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Abstract. Based on shrinkage and preliminary test rules, various estimators are
proposed for estimation of several intraclass correlation coefficients when indepen-
dent samples are drawn from multivariate normal populations. It is demonstrated
that the James-Stein type estimators are asymptotically superior to the usual esti-
mators. Furthermore, it is also indicated through asymptotic results that none of the
preliminary test and shrinkage estimators dominate each other, though they perform
relatively well as compared to the classical estimator. The relative dominance picture
of the estimators is presented. A Monte Carlo study is performed to appraise the
properties of the proposed estimators for small samples.
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1. Introduction

Let X ngl) be a random vector, which has multivariate normal distribution with

mean vector uggxl) = (w,- .., )" and covariance matrix

2l(pxp) = 012[(1 - pl)Il + pzlllf]

where Iy is the identity matrix and 1;, ., = (1,...,1)', I = 1,...,¢q. Then the
covariance matrix X; is said to have an intraclass correlation structure. The problem of
interest here is to estimate p; when we have the uncertain prior information in the form
of the null hypothesis ‘

(1.1) Hy:p1r=p2=-=pg=p,

where p is unspecified.
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The intraclass correlation coefficient is used to measure the degree of resemblance
between siblings concerning a certain characteristic, such as blood pressure, stature,
body weight or lung capacity and has been studied by a host of researchers. Kapata
(1993) has studied hypothesis testing concerning a constant intraclass correlation for
families of varying size. Donner (1986) has provided a comprehensive review for the
inference procedure in the one-way random effect model.

Thus, the problem of estimating the correlation parameter frequently arises in many
medical and bio-statistical applications. Suppose that the researcher has collected data
from different (say q) research stations of similar conditions. The researcher is interested
in estimating the p; simultaneously on the basis of ¢ random samples and has reason to
believe that all the population correlation values may be equal. In the present investi-
gation, we propose and examine the properties of the unrestricted estimator (UE), the
pooled estimator (PE), the preliminary-test estimator (PTE) and the James-Stein rule
or shrinkage estimator (SE) using the asymptotic distributional quadratic risk (ADR)
measure.

Useful discussions of some of the implications of the estimators’ parametric theory
are given by Judge and Bock (1978) and Ahmed (1992a), for example. More generally,
these estimators abound in a wide range of statistical applications, as evidenced by the
bibliographies of Bancroft and Han (1977) and Han et al. (1988). For asymptotic results
on the subject see to Ahmed (1991, 1992b) and Gupta et al. (1989). For an excellent
review of the shrinkage estimators, readers are referred to Stigler (1990).

2. Proposed estimators

o
p-variate norma.l distribution with mean vector p; = (py, ..., )" and covariance matrix

33, where X; has an intraclass correlation structure. Then for the full model, the UE of
p, is defined as

Let X(l) (X(l) XI(,?), i=1,2,...,n; be a random sample of size n; from a

_ Tl S (@) — 2l - 3)

(2.1) : . I=1,2...,q
(p-1) X, T2 (af) — )2
where 7; = me pIyd 5 L yl) Further, we introduce the following well-known trans-
formation:
-1 1 -1
(22) o = (=1, < +(p )p:) ’
2p 1-p
where In means logarithm to the base e. To construct the UE of p* = (pf,p3,...,0;);
we replace unknown p; with its empirical estimate. This yields, p* = (51,5, -, ;)
A (-1, (1+@-n
2.3 = 1 1=1,2,...
( ) pl 2p n 1 _ 'rl ) H ) ’q’

where 7, is the UE of p; given in (2.1). Fisher ((1958), Chapter 7) showed that the
transformation (2.3) is a variance stabilizing transformation for any value of p and follows
an approximately normal distribution with mean p; and variance (n =y However, the
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normal approximation becomes poorer as the value of p increases. To overcome this
difficulty Konishi (1985) proposed the following transformation

7—5
(2.4) o= pr - —

18p(p - 1)
To construct the UE of @ = (64,0, ...,6;)’, we replace unknown parameters with their
empirical estimates in (2.4) and denote them by 6Y = (87, éf{ e ens 0;] ’. This yields,

U - (7-5p)
(2.5) elU =p — )
niy/18p(p — 1)
(7-5p)

which follows an approximately normal distribution with mean 6, = pj — — =22
n14/18p(p—1)

and variance 7‘1_—2 In this case, the bias of ; is of order n% So if this is unimportant
and negligible, the test for the equality of q intraclass correlations under consideration is

equivalent to a test of the equality of the values of ;. The hypothesis Hy: p; = --- = p;
is therefore equivalent to
(26) H0:91=--'=91.

In this case a reasonable estimate of the common intraclass correlation coefficient is
13 q
AP AP 4P AP AU
(2.7) OP = (6P,... 87y, 6P = E;(nz -2)67, n= ;(m -2),

which we call the PE (Elston (1975)). Generally speaking, the PE yields smaller asymp-
totic risk at and near the null hypothesis at the expense of poorer performance in the rest
of the parameter space, where its risk is unbounded. In order to avoid this undesirable
property of the PE, it is natural to develop an estimator which is a combination of ()U
and BP by performing a preliminary test on the null hypothesis. This methodology was
proposed by Bancroft (1944). Thus, we define the PTE, GP T — (§PT ...,9(1; Ty, such
that

(2.8) OFT = 8YVI(D,, > dno) + 6L I(D, < d, o),

where I(A) is an indicator function of a set A and

2.9 n=n(BY — 6 Y — 67,
D 6Y — oY A(QY - 6F
with ( 2)
. n —
(2.10) A =Diag(\), An, = —’T—

Thus, for a given level of significance «, (0 < a < 1), let dy o be the upper (100a)%
critical value using the distribution of D,, under Hy. Furthermore, under the null hy-
pothesis, the distance statistic D, follows the central chi-square distribution with (g—1)
degrees of freedom as n — oo in such a way that A,, — A; € (0,1) (Konishi and Gupta,
(1989)).

The PTE (conditional on the value of &) is a convex combination of the UE and PE,
formed using a test-statistic of the Hg, (2.6), and has bounded quadratic risk. Although,
the PTE has bounded risk, it is sensitive to departures from Hy, (irrespective of the
value of a), so may not be adequate for all values of 8. To overcome this shortcoming,
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we combine the James-Stein (1961) approach with pre-test rules, and propose the SE.
The SE resembles the James and Stein rule estimator (James and Stein (1961)), which
performs well over the entire parameter space 8 € Q relative to 8Y. We propose the SE,
05 = (Of,...,Bf)', as follows:

(2.11) 0y =65 + {1 (- 3)D;"}B, - 8]), g4

In the next section, we obtain expressions for the asymptotic biases and risks of these
estimators (UE, PE, PTE and SE).

3. Main results

In this article, we shall study the properties of the proposed estimators in an asymp-
totic setting, using a quadratic loss function. Let 8, be an estimator of & and W be a
positive semi-definite matrix. Consider the quadratic loss function

(3.1) L(6%,8) = n(6", — 6)W(6’, — 6).
Then, the quadratic risk for @, is given by

(3-2) R(6,0) = nE{(6;, — 6)W(6;, - 0)}
ntrace(W{E(8;, — 8)(8,, — 6)'}].

Further, 8, will be termed an inadmissible estimator of @ if there exists an alternative
estimator @7, such that

(3.3) R(6;,0) < R(0,,0) forall 8,
with strict inequality for some . If, instead of (3.3) holding for every n, we have

(3.4) lim R(6;,0) < lim R(#,,0) forall 6,
n—00 n—oo

with strict inequality for some 8, then @}, is termed an asymptotically inadmissible es-
timator of 8. However, the expression in (3.4) is usually difficult to obtain, hence we
consider the asymptotic distributional risk (ADR) for a sequence {K(,)} of local alter-
natives

é
(3.5) K(n) :80=0,, where 6, =601, + ﬁ’

where & is a fixed real vector and 1, = (1,..., 1)". Note that § = O implies 8, = pl,
so (2.6) is a particular case of {K(n)}. The asymptotic distribution function (ADF) of

{+/n(8;, — 8)} is given by
(3.6) G(y) = lim P{vn(6; - 6) <y},

where @} is any estimator of  for which the limit in (3.6) exists. Also, let

(3.7) o= [[ - [wacw.
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Then, the ADR is defined by
(3.8) ADR(8;,;60) = trace(WQ).

In an effort to compute the ADR of UE, PE, PTE and SE, we first note that (2.8)
can be rewritten in the following form 6} = 6 — (6% — 65)I(D,, < dy o). Thus, in
the case of fized alternatives,

(3.9) n(67" —8YYW(H]T — 8Y) = n(6Y - 65 YW (0Y — 6F)I(Dy, < dn,a)
n(0y — 6 YW (6Y — 67)
n(8Y — 6F)' A(8Y - 6F)
< {DnI(Dy < dn o) }chmax(WA™)

< {DpI(Dy < dpo)} trace(WA™)

= DpI(Dp < dna)

where chyax(A) is the largest characteristic root of the matrix A. Also, for 8 ¢ Hy,
E{D,I(Dy < dna)} < dnof{P(Dn, < dna)}. But the test statistic D, is consistent,
hence E{D,I(D, < dna)} — 0 as n — oco. Thus, for fixed 6, (}f{ and 95T have the
same (bounded) risk, asymptotically.

For 65 we note that

(310) (07 - O1)YW(6 - 67) = (¢—3)°D;*{n(8Y - 6FYW(8Y - 6F)}
< (g-3)*{n(8 - 6% YW(6; - 67)}
{chmax(WA™1)}2.
In addition, on the set {D,, = 0}, we have 85 = 8V = 62T For 0 ¢ Hy,
E{D;'I(D, >0} -0 as n— oo.

In other words, 95 and 9,’{ become asymptotically risk equivalent for every 8 not in Hy.
The arguments are similar to Gupta et al. (1989), hence we omit the details.
Finally, for any 8 ¢ Hoy, (8F — 6) 3 ¢(# 0), and

n(0F — 0)W(BF —6) B 400, as n— 0.

The asymptotic risk of 95 , for any @ € Hy, approaches +o0o. However, the asymptotic
risk of 8 is bounded for every 8 € Q. The following theorem summarizes the results.

THEOREM 3.1. When @ ¢ H,, 95 has asymptotic risk of +oo, while é,sl, éfT and
8 have the same finite asymptotic risk.

To study the ADB and ADR of the estimators, we consider the Pitman alternatives
]
(311) K(n) :9n=91q+ﬁ.

Given the following lemmas:

LEMMA 3.1. X, =+/n(0Y — 0) ~ N,(6,A71).
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LEMMA 3.2. Y, = /n(6Y — 8Z), ~ Ny(B,A™'H'), where
B=Hs6 H=II,-JA, J=1,1,

LEMMA 3.3. Z, = /r(0F — 8) ~ N,(0,J), here we assume that X'6 = 0, where
X = (A1,..., ), where we note in passing that Y, = VnHBY | the foregoing results can
be summarised in the following theorem.

THEOREM 3.2.

(3.12) G,(:) ~ Nag { (Z) (I;\A_‘ll AA_‘I{Z’)} ’

023 () ~mf () (7w}

Under the conditions in Theorem 3.2, we can state the following theorem, describing
the asymptotic behaviour of the test statistic, Dy,.

THEOREM 3.3. The test statistic, D,, = n(@, — 8FY A8, — 8F), is distributed
asymptotically as a non-central chi-square random variable with (g—1) degrees of freedom
and non-centrality parameter A = 3'AB. Thus, under the null hypothesis and for large
n, D,, closely follows the central chi-square distribution with (g — 1) degrees of freedom.
For given a, the critical value of D, may be approzrimated by xg_l’a, the upper (1000)%
point of the chi-square distribution with (¢ — 1) degrees of freedom.

Under local alternatives, and by virtue of the results in Theorems 3.2-3.3, we arrive
at expressions for the ADB and ADR of UE, PE, PTE and SE. These are summarised
in Theorems 3.4 and 3.5 respectively. '

THEOREM 3.4.

(3.14) ADB(8Y) = lim E{vn(67 - 8)} =0,

(3.15) ADB(6]) = lim E{Vn(67 - 6)} = -B,

(3.16) ADB(BET) = lim E{Vn(6T - 0)} = —BHy41(Xg-16:A);
(3.17) ADB(®?) = lim E{vn(67 - 0)} = —(a - 3BE(1 (A)).

PROOF. (3.16) and (3.17) are derived using straightforward computations following
the same arguments in Section 4.3 of Judge and Bock (1978) (and the details are therefore
omitted here). Moreover, the derivation of these formulae are similar to the case treated

in Gupta et al. (1989).

The equations in Theorem 3.4 reveal that all estimators are biased except 9,({ which
is asymptotically unbiased. However, the biases of OFT and 65 are bounded in A. In

addition, they are asymptotically unbiased (in sense of A) but éf is not.
Equations (3.18)-(3.21) below provide expressions for the ADR of the estimators:
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THEOREM 3.5.

(3.18) ADR(Y, ) = trace(WA™!),
(3.19) ADR(6],0) = trace(WJ) + A,,, A, =B'WS,
(3.20) ADR(6%T,0) = trace(WA™") — trace(WC)Hyy1(X3_1 03 D)

+ Au{2Hg+1(X-1,05 ) — Hyra(X2-1,00A)},
where C = A~ — J,
(3.21) ADR(87,6) = trace(WA™) + Ay (g — 3)(q + D) E(x (D))
—(g - 3) trace(WO){2E(x ;{1 (A)) - (a4 = 3) E(xg1 ()},

PROOF. (3.18) and (3.19) are straightforward. The representations given by (3.20)
and (3.21) are obtained by using the same arguments and corresponding computations
as detailed in Section 4.3 of Judge and Bock (1978).

In order to make risk analysis more meaningful, we consider the special case where
W = A, and hence A, = A. The expressions in (3.18)~(3.21) then reduce to:

COROLLARY 3.1.

(3.22) ADR(8Y,6) = q

(3.23) ADRBFY 0)=1+A

(3.24) ADR(B]7,0) = q— (¢ — V) Hor1(x3_1 03 A)

(3.25) +A{2Hg11(X5-1,0: A) — Hors(X2_1 4 )},

ADR(67,6) = q+ A(g - 3)(g + D) E(x;14(A))
—a(g = ){2E(x;21(A)) — (g - 3)E(x (M)}

In the next section, we investigate the relative ADR properties of the proposed
estimators.

4. Risk analysis for various estimators

In this section, we consider the special case where W = A. In this framework, we
investigate the risk functions of the various estimators, to determine their dominance

characteristics. R R
First, we note that 8% has a constant risk while the risk of 6F becomes unbounded

as A moves away from 0 crossing the risk of 9,({ . Furthermore, we note that
(4.1) ADR(8F:0) < ADR(6Y;6) if A<gq-1.

Thus, éf dominates 6 in the interval [0,q — 1]. Clearly, when A moves away from H,
beyond the value (g — 1), the risk of 95 increases and becomes unbounded.

Combining éfl’ and 95 yields @,’f T, as described earlier. The risk of 95 T is bounded
in A, beginning at an initial value of [g ~ (¢ — 1)Hg11(x2_; 4;0)]. Then, as A deviates
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from 0, the risk function of 827 monotonically approaches the risk of 8Y after first
crossing the rigk function of 9,({ and achieving a maximum value. The specific behaviour
of @FT in these respects depends on the value of a.

Using (3.23) and (3.24), the ADR expressions for 9,}: and 95 T respectively, it can
be shown that

ADR(6FT; 0
ADR(OP,8) ~
A< (¢ — {1 - Hyra(X5-1,0: )}

T 1-2Ha(x2_, 5 4) + Hoy3(X5-1,008)

if

Thus, 88T dominates 8% if

A€

(g— {1 - Hy1(X3_1,4:A)}
"1-2Hg4 (Xg—l,a;A) + Hq+3(X§—1,a; A)

Using (3.22) and (3.24), the ADR expressions for 9,’{ and é,’: T respectively, it can
be seen that
ADR(6ET;0) < ADR(6Y;0) if

(42) A< (q_ 1) q+1(Xq la;A)
B 2‘H<1+1(Xq 1, aiA) q+3(Xq 1, a*A)

Thus, 827 dominates Y for some values of A, but the reverse is true for other values of
A. As a partial check, when a — 0, then 877 dominates @Y in the interval [0, (g — 1)).
The above discussions, allows us to conclude that none of the three estimators, or,
GU and BP T asymptotically dominates the other two. Finally, therefore, we consider
ADR comparisons of 85 with the above three estimators.
For 85 and Y, it can be seen from the expressions (3.22) and (3.25) that

HSs.

(4.3) ADR(61:6) _;  gran 4,
ADR(8Y;6)
with strict inequality holding for some A. The largest gain in risk is achieved near the
null hypothesis. Therefore, the risk of 95 is smaller than the risk of GU in the entire
parameter space, and the upper limit for the former is attained when A — 00. This
clearly indicates the asymptotic inferiority of HU to 65 under local alternatives. More
specifically, the risk of 95 begins at an initial value of 3, and increases monotonically
towards g as A moves away from 0. Once again, note that for the dominance of BS over
9,({, we require g > 4.

We next consider a comparison of the ADR performances of 65 versus @F under Ho.
Using the respective expressions for the ADR of these estimators in (3.23) and (3.25),
after simplification we have

(4.4) ADR(85,6) — ADR(H%,0) = 2.
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Table 1. The values of AT at selected values of g.

q 4 5 6 7 8 9 10 11 12 13 14
At 260 3.04 352 395 425 476 485 521 540 574 6.02
q 15 16 17 18 19 20 25 30 35 40 50
At 630 656 6.72 696 7.15 7.43 833 9.02 102 10.6 109

Thus, the risk of 9,’1’ is substantially smaller than the risk of 975; when the null hypothesis
is true. As A increases, then E(Xq__f1 (A)) decreases, so the opposite conclusion holds.

In general, 5 does not dominate 6% for A in the interval [0, AT), where

_ (¢ - D[ - (- 3){E(x;1(A) + AE(x (AN}
{1-(g-3)(g+1)E(x; (D)} '

(4.5) At

Alternatively, when A deviates from the null hypothesis beyond A*, then 9;? domi-
nates 95 in the rest of the parameter space. Hence, neither 9;‘;' nor @,’f asymptotically
dominates the other under local alternatives.

From a practical point of view, it is of interest to investigate numerically potential
values of A*, and hence the size of the interval [A*, 0c0). This will provide a motivation
for using 9;2' over the pooled estimator when conditions are appropriate. We first observe
that AT is function of ¢ and A. Thus, for given values of ¢, we can calculate the implied
values of A*. Table 1 provides the values of A for various values of q.

Table 1 therefore indicates the appropriate estimator a researcher might employ on
the basis of its ADR properties, depending on the magnitude of anticipated deviations
from Hy. To motivate this idea further, we provide the following discussion, based on
the use of actual data, collected in a series of Family Expenditure Surveys by Statistics
Canada.

Hllustrative Frample

We consider the case of expenditures on food by households in Canada, and how
these are intra-correlated across different regions of the country. Family Expenditure
Surveys (FAMEX) have been carried out by Statistics Canada for the years 1969, 1974,
1978, 1982, 1984, 1986, 1990, 1992 and 1996. Researchers might be interested in how
the intra-correllation for food in the country varies across time. This can be explored
using data from the different FAMEX survey years.

Clearly, expenditures on food are influenced by a number of factors, including house-
hold size, housing tenure status (renters versus home owners), amongst other things.
There is, however, less likely to be variation in household food expenditures across re-
gions. In a typical FAMEX data set, Statistics Canada divides the country into five
regions: Atlantic Provinces (Prince Edward Island, New Brunswick, Newfoundland and
Nova Scotia), Québec, Ontario, Prairie Provinces (Alberta, Manitoba and Saskatchewan)
and British Columbia. In the context of the notation in this paper, we thus let p = 5 be
the number of regions. We can then think of random drawings of households of particular
types from a multivariate Normal distribution, with p = 5.

For the purposes of this example, we confine our attention to married-couple house-
holds living in owned accommodation. There is substantial empirical evidence that
spending patterns by household size and housing tenure are statistically significantly
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different. See Barnes and Gillingham (1984) and Nicol (1989), for example. Given
households of this type, the aim is then to determine the intraclass correlation coeffi-
cients in different years for which data are available. We focus on five survey years: 1978,
1982, 1986, 1990 and 1992, thus implying ¢ = 5 in the notation above.

Food expenditures by households of the type described above were drawn at random
from each of the five surveys. The total sample size in each FAMEX survey is different,
hence we obtain sub-samples of different sizes for each year as follows: 1978, n; = 45;
1982, ny = 65; 1986, n3 = 55; 1990, n4 = 20; and 1992, ns = 30.

Using the foregoing data, 8V and 6 were computed with the following results

(4.6) 8Y = [0.199, —0.060,0.114, —0.018, —0.365]'
(4.7) #F = [0.001,0.001,0.001,0.001, 0.001]'.

Based on these estimates, one can calculate the test statistic, (2.9), which is asymptoti-
cally distributed with a central chi-square distribution with ¢ — 1 = 4 degrees of freedom
under the Hp given in (2.6). The (100a)% critical value of such a random variable is
9.488, when a = 0.05. For this particular application, the realised test statistic is 6.360,
which has an upper-tail probability value of 0.174, given a distribution based on the null
hypothesis. Consequently, at o = 0.05, OF = @PT. However, using the realised value of
the test statistic, we compute 8° based on (2.11) as

(4.8) 5 = [0.137,—0.041,0.078, —0.012, —0.250]'.

In practical applications, the true nature of the deviation (if any) from Hp is un-
known. On the basis of the analytical results presented earlier, a conservative approach
to estimator choice would appear to favour 8%, on the basis of the relative ADR of
the various estimators. This example serves to illustrate that, indeed, this approach
has merit. In particular, as we will see in the Monte Carlo simulation presented in the
next section, 8FT and 6° can dominate 8V and 8%, even for fairly small deviations,
A*=371.(0 - 8.)°.

5. Monte Carlo simulation

In this section a simulation study is carried out to investigate the properties of
the proposed estimators for small samples. We have numerically calculated the risks of
0v (Ry), or (R2), ar T(R3), and 9 (R4) by simulation. Using such simulated data, it is
also possible to compute a simulated mazimum likelihood estimator (SMLE), which we
denote 8L, Then, the simulated risk of OML(R;5) can also be computed. We describe
how OML is calculated in what follows.

Using the foregoing simulated risks, we define the notion of the simulated relative
efficiency (RE) of an estimator, 8”, compared to another estimator 6° by

. poy _ 100 BE°)
(5.1) RE(0” : 6°) = 1OOR(9*),
where R(6°) and R(8") are the simulated risks of the estimators 8 and ° respectively.
Keep in mind that a value of RE greater than 100 indicates the degree of superiority
of 8* over 8°. Thus, the simulated efficiency of the various proposed estimators (and of
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the SMLE), relative to 8V, are given by:

(5.2) RE, ;= 100&, k=2...,5
Ry

Thus, REy, RE;, RE3 and RE, are the RE of 6r , 6F T 65 and OML respectively,

relative to 6Y.

We assume that the populations from which we wish to draw the simulated data have
multivariate normal distributions with mean vectors g = 1, 2 = 1. For convenience,
we set ny equal for all / =1,...,q, where ¢ = 4. We also set p = 4. To determine the
role of sample size, we carry out three simulation experiments, with n; = 20, 30 and 50.
For each of the three experiments, we use five-hundred replications. This number was
chosen since it is sufficiently large to identify the patterns we are seeking to examine,
but small enough that computational time is not a major consideration. However, we
note in passing that the computations for Rs, the simulated risks for 8™ L took three
calendar days on a Sun Enterprise 4000 six-processor server, for n; = 50.

Random numbers for the simulations were generated using IMSL sub-routine DRN-
MVN for p = 4, g = 4 and n; as indicated above. From these data, five-hundred
estimates each of 8V and F were computed, and used to simulate the distribution of
D,, under Hy : 6; = 65 = 03 = 64. The cut-off points of the simulated distribution of D,
were then obtained, yielding simulated critical values. These can be compared with the
true critical values of D,, under Hy, which is asymptotically distributed as x2(g — 1).

The estimators 87T and 65 were computed using the simulated distribution of D,,
and associated realisations of this test statistic for each replication. With respect to
6FT | the simulated critical value for a given « level was used.

The computation of OML is a little more complicated. Since there is no closed-form
solution for the maximum likelihood estimator in this case, we simulate computation of
such an estimator using the generated data. The contribution of one observation to the
log-likelihood function for this model can be represented by the following transformation
of such contributions (see, for example, Donner and Koval (1980)):

(5.3) 2InL=k+(@p-1)In(l-p)+InW

J=11#j

fori=1,...,q, where « is a constant and W = [1+(p~1)p]. This expression depends on
the value of p. Thus, while the data are generated conditional on a specific value for P,
the simulated estimator, 8™ L is obtained by evaluating the sum of all such eontributions
at a grid of values for p, then selecting that value of the total which yields the lowest
value of the sum over all observations of (5.3). This procedure is repeated for each of
the five-hundred replications, yielding five-hundred estimates of ML These estimates
are then used to compute the simulated risk, Rs, for @M%,

The above discussion deals with computation of the various estimators under Hy,
their numerical risks, Ry, ..., Rs, and the implied RE referred to earlier. Recalling the
definition of A®* = 37 (6 — 0,)? from the Illustrative Ezample of Section 4, we can
study the RE, RE;,...,RE,. Tables 2-4 give these results, from which it can be seen
that all estimators attain maximum efficiency relative to 8V when A® = 0.
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Table 2. Simulated efficiency of the estimators over 8Y for g=4, a=.05 n=20.

At RE, RE> RE3 RE4
0.000 315.091 226.024 127.189 118.079
0.010 284.877 208.644 132.148 115.106
0.040 224,738 171.583 126.429 109.959
0.086 168.522 136.789 114.960 106.019
0.149 125.979 106.433 110.570 97.022
0.229 95.578 86.749 106.974 91.996
0.325 73.887 74.461 105.948 86.079
0.441 58.125 68.973 104.690 77.732
0.578 46.391 67.408 103.387 74.494
0.741 37.436 69.258 102.062 69.354
0.934 30.436 76.101 101.010 66.633
1.167 24.840 82.102 100.443 62.130
1.452 20.269 90.928 100.171 58.421
1.810 16.456 94.958 100.031 55.315
2.279 13.201 99.052 99.954 52.306
2.932 10.347  100.000 99.912 49.745

The simulated critical value of the test statistic is 7.9332. The tabulated critical value is 7.8147.

Table 3. Simulated efficiency of the estimators over 0V for ¢ =4, o = .05 and .35, n = 30.

A REY RE> RFE32, RE3 RE4
0.000 337.399 237.593 130.563 137.873 154.050
0.010 286.510 207.340 123.708 115.277 150.001
0.040 201.627 152.068 110.197 120.840 131.678
0.086 137.362 109.750 99.691 115.782 119.114
0.149 96.038 85.512 93.365 104.169 106.176
0.229 69.629 71.925 91.742 106.971 94.662
0.325 52.158 67.081 93.175 105.120 86.615
0.441 40.112 67.506 95.738 103.166 76.756
0.578 31.474 71.337 08.839 102.280 69.916
0.741 25.065 82.376 99.688 101.672 64.078
0.934 20.163 90.554 99.289 101.159 57.379
1.167 16.314 98.799 99.604 100.860 50.485
1.452 13.217 99.295 100.000 100.690 49.372
1.810 10.668 98.904 100.000 100.568 44.680
2.279 8.518 100.000 100.000 100.468 42.705
2.932 6.653 100.000 100.000 100.375 40.682

The simulated critical value of the test statistic is 8.2297 at a = 0.05 and 3.1196 at o = 0.35.
The tabulated critical values are 7.8147 and 3.2831 respectively.

In order to investigate the behavior of the estimators for A® > 0, additional samples
were generated from multivariate normal populations, assuming a shift to the right by
an amount A® = (6 — 6,)? when 8 # 6,. The efficiencies of the various estimators
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Table 4. Simulated efficiency of the estimators over oY for g=4,a=.05n=>50

A RFEL RE, RE; RE,4
0.000 374.581 249.910 132.858 130.701
0.010 280.509 192422 125.059 117.191
0.040 164.354 127.695 118.609 101.061
0.086 99.225 86.739  107.779 90.837
0.149 64.599 68.471 104.662 78.699
0.229 44.856 62.999 102.889 66.670
0.325 32.696 67.367 101.815 59.462
0.441 24.698 78.022 101.244 53.035
0.578 19.149 88.784  100.881 47.333
0.741 15.126 96.769  100.631 40.669
0.934 12,102 99.131 100.458 37.820
1.167 9.756  100.000 100.333 34.656
1.452 7.885 100.000 100.243 30.769
1.810 6.353 100.000 100.177 29.461
2.279 5.065 100.000 100.125 26.668
2,932 3.951 100.000 100.088 25.343

The simulated critical value of the test statistic is 8.8637. The tabulated critical value is 7.8147.

Fig. 1. Comparisons of SRE for PE, PTE, SE and SMLE.

were calculated based on five-hundred replications, again for p = 4, ¢ = 4, a = 0.05
with n; = 20,30, 50, and for @ = 0.35 with n; = 30. Tables 2-4 provide the estimated
relative efficiencies for the various estimates over 8V for these respective sample sizes.
Figures 1-3 contain the same information in a graphical form.

It is apparent from the tables and figures that 6P dominates the other four es-
timators near the null hypothesis. Alternatively, as the hypothesis error grows, the
performance of 6P becomes the worst. Hence it is not a desirable strategy to choose
0% as a general approach. On the other hand, the performance of 877 is stable for
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Fig. 3. Comparisons of SRE for PE, PTE, SE and SMLE.

such departures. That is, it achieves maximum efficiency at A®* = 0, then drops to a
minimum, thereafter tending to the risk of ev.

The relative efficiency of OFT is higher than that of 8% near the null hypothesis.
However, for larger values of A®, the opposite conclusion holds. More importantly, 05
is superior to 8Y for all values of AC.

The comparisons of GP OPT and 65 to Y in these tables can also be considered
relative to their performance versus ML in the same context. In practical situations, it
is not possible to obtain OML 5o it is of interest to consider how our proposed estima-
tors perform relative to an estimator with the normally extremely desirable properties
inherent in the maximum likelihood approach. From Tables 2-4 and Figures 1-3, it is
evident that OFT or 85 exhibit superior RE performances than ML i virtually every
situation where A® > 0.

In short, Tables 24 reveal that, for A® close to 0, all the proposed estimators are
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highly efficient relative to Y. Further, for larger values of A®, the performance of the
estimators is similar to the analysis of asymptotics provided in Section 4.

We have also assessed the performance of 85 relative to 8°T at a larger size, a, of
the test. The SE out-performs the PTE for larger values of a for all A®. These results
are given in the column labelled REs5, in Table 3, where n; = 30. It is seen that for
a > 0.35, the proposed estimator 85 also domlnates 67T for all A°.

To conclude, based on this simulation, we find that the properties of the various
estimators are in accordance with the asymptotic results presented above. Simulations
for other choices of ¢ were also carried out, yielding similar conclusions. However, for
large values of ¢ the relative efficiency of 05 over Y is substantial.

6. Concluding remarks

We have discussed various estimators of 8, a function of the intraclass correlation
coeflicient, when ¢ samples are available to increase the efficiency of these estimators.
We use information obtained via preliminary test, and by incorporating the information
provided by test statistics in the estimation process to obtain 0P T and BS The asymp-
totic distribution theory of GP T and BS , and of their risks depend on the asymptotic
normality of Bf and 0,’{ , as well as on the asymptotic non-central x? distribution of the
test statistic. We conclude that 85 is more efficient than 6V in the whole parameter
space, while the performances of éf and 95 T depend on the value of A.

The decision whether to use 67, 95 T, or éf rests with the user. We recommend
that, if the hypothesis is true or A € [0, (¢ — 1)], then select éP simply because it has
the lowest risk as compared to the other estimators. However, if the experimenter has
no knowledge about A, which is generally the case, then 05 should be used because it
dominates 0U for all values of A. Further, 0‘9 dominates 0P T for a range of . An
empirical exa.mple serves to support this claim.

From the point of view of robust-efficiency, both OP T and GS may be advocated,
leaning more towards 03 since the size A is generally unknown and unlikely to be very
small. In any event, 05 performs better than HP for A in the interval [AT,00), where
At is given in equation (4.5). It should be kept in mind that BS can only be used for
q > 3, since otherwise it is undefined. With respect to GM L. on the other hand, its
performance relative to BP T and 05 can be superior for some sample sizes, and some
values of p. However, for anythmg more than minor values of A, this ceases to be the
case. Furthermore, in practice, a true maximum likelihood estimator is not available in
this estimation environment. Consequently, the apparent superiority of the simulated
maximum likelihood estimator, GM L is not a realistic option available to the applied
researcher.
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