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Abstract. In the paper we consider a random linear model for observations pro-
vided by spatially located sensors measuring signals coming from one source. For this
model a set of sufficient and complete statistics are found, and it is shown that the
maximum likelihood estimators of unknown parameters (characteristics of the source)
are functions of those statistics. The problem of nonnegative estimators of variance
components of the model is shortly discussed. Comparisons of the mean squared
errors of several estimators are given. Numerical example concerning hunting for
defects in solar cells is considered in details.
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1. Introduction

Quick inspection of papers and monographs from a wide range of scientific and
engineering disciplines reveals that the so called inverse problems for spatially located
sources are recently the subject of intensive investigations (see e.g. Engl and Groetsch
(1987) for the collection of papers on inverse problems, where also other references can
be found). Roughly speaking, by the inverse problems of this class we mean attempts to
estimate various characteristics of a source, e.g., its location or intensity, from indirect
observations provided by sensors. The notion of a source is consider here in a rather
wide sense, including sources of electromagnetic or acoustic signals or noises as well as
sources of heat, mass or energy. Similarly, also the notion of a sensor is treated here
in an abstract manner, i.e., it can be any device, which indirectly provides information
concerning the sources of interest. The third ingredient, which is necessary to formulate
linear models for inverse problem with one source of signals is a vector k with components
kj, which indicates the influence of the source on the j-th sensor, j = 1,...,J (more
detailed description is given in the next section).

Let us suppose that at discrete instants of time noisy observations from a source
are available. It is also known that J sensors with given locations change its inten-
sity at random in the intervals between observations. Assume that also the influence
vector k = (k1,...,ks)" of source on sensers is given. Some remarks concerning knowl-
edge of the vector k are in order. In some cases k can be measured directly in earlier
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carefully controlled experiments, since elements k; are directly interpretable. The fol-
lowing example illustrates the other extreme, when k can be obtained from theoretical
considerations. Consider a linear distributed parameter system described by a partial
differential equation of the elliptic type with given boundary conditions. Such an equa-
tion is treated here as a model of diffusion considered in the steady state. Let us assume
that the Green function (Stakgold (1968)) of this equation is known or its numerical
approximation is available. Suppose we have a source of pollution located at a known
point z and J monitoring stations placed at z;, j = 1,2,...,J. Then as the influence
of a pollution source acting pointwise at z as measured in j-th monitoring station we
can take k; = k(z;,z). In particular, the Green function frequently met in applications
has the form: k(zj,z) = (v2ma)~! exp[—|z; — z||2/2a%], where a > 0 denotes the di-
fussion coefficient. This coefficient is usually unknown and have to be estimation from
observations or taken from standard tables. For further details concerning this system
see Rafajlowicz (1995), where the above model has been considered from the point of
view of D-optimality.

The aim of the statistician is to estimate the mean intensity and the variance of
source as well as the variance of technical errors. More precise problem statement to-
gether with references to the theory of variance components estimation is given in the
next section. Here, we concentrate on practical motivations behind estimating mean
intensity and measures of variability of the process. Possible applications include water
and air pollution monitoring systems, in which estimation of mean intensity of individ-
ual source can be used for identifying the most dangerous places of pollutants emission.
Furthermore, knowledge of variances is important in the cases, when instantaneous in-
crease of levels of toxic emission can be dangerous. Analogous situations arise, if instead
of chemical pollutants we are faced with a source of noises or vibrations in industrial
regions.

All the above mentioned examples cover the case when, usually pointwise, source
of emission is (or may be) present, while its (possible) activity is measured at several
locations. In such cases one is usually faced with a low level background emission spread
over a certain region. In our model below the background emission is taken into account
as additional errors. At least the following two questions are of interest. How to separate
variability of the source emission from variability of the background emission and how to
detect whether variability of the source is significant during the period of observations?

The paper is organized as follows. In Section 2 a statistical model is formulated.
In Section 3 formulas for sufficient and complete statistics, unbiased estimators for the
expectation of the intensivity of source and the variance components are given. It is
shown that obtained estimators are the uniformly minimum variance unbiased estimators
as functions of sufficient and complete statistics. The problem of maximum likelihood
estimation of these parameters is considered in Section 4. An explicit form of these
estimators for variance components are presented as functions of sufficient and complete
statistics. Finally results of comparisons of the mean squared errors of several estimators
of variances are presented. In Section 5 some numerical example concerning hunting for
defects in solar cells is given to illustrate applicability of the theoretical results.

2. The linear model

To introduce the model let us denote by v, the intensity of the source, and let y;
denotes the measurement provided by the j-th sensor, j = 1,2,...,J. Moreover let k;
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be the influence of the source with the unit intensity on the j-th sensor. It is assumed
that the vector k = (ky,...,ks)’, further called the unit response vector, is given. Under
these notations, the model considered in this paper has the form:

(2.1) y=vk+e,

wherey = (y1,...,vs)’, whilee = (&3, ...,£7) denotes the vector of uncorrelated random
errors having the expectations zero and the common variance 2. The intensity v is
assumed to be unobserved random variable with an unknown expectation E(v) = y and
an unknown nonnegative variance o?, while 02 is assumed to be positive. Additionally
we assume that v and ¢;’s are uncorrelated, i.e., E((v — p)e;) = 0 for each j.

Under these assumptions the expectation E(y) and the covariance matrix ¥ of y

have the form:

(22) E(y) = pk,
(2.3) Y = olkk' + a21;.

The main problem considered in this paper is to estimate the vector o = (0%,02)’ of
variance components from the independent sequence of observed vectors y(),y(2) ... y(™),
each of them having the normal distribution with the expectation and the covariance
matrix given by (2.2) and (2.3), respectively. Here y* = (y;1,%:2,...,:i7)", where Yij is
the i-th measurement provided by the j-th sensor, i =1,2,...,n.

Let Y = vec(yV,...,y™). It can be easily established that Y has a normal
distribution with

(24) E(Y) =1,® E(y) = uX,
(2.5) Cov(Y)=E=1,® % =iV + oIy,

where X = 1,0k, V = I,,®kk’, N = n-J, while for arbitrary matrices A, B the symbol
® denotes the Kronecker product of A and B. We denote this model by N (Y, uX,¥ =
0’% V+o EI N)'

3. Unbiased estimation of parameters

3.1 Some algebraic results

In this section we present some algebraic results, which are useful for further con-
siderations concerning the problem of estimation of unknown parameters in the model
N, uX,X = 03V + 02Iy). The following two propositions give some characterization
of the model, which are essential for further considerations.

PROPOSITION 3.1. In the model N(Y,uX,X = o3V + o2Iy) the following two
conditions hold

(a) PV =VP,
(b) V2 =FKkV,
where .
— ! /
P=—la1, @ kk

is the orthogonal projector on R(X).
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PROPOSITION 3.2. For an arbitrary symmetric and idempotent matriz P and for
symmetric matriz V such that V? = aV for some scalar o, the conditions

(3.1) PV =VP
and
(3.2) (MVM)? = aMVM,

are equivalent. Here M =1 — P.

PROOF. It is clear that under V2 = oV the condition (3.1) implies (3.2). Now let
V? = aV and (MVM)? = aMVM for some . Then we have

MV2M = MV (P + M)VM
= MVPVM + MVMVM = oMVM.

On the other hand MVMVM = (MVM)% = aMVM. It follows that MVPVM = 0. In
consequence MVP = PVM = 0, and since V = PVP+ MVP+ PVM + MVM we have
V=PVP+MVM and finally VP=PV. 0O

Remark 3.1. In the model N(Y, uX,E = 0}V + 021 y), following Propositions 3.1
and 3.2 we have PV = VP, and for the linear space V = sp{MV M, M} has the following
property A € V implies that also A% € V. It has been proved by Seely (1977) and also
by Zmyélony ((1981), Theorem 1) that in such a case there exist minimal sufficient and
complete statistics for the family of the normal distributions of Y.

3.2 Minimal sufficient and complete stalistics
Let y;; be the j-th component of y®. From Seely ((1977), Theorem 2.7 and Ex-
ample 2.4) we find that one of the possible representation of the minimal sufficient and

complete statistics in the model N (Y, uX, ¥ = o2V + g2Iy) are

n® k)’Y Z k'y(z) = Z Z k] Yig»

i=1 j=
1 ’
Ti = yeRY MUn @ kk)MY
2
N (—_]-)k—’k (Z kaIJ (sz]ylj) ’
i=1 i=1 j=1
T2 = 1 [YIMY TI, — 1)T1]
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Table 1. ANOVA table for the minimal sufficient and complete statistics.

Source Sum of Mean  Expected mean
of variation square d.f. square of square
between
replications (n—-1)T; n-1 T k'ko? + o2
within
replications (N—-n)T2 N-—-n T> a2
total Y'MY N-1

Moreover Ty, T» are independently distributed and

(TL - 1)T1 (N - TL)TQ

2
ENE S B} ~ XN-n
k'ko? + o2 o2 n

~ X?z—lr
The above result is presented in Table 1.

3.3 Uniformly minimum varience unbiased estimation
In the model under consideration the least squared (ANOVA) estimator j; = ﬁT
of y is the uniformly minimum variance unbiased estimator of u as a function of sufficient
and complete statistic T'. For the same reason
~2 A2 1
bcumv =Te,  Slyyv = ?c’—k(Tl —T2)

and fi163y v + f262, sy are the uniformly minimum variance unbiased estimators for
singular variances 02, 0% and for an arbitrary linear combination f,0? + fao2, respec-
tively. There are some unconveniences connected with the using of 6%;;,,,, since the
estimator can take negative values with positive probability. Several positive definite
biased estimators of o7 have been considered in literature. Gnot and Kleffe (1983) have
proposed the biased estimator of the form

.2 _ n-—1
OINN — _—(n+ l)k’le’

and proved that 63y, is admissible for o7 in the class of nonnegative estimators with
respect to the mean squared error loss function. Note that this estimator is nonnegative
definite by construction and

E@ivn) = 7 (‘71 + ﬁag)
is close to 2 if n and k'k are sufficiently large. Mathew et al. (1992) specified a sufficient
condition under which 62 has a r..iformly smaller mean squared error than unbiased
estimator 6%,y in general models with two variance components. Simulating study of
the mean squared error of 62y 5 can be found in Gnot et al. (1994).

Remark 3.2. We can also use the statistics T and T2 to construct a test for testing
H: 02 = 0 vs K: 07 > 0. Test at a significant level « reject H if F =T, /T2 excceed the
critical value F,, of a central F distribution with n — 1 and N — n degrees of freedom. It
follows from Mathew (1989) that this is the uniformly most powerful invariant test for
testing H vs K.
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4. ML estimators of variance components

We start with a looking for the maximum likelihood (ML) estimators of u and of
the variance components o7 and o2 in our model N (Y, uX,X = 02V + ¢2Iy). Following
Rao and Kleffe ((1988), p. 232, Theorem 9.2.1) or Searle et al. ((1992) p. 237) the ML
estimators of 02 and o2 are solutions of the following nonlinear equation system

(4.1) tr(E7vETlY) u(@lveTh) o1\ [Y'GVGY
' tr(T7IVETY) (TP o2 \ YGY )’

€

where
G=%1- E‘IX(X'E_lX)_1)(’8"1 = (MEM)+.

Remark 4.1. We assume that MVM #£ 0, i.e. that G# M. The assumption is
necessary to avoid trivialities and contradictions.

Generally there is no analytical expressions for the ML estimators, and some iter-
ative procedures to obtain a solution of the above nonlinear equation system are pro-
posed in the literature (cf. Searle et al. (1992), Section 8). However, since PV = VP
and V? = K'’kV (see Proposition 3.1), following Szatrowski (1980) and Szatrowski and
Miller (1980) in our model, the ML estimator of u is 4 = ﬁT, and coincides with
the ANOVA estimators, while the ML estimators of o2 and 02 can be presented in an
explicit form. It is because under the conditions V2 = k’kV we have

(4.2) vl = s$1V + solpn,
where .
1
§1=—-3 1012 e S27 35
o2(k'kot + ¢2) o2

Moreover using Proposition 3.2 we get G = (MEM)t = s MVM + soM. Thus the
equation system (4.1) reduces to the following linear one

(43) tr(V2) tr(V) \ o2\ _ [ YMVMY
' tr(V) N o2/ \ YMY |
From the above we find that
NY'MVMY — FknY MY

A9 _
(44) ML= T kRN —n)
FEY'MY — Y'MVMY
-9 _
(45) TeML = klk(N — TL)

We easily find that 62,,; and 62,,; can be expressed as functions of the minimal and
sufficient statistics as follows

. 1 n—1 .
U%MLZW( n Tl_T?)’ USML:T%
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where T'; and T3 are the minimal and sufficient statistics defined in Section 3.2. It
follows that &EA_, L coincides with the uniformly minimum variance unbiased estimator,
while 67, is biased estimator of 2, since
n—1 1
E(52 =——02— ——02.
( 1M L) n 1 nk'k €
Remark 4.2. Let us note that 62,,; is positive by construction, while 62,,, can
take negative values with positive probability. It has been shown by Gnot et al. (1997)
that if 62,,, < 0, then the ML estimators of 67 and 02 under nonnegativity restrictions
have the form 6%y,,; = 0, while

. Y'MY » J 1 [
azNMLz—N—:% Zzy?j—m DD kivis

i=1 j=1 i=1 j=1

2

coincides with the unrestricted ML estimator of o2 in the model E(y) = uk, & = 021,
i.e. in the new model, after dropping o?. For the balanced one-way random model this
problem has been considered by Searle et al. ((1992), Section 3.7).

4.1 Comparison of the mean squared errors
In this section we compare the mean squared error of the maximum likelihood

estimator

. 1 n—1
U%MLZW( - Tl—Tz)

with the variance of the uniformly minimum variance unbiased estimator
&fUMV = 75’1% (T, —T2)
and with the mean squared error of the nonnegative estimator
2 . n-—1
OINN = m
Using the results from Section 3 after straightforward calculations we find that the mean

squared errors (MSE’s) as sums of the appropriate square of biases and variances are
given by the following formulas

1 ~2 - 2 2 4 2 2
UgMSE(JlUMV) =gt (n— 1)k,kp+ (n — 1)(k'k)2 N (N —n)(k'k)?’

T.

ogMSE("lNN) S nri” Ty
1 . 2n —1 22n -1 2n—1 2
— MSE(61p1) = 2 ( )

2 P ToanE Pt e T e

o
where p = 0% /02. Since for each n > 1
2 2n—1 2
< ,
n+1 n? n—1
we find that 6%, is uniformly better than 62;,,,,, with respect to the mean squared

error loss function. Let us however note that both risks are very close each to other if n
is sufficiently large.
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5. Numerical example-hunting for defects in solar cells

5.1 Description of the experiment

To illustrate potential applicability of the results we consider searching for defects
in semiconductor devices. Our real-life data come from measurements of a solar cell, but
the approach seems to be applicable to other types of semiconductor devices.

A solar cell performs well if there are no defects in its internal structure i.e., if donors
and acceptors are uniformly spread over areas that they should occupy. A possible defect
can be detected by passing various types of electrical signals through a device at hand
and registrating the temperature distributions arising at its surface. It is expected that
defective parts of the semiconductor responded to various input signals by the local
temperature variability, which is larger than those generated by nondefective parts of
the semiconductor. Defetive parts can also have locally higher temperature and for this
reason they are called “hot spots”. This can be explained by the fact that nonuniform
distribution of donors and/or acceptors lead to local changes of the resistance, leading
to changes in the heat generation.

The experiment was performed as follows:

1. Measurements of the surface temperature of the cell were made at nodes of a
rectangular grid with coordinates denoted further as (j;A1,7242) 1 =1,2,...,01, ja =
1,2,...,J2 or numbered in the lexicographical order as j =1,2,...,J, J=J; - Jo.

2. Possible locations of the heat source are restricted to the nodes of the above
mentioned grid.

3. At most one hot spot (heat source) is present in the cell and, if it is present, its
position, denoted by (5§ A1, j3A2), does not change between all the series of measure-

ments.

5.2 Assumptions about the model and numerical results

The following two assumptions were made in order to simplify the problem:

1. The time between subsequent changes of input signals (currents) was sufficiently
large that the steady state temperature distribution over the cell surface was attained.
The assumption is necessary to be sure the y(!), 4 .. (™ are independent (see Sec-
tion 2).

2. The response kj, j, at grid point (141, j242) for the unit source at (A1, j3A2)
has the following form:

(5.1) ki, j2 = exp[—c((j1 — 5)AT + (J2 — 33)A3)],

where coeflicient ¢ is a constant, which is treated as given. In the example below we
used ¢ = 1074 (in fact, value of ¢ was taken from observations). Rearranging (5.1) for
i =12...,Ji, j2 = 1,2,...,J2 in the lexicographical order we form vector k (for
details see Stakgold (1968)).

Under these assumptions each series y*), i = 1,2,...,n can be interpreted as the
measurements of the temperature surface, which depends only on the two spatial coordi-
nates, and we can assume, that 3,4 ... 4™ are normally distributed independent
random vectors. The expectation and the covariance matrix of Y = vec(y(V),...,y™)
are assumed to have the forms given by (2.4) and (2.5).

In the numerical example N = 5616 observations of a cell were made and digitally
recorded. Observations were arranged into n = 117 series as follows: each series were
measured on 6 x 8 grid, i.e., J1 = 6, Jo = 8, J = 48, with the step sizes A; = 12,
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Fig. 1. Empirical means +3 empirical dispersions at linearly ordered measurement points.

Table 2. Estimates of o1 and o, for different possible positions of the heat source. * replaces
negative values of the corresponding &f (values of the order —10~5 were found).

Case Position b UMV = 0eML OCiUMV  Oi1ML F
(40,48) 0.836 0.076 0.0077 0.0076 1.42
2 (56,36) 0.861 0.098 * * 0.87
(56, 60) 0.88 0.069 0.0078 0.0078 1.47

Ay = 8, respectively, measured in a conventional units dictated by the measuring device.
Before actual data processing, observations were normalized to (0, 1] interval, i.e., each
observation was divided by the constant maximal range of the measuring device.

A rough overview of the collected observations is provided by Fig. 1, which the
grid points are arranged linearly and for each of them the empirical mean +3 empirical
dispersion are shown.

During the experiment it was not sure, whether a heat source is present in the cell.
In the case of its presence, its position was not known precisely, but the following grid
points (coordinates in the conventional units) (40, 48), (56, 36), (56, 60) are suspected to
be “hot spots”. For each of the above mentioned points the variance componenets were
estimated as if only one heat source had been active. Simultaneously, the F-statistic was
used to verify the hypothesis that the source variance at a given point is zero, i.e., the
source is not present there.

For comparisons, the variance components were calculated not only by the maximum
likelihood estimates, but also by all other methods mentioned in the paper. The results
of calculations, using the Mathematica system, are summarized in Table 2. _

Calculated values of F-statistic were compared with the critical value 1.227, cor-
responding to a = 0.05. The hypothesis ¢7 = 0 is not rejected only in case 2, what
suggests the presence of the hot spot at point (56, 36).
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