP (1), Q + QP (w)
_— i{%(u, X; - QP@W) - o, X: - QP(w) - @))

+E{p,(u, X1 - QP () — Q)}.

Consider a sample sequence X1,X5,...,X,,... such that, for all n sufficiently large, we
have Qi (u) ~ QP (w)|, < Ku(logn/n)'/2, and Q¥ (w) - Q;ll, < Ks(logn/n) for
some K3 > 0 and @, is a point in R? such that Q. — Q¥)(u) € B, and Q" is closest
to Qﬁlp ) (u) in l,-norm. If there are several choices for such a @, we can choose any one
of them. It is quite easy to verify (see the proof of Proposition 5.6 in Chaudhuri 1992))
that the collection of all sample sequences satisfying these requirements will form a set
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of probability one. Now, we can write

n Y 0w Xi - QP (W) = An{QP (w), @1} + % Y e X —Q) - AQ7)
=1

i=1

+D{P QP (w){Q; — QP (w)}.

Some minor modifications of the arguments used in the proof of Fact 5.8 and Lemma 5.9
in Chaudhuri (1992) implies that for a fixed constant M* > 0,

(A-3) sup 1A@)lly = O(logn/n)
1Q-Q (u)ll, <M (log n/n)/>

as n — oo, for d > 3. On the other hand for d = 2, we have

(A4) sup IA@)l; = o(n™)
1Q-Q(®) ()l <M= (log n/n)1/2

as n — oo for any constant w such that 1/2 < w < 1. We also have that for d > 3 there is
a constant K5 > 0 such that maxges, 1A(QP (1), Q+Q™ ()|, < Ks(logn/n) almost
surely for all n sufficiently large. Also, if d = 2, we have maxgeg, [[An(QP (8),Q +
Q® @)llq = o{n™*) almost surely as n — oo, where w is any constant satisfying 0 <
w < 1. On the other hand, it is quite easy to verify (cf. the inequality (6) in the proof
of proposition 5.6 in Chaudhuri (1992)) that n=! Y-, ¢, (1, X; — Q;) = O(n~ ' logn)
almost surely as n — co.

The proof of the lemma is now complete using the positive definiteness of the matrix
D&P) [Q® (u)] together with the fact that ||Q§Lp) (u) — Q%I is O(n~*) as n — oo along our
chosen sample sequence. [

PROOF OF THEOREM 3.2. Define Y\ = {X(a)} !X, for 1 < i< n, i ¢ o
Then, given the X;’s for which j € a, the transformed observations Yga)’s with { ¢
are conditionally i.i.d. random vectors with common density |det{X(a)}|h{X(a)y}. As
the density h is bounded on every bounded subset of R?, the conditions in Lemma A.2
hold for transformed observations. Using Lemma A.2 for representation of [,-quantiles of

transformed observations Y,(-a)’s, we have the representation in (3.2) for TR l;,-quantile
QP (w).o

LEMMA A.3. Assume that X1,Xa,...,X,,... are independent and identically dis-
tributed random variables with a common density h(z) such that [pa{h(z)}¢+! dz < co.
Let T be a positive definite matriz with determinant equal to 1 and & minimizes t(a) =
trace[{X*(a)} T~ 1X*(a)]/d. Then t(a) converges in probability to 1 as n — oo.

PROOF. Let A be a d x d positive definite matrix such that ' = AAT. Consider
a={1,2,...,d+ 1}. As the underlying distribution of the X;’s are independent and
identically distributed with a common density h, the joint probability density function
of X1,X5,...,X 441 can be written as Hf:ll h(z;). Now we make the following transfor-

mation of variables:

Yi=AYX:-X1),...,Ya= A (Xgp1 — X1), Va1 = A7 X,
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Then the joint density of Yy,...,Y 441 is given by

d
(A.5) h(Ayay1) H hM{A(Y; + 440}

i=1

‘Therefore, the joint density of Y;,...,Y  at the origin in R¥*? is

| anya,

which is finite and positive by the condition assumed in the statement of the Lemma.
This condition further implies that the map

d
(A6) Wot--0a) = | (A9 [ MAG, +)dy
i=1
from R¥*? to R is everywhere continuous. Therefore the joint density of Y1,...,Y

must remain bounded away from zero in a neighbourhood of 0 € R?*?. Consequently

the probability of the event that the columns of AX(a) will be nearly orthogonal and of
nearly same length (and hence {X*(a)}TI'~1X*(a) will be very close to I) is bounded
away from zero. In other words, we have for any ¢ > 0,

(A.7) PlI{X*(a)}T71X*(a) — I4)l1 < €] = pe > 0.
Let oq,0s,...,a, be disjoint subsets of {1,2,...,n} each with size d + 1 such that
kn — 00 as n — oo [e.g. k, may be equal to n/(d + 1)]. Then
Pl trace[{X*(@)} T 1X*(a) — I4)| > €]
< P[|trace[{X*(a;)} T 'X*(a;) —L4]| > ¢, for 1<j<ky
<(1-p)* -0 as n— oo

Hence, the result follows. O

PROOF OF THEOREM 3.3. For M > 1, define K3, = {a = {io,%1,...,%4} : t{a) =
trace[{X*(a)}TE*"!1X*(a)]/d < M}. Then it is easy to see that there exists some
My > 0 such that for any o € K%, trace[X*(a){X*(a)}7] < M;. Observe that, for any
a€ Ky,

X (@)} TS 71X (@) — (X (@)} =7 X" (@)llz < IX*@)IBIE" - =7,

< MIIIZAJ*—I . 2*—1”2‘

Now, since 3*—PE* as n — 00, where X* is a positive definite matrix with determinant
equal to 1, we have

(A.8) sup [[{X*(@)}T 71 X" (@) — {X*(2)}T= X ()l 5 0
€Ky,
as n — 00. Since & minimizes ¢(a), by taking X* as I" in Lemma A.3, we must have with

large probability a@ € K}, for all sufficiently large n. Therefore using the continuity of
the trace function of a matrix, we have

(A.9) (&) - t(@)| o,
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where £(a) = trace[{X*(2)}T5*1X*(a)]/d. Thus, for all sufficiently large n, (&) < M,
with large probability for some My > 0. In other words, for & which minimizes t(a), we
have £(&) < M. Therefore trace[X*(&){X*(&)}7]/d is also bounded in probability as
n — oco. This in turn ensures that |£(&) — t(&)| =P 0 as n — co.

Next, since & minimizes f(a)) and & minimizes ¢(c), it follows by some straightfor-
ward analysis that |£(6) —t(&)| < € and |£(@) —t(a)| < € will imply that |{(&) —t{a)] < €.
Hence, we have

Plii(&) — t(a@)| > €] < P[li(a) - t(&)| > €] + PllE(a) — t(&)] > €],
and consequently |£(&) — ¢(&)] —P 0 as n — oco. Finally, since
[t(&) - t(@)| < [t(&) ~ {&)| + [{(a) - @),
it follows from Lemma A.3 that t(&) converges in probability to 1. O

LEMMA A4. Let {A,} be a sequence of d x d random positive definite matrices
such that det(A,) =1 for alln > 1 and trace(A,) =P d asn — oc. Then A, —=P1; as
n — 00.

PROOF. Let the eigenvalues of the positive definite matrix A, be Ay.p < App <
-+ € Agn. Then, if we show that A, —»P 1 and Ag., —P 1 as n — oo, the proof of the
Lemma will be complete. If possible, suppose that Ag., does not converge in probability
to 1 as n — oo. Then there exists some € > 0 and § > 0 such that for infinitely many
values of n > 1, we will have

Pgn>1+¢€ >6.

Define piy, = (A1.p+- - -+ Ad—1.n)/(d—1), i.e. the average of the eigenvalues excluding the
maximum one. Then, as the product of all the eigenvalues is 1, we have by A.M.-G.M.
inequality u, > /\;,11/ (@=1) Thus we have

/\d:n + (d - l)l,l,n > ’\d:n + (d — l)Ad_:l/(d_l)

d - d
for some €; > 0 whenever Az, > 1 + €. Here ¢; depends on € and d only. Therefore
Pltrace(A,)/d > 1+ €] > PAgn > 1+€ > 6,

which contradicts the fact that trace(A,,) converges in probability to d as n — 0o. Hence,

we must have Az, =P 1 as n — oo.
As the maximum eigenvalue )4, converges to 1 and the determinant of the ma-
trix A, is 1, all other eigenvalues including the minimum one must converge to 1 in

probability as n — oo. O

>146

trace(A,)/d =

PROOF OF COROLLARY 3.3. Theorem 3.3 implies that trace[{X*(&)}7Z*~1X*(&)]
tends to d in probability as n — co. Hence, || X*(&)||2 must remain bounded in probabil-
ity as n — oo. Also, since det[{X*(&)}T=*"1X*(&)] = 1, Theorem 3.3 and Lemma A.4

imply that
{(X*(@)}T= 11X (@) B 1,
as n — oo. The proof is now complete by observing the fact
IX* (@) {X*(@)}T - "2 < |X*(@BI{X @} =X @]} ~ L. O
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