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Abstract. This paper presents new omnibus tests for the exponential and the nor-
mal distribution which are based on the difference between the integrated distribution
function ¥(t) = ft°°(1 — F(z))dz and its empirical counterpart. The procedures turn
out to be serious competitors to classical tests for exponentiality and normality.
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1. Introduction

Let X3, Xa,..., X, be independent and identically distributed (iid) nonnegative
random variables with distribution function (df) F, and consider the problem of testing
whether the random sample has come from a specified parametric family of distributions.
Each goodness-of-fit test which aims at detecting all departures from this hypothesized
model has to use some characteristic property of the parametric class of distributions.
Since the distribution of the X; is uniquely determined by their integrated distribution
function (idf) which, for a positive random variable X with EX < oo, is defined by

(1.1) (t) == E(X — ) = /tm(1 - F(z))dz,

such an omnibus test may be based on the difference between the idf and its empirical
counterpart.

In case the X; are discrete valued random variables, idf-tests were proposed by
Klar (1999). For common lattice models, the tests have high power with respect to
competitive procedures over a large range of alternatives.

Henze and Nikitin (1998) considered tests based on the so-called integrated empir-
ical process for testing a completely specified hypothesis and calculated local Bahadur
efficiencies in the setting of shift alternatives. Since there, in contrast to (1.1), the idf is
defined by integration with respect to F, it coincides with the idf as defined convention-
ally only in the case of uniformly distributed random variables.

It is the purpose of this paper to study tests based on the idf for two important
continuous distributions, the exponential and the normal distribution. In Section 2, a
test for exponentiality is considered. After the derivation of the limiting null distribution
of the test statistic, the test is shown to be consistent against each alternative distribution
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with finite positive expectation. The finite sample properties of the test as well as of
several modifications thereof are assessed by means of some simulations. The procedures
turn out to have high power in comparison with classical tests for exponentiality.

Section 3 deals with testing for normality. In this case, the definition of the idf
has to be adapted suitably. Again, the asymptotic distribution of the test statistic is
obtained. In an extensive simulation study, powers of the new test, the Shapiro-Wilk
test and the Anderson-Darling test are compared. Whereas the new test for normality
compares favourably to the other tests for heavy-tailed alternatives, power against short-
tailed alternatives is fairly low; in many situations, however, safeguarding against such
distributions should be less important.

2. A goodness-of-fit test for exponentiality

Let F = {F(-,9) : ¥ > 0}, where F(t,9) = 1 — exp(—9t), t > 0, denote the class of
exponential dlstrlbutlons The problem is to test the composite hypothesm Ho: FeF
against the general alternative H; : F ¢ F. For this purpose, we propose a test statistic
based on the idf (as defined in (1.1)), which, if the distribution of X is exponential with
parameter 9, takes the form U(t,¥) = e~?t /%, ¢ > 0. The empirical counterpart to ¥ is
the empirical idf

w0 = [ (1= Fu(o)ds Z(X 01X > 1)

where 1 denotes the indicator function, and F,(z) = n~! 3 7= H{X; < z} is the empir-
ical df of X1,...,X,. To perform the test, ¥,, is compared with the estimated idf

O(t,d,) = / " - Fla, 9.))dz.

Here, ¥, = 1/X,, with X, =n1 Z;;l X is the maximum likelihood estimator of ¥. A
convenient test statistic is

o
(21) T =83 [ (AEa(0) - B, D)) e
0
which, putting Y¥; = 9, X; = X;/X, and u = U,.t, takes the form

= /00 Z2(u)du,  where
0
(2.2) Zp(u) = % JZ:;{(YJ —uw)t —e™¥}, 0<u<oo.

Evaluating the integral yields

min(Y;,Y;) Y, -
T Z / (Yi — u)(¥; — u)du — 2/0 (Y; —u)e™"du +/0 e_2"du]

2_71

=_Z(Y(1)Y(J) )"‘—ZY@)—ZZ =‘+Yi_1)+g,

i<j
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where Y(l) < Yoy £ -+ < Y(n) are the order statistics of V1,...,Y,,. Hence, using
1/ny ", Y; = 1, we obtain the following alternative representatlon whlch is more suit-
able for computatlonal purposes:

T, =n/2— 226 * —(3n) 1Z('r7,—z—1)Y()+n ZYU)Y(J)
i=1

i<j

Note that, being a function of Y1,...,Y,, the statistic 7}, is scale-invariant. We thus
may assume ¥ = 1 without loss of generality in what follows.

To prove the weak convergence of T,, as n — oo, it is convenient to work in the
Hilbert space Ly = La(R4, By, A) of square integrable functions on R, since, in this
case, T, is a continuous functional of the process Z, in (2.2). The inner product and
the norm in L, are denoted by (-,-) and || - ||, respectively. Neuhaus (1974) used the
Hilbert space setting to prove the weak convergence of the Cramér-von Mises statistic;
for sums of centered iid Hilbert space valued random variables Xi, Xs,..., the Central
Limit Theorem holds if (and only if) || X has finite variance.

To show that Z, can be represented as the sum of iid random variables and a
remainder term that is asymptotically negligible, note that the maximum likelihood
estimator ¥, has the representation

(2.3) Vit =) = 2= YU, 0) + i,

where l(z,9) = —(¥?2—9) and ,, = 0p(1). Thus, it follows by the Mean Value Theorem
that
ViEa(t) = ¥(t,90)
= V(T (t) ~ Tt 1)) + V(¥ 1) - ¥(t,9n))

= VAT () ~ ¥(t,1)) ~ V(D — 9) T2GD)
=03,
- B _0u(t,9) 1 ¢ .
= VR - W) - 52| )
—h oY (t, ) _0¥(t,9) . oY (t, V)
e =) ( 2R P 99 0=0;) ST P
where 97, is between 9, and 9. Hence,
(2-4) \/ﬁ(\I’n(t) - \I/(tfén)) = Wn(t) - Rn(t)a
where
_0Y(t, ) 3 o (t, ) _ oVt 9)
Rn(t) —n a9 91 + \/_(19 19) ( 8'(9 == 8’[9 19:1)
and

Wa(t) = VA(En(t) — T(t, 1)) — % - % > 1%;,9).
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Defining the function

(25) 9(t,2) = (z - ) - B(t,1) - Iz, 1) ZLET)

09 |-

=(z—t)F —(z—t+zt)e™®
which satisfies
g(,z) € Lo, z€R4,
oo
(2.6) Blott, X)) = [ gt0)e ez =0, teRs,
0

Ellg 011 =E | [ 5. X)at] < o,

we obtain the representation W, = n~1/2 >°5-19(-,X;). Since the Lj-valued random

variable W, is the sum of iid random elements and satisfies E[(W,, f)] = 0(f € L3)
and Var(]|W,||) < oo, the Hilbert space Central Limit Theorem yields the existence of a
Gaussian random element W in Ls such that

(2.7) w, 2w

(see, e.g., Araujo and Giné (1980), Section 3.7). On the other hand, it is not difficult to
see that || R, || = op(1). Together with (2.7) and (2.4), Theorem 4.1 in Billingsley (1968)
and the continuous mapping theorem yield the following result:

THEOREM 2.1. Under the hypothesis of exponentialily,
Z, 3w
in Lo, where W is a centered Gaussian process with covariance function

k(s,t) = Cov(W(s), W(t)) = Elg(s, X1)g(t, X1)]
=(t—s+2et—(s+t+st+2e T s<t

Furthermore, T,, = || Z,.|>*—P|W|J2.

Let A; resp. @j, j > 1, denote the eigenvalues resp. eigenfunctions of the integral
operator with kernel k(-, ), i.e.

o0
(2.8) / k(s, o5 (8)dt = Ajpy(s), 0 << o0,
0
for j > 1. The distribution of |W||? is that of 21 /\jN]?, where N1, N, ... is a sequence

of independent unit normal variables. Differentiating (2.8) several times shows that A;
resp. ; are the solutions of the equation

eD (1) + 203 () + @ (t) = e b (t) /A,
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Table 1. Empirical critical values of T},.

l — o

n 0.5 0.9 0.95 0.975 0.99
10 0.115 0.374 0.494 0.668 1.127
20 0.124 0.452 0.623 0.863 1.397
50 0.135 0.525 0.734 0.990 1.466
100 0.141 0.557 0.775 1.028 1.438
200 0.146 0.573 0.797 1.043 1.405
500 0.150 0.584 0.805 1.040 1.376
1000 0.152 0.587 0.808 1.040 1.363
2000 0.152 0.587 0.805 1.037 1.360

where ¢, ¢’ € Ly and ¢(0) = ¢'(0) = 0. However, it seems that closed-form solutions of
this equation do not exist. Expectation and variance of ||W||? are given by

B(WIP) = [ ket = 5,
17

2y _ 2 —
Var(|W[72) = 2//k (5,t)ds db = 5
Table 1 shows empirical critical values of T,, for several testing levels and sample
sizes. Note that the distribution of T;, converges quite slowly to its asymptotic distribu-
tion. The entries in Table 1 are the 20%-trimmed means of 100 Monte-Carlo simulations,
each based on 10000 replications; here, we always used ¥ = 1 (recall scale invariance).
Let a € (0,1), and let 2,,(a) denote the (1 — a)-quantile of T}, under Hy. Regarding
consistency of the test which rejects the hypothesis of exponentiality if T,, > 2z,(c), we
have the following result.

THEOREM 2.2. The test based on T, is consistent against each alternative distri-
bution P with finite positive expectation.

PrROOF. Let ¥4 and p4 denote the idf and the expectation of the alternative
distribution. Now,

(2.9) 1T = C, Bl 2 (180 = T, 9] = [12(,9) = T(, Ba)]],

where ¥ = 1/p4. To establish a Glivenko-Cantelli type result for ¥,,, note that, for e > 0,
there exists M, > 0, for which E4(X - 1{X > M.}) < ¢ (where E4 denotes expectation
under the alternative distribution P). Now, define a finite class F. consisting of the
functions gy .(x) = (z — ke)*, k =0,...,[M./e] + 1 and g = 0. Then, for each function
9s(z) = (z — s)*(s > 0), there exist lower and upper approximations g,z and g,y in
Fe, for which

Ge,L <gs < Ge, U and E4 [ge,U(X) - ge,L(X)] <e,
and Theorem II.2 in Pollard (1984) yields

sup |¥p(s) —Ta(s)] — 0 as.
0<s<o0
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Hence, there is a common P-null set N such that for each w € N¢ and each s € [0, 00)
(2.10) Jlim_ [ (s)(w) — (s, 9)| = [P a(s) - U(s,9)].

Since, as mentioned in the introduction, a distribution is uniquely determined by the idf
(see, e.g., Miiller (1996)), there exists some number ¢ > 0 with

(2.11) [W(t,d) — Ta(t)] > 6> 0.

On combining (2.10) and (2.11), and using Fatou’s Lemma and the continuity of ¥(-, )
and ¥ 4, we obtain

liminf/ (Tn(s) — U(s,9)°ds > 0 as.
0

n-—+0C
On the other hand,
lim ||¥(-,9) —¥(,F,)]| =0 as.,

n—od

whence limy,_, o | ¥, — ¥(:,9,)]|2 > 0 a.s. in view of (2.9). This implies lim,_, o, Ty, = 00
a.s. and therefore lim,_,, P(T}, < zp,(a)) =0.0

In defining the test statistic, the weight function exp(—a¥t) with a > 0 can be
introduced in order to increase the power performance of the procedure. The modified
statistic

oo
(2.12) Tpo = (adn)? / (VA(Tn(t) — T(t, D)2 exp(—adnt)dt
0
can be rewritten as
o0
Tpo=d® / (Za(t)) %%,
0
where the process Z,, is defined in (2.2). The weak convergence
D o0
Tha — a3/ W2(t)e *dt
0
can be proved similar to Theorem 2.1 (see also Theorem 3.2). The scaling factor a® in
(2.12) is motivated by the fact that lim,_,o T,o = 2n for each fixed sample size. This

result follows from an application of an Abelian theorem for Laplace transforms (see
Widder (1959), p. 182, or Baringhaus et al. (2000), p. 5).

LEMMA 23. T, has the following representation:

_ 2Ba+2)n exp(—(1 + a)Y;)
Toe = Grai+ap 2 Z T+ ap

—2/"23@(—0)’2) +2/n) (a(Yy) — Yiy) — 2) exp(—a¥(y).

i=1 i<j
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Table 2. Empirical critical values of Ty, , for different values of a.

l—a
n 0.5 0.9 095 0975 0.99
a=1 10 0.021 0.082 0.109 0.136 0.178
20 0.021 0.086 0.118 0.150 0.196
50 0.021 0.089 0.122 0.157 0.205
100 0.021 0.089 0.124 0.160 0.207
200 0.021 0.090 0.125 0.161 0.210

a=5 10 0070 0.302 0408 0.511 0.650
20 0.068 0.303 0.416 0.531 0.690
50 0.067 0.304 0.422 0.543 0.708
100 0.066 0.304 0.423 0.547 0.715
200 0.066 0.304 0.426 0.549 0.718

a=10 10 0.060 0.248 0.321 0.394 0.570
20 0.058 0.256 0.349 0.444 0.585
50 0.057 0.262 0.364 0469 0.615
100 0.057 0.263 0.366 0.472 0.619
200 0.056 0.264 0.368 0.477 0.630

a=20 10 0.042 0.125 0.197 0.301 0.462
20 0.039 0.165 0.217 0.294 0.444
50 0.038 0.174 0.241 0.312 0421
100 0.038 0.178 0.248 0.322 0.427
200 0.038 0.179 0.250 0.326 0.429

ProoF. By definition,
2

oo 1 n
Tne= nas/ - E (Y; —t)t —et]| e dt,
0 -
Jj=1

and straightforward computation gives

3 243 " e~ (+a)Yi 4 1 Y;
Ty, = a®n a’n 2‘1326 : + (1+a)Y;
i=1

2+a+(1+a)2_ 1+a)?
+1/n i(cﬁy;? — 2aY; + 2 — 2e7%%%)
i=1
+2/n ) (a®Y(y)Yy) — a(Yy) + Y(5) + 2+ (a(Yyy) — Yipy) — 2)e™*7®@).
i<j
Using 1/n >, Y; = 1 and combining the second sum and the terms of the third sum
which are symmetric in 7 and j, the assertion follows. O

Table 2 shows the empirical (1 — a)-quantiles of T}, 4 for @ = 1, 5, 10, 20 and different
values of o and the sample size n. Apparently, the convergence is faster than in Table 1.
The entries in Table 2 are determined in the same way as in Table 1.
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Table 3. Empirical power of different tests for exponentiality, & = 0.05, n = 20, 100000 replications.

distribution w0 @1 w5 w0 w20 ®1,10 020 o520 W2 A%

r(0.4) 66 72 84 89 92 88(87) 91 90 75 90
I'(0.6) 30 31 41 47 53 46 (44) 52 50 32 47
r(0.8) 11 10 12 15 18  15(14) 18 17 9 15
r(1.0) 50 50 50 50 50 50(42) 50 50 49 5.1
I'(1.5) 100 18 22 18 8 16 (14) 2 11 19 17
r'(2.0) 28 45 54 47 24 44 (40) 9 35 48 46
r(2.4) 46 66 76 69 40 67 (62) 19 57 69 68
I'(3.0) 70 87 93 89 63 88(85) 38 82 89 89
W(0.4) 96 98 99 100 100 100 (99) 100 100 98 100
W(0.6) 67 70 77 8 81 81(79) 83 82 69 81
W(0.8) 23 22 24 26 29 28(26) 32 31 20 27
W(1.4) 21 34 36 27 12 30(26) 6 20 35 31
W(1.6) 45 62 63 49 25 56 (51) 17 43 61 58
W(2.0) 8 94 93 83 53 02(89) 56 83 93 92
LN(@O6) 54 76 95 96 83 92(89) 28 85 89 90
LN(0.8) 15 23 42 47 28  35(31) 6 27 34 34
LN(1.0) 19 15 11 10 5  15(13) 15 16 15 14
LN(12) 38 33 20 14 7 30(28) 34 33 28 27
LN(1.5) 68 66 59 53 44 65(64) 66 66 61 63
U(0,1) 68 73 45 25 10 62(58) 35 33 67 63
HN 14 22 18 11 5 16 (14) 3 9 21 17
HC 72 69 59 52 46 67(66) 70 69 63 64
x2 46 50 63 70 75 69(67) T4 73 52 71

We examined the dependence of the power of the test on the weight function
by means of a simulation study with the following alternative distributions: Gamma,
Weibull and log normal distribution with scale parameter 1 and shape parameter o (de-
noted by I'(a), W(a) and LN(a)), uniform distribution on (0,1) (U(0, 1)), half normal
(HN), half Cauchy (HC), x? distribution.

The first five columns of Table 3 show the results of the test based on T, resp. Ty ¢
for a = 1,5,10,20 (pp resp. @, are the tests based on Ty, resp. T, ,, see below). The
results indicate that the power depends heavily on a. For each of the five tests, there
are alternatives for which the test is most powerful.

We therefore looked for related tests which distribute their power more evenly. To
this end, we examined combinations of two or more test statistics T q,(j = 1,...,k):
Hp is rejected if at least one of the tests based on T}, 4; rejects the hypothesis.

To give a formal description of the test, let Yoo = 1{Th,e > 2nq.{(a)} and oo =
1{T,, > z,(c)} denote the level-a-tests based on Ty , and Ty, respectively; the tests
result in 1 (rejection) or 0 (no rejection). The combined level-a-test is defined by
Pay,..an,a = MaXj=1.. kPa;a*, Where a/k < o* < a. a* is uniquely determined
by E[@a,,....ax,e) = a. In practice, the quantiles have to be found empirically by a search
algorithm. Using the quantiles that belong to a/k leads to a conservative test.
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As a first combination, we examined ¢ 19,o. For n = 20 and o = 0.1, the quantiles
are 0.108 for T3, ; and 0.321 for T, 19; for o = 0.05, the corresponding values are 0.141
and 0.421. Column 6 of Table 3 shows the simulation results (in the table, the subscript
o is omitted). Since the quantiles do not differ much from the (1 — a/2)-quantiles of the
original tests (see Tables 1, 2), we ran simulations with these quantiles; the results are
given in column 6 of Table 3 in parenthesis. Furthermore, the results for combination
©0,20,o are listed; the quantiles are 0.601 resp. 0.211 for & = 0.1 and 0.845 resp. 0.285
for a = 0.05. The last column shows the results for (g 5 20,o; the corresponding quantiles
are 0.646, 0.434 resp. 0.224 (a = 0.1) and 0.937, 0.566 resp. 0.321 (o = 0.05).

The conclusion is quite obvious: 1,10,o is a strong omnibus test and preferable to
the other tests if nothing is known about the alternative. In comparison with g 5 20.q,
the test has the further advantage that the (1 — o/2)-quantiles can be used with little
loss of power.

Besides the findings for the tests based on the idf, we provide the results of the
Cramér-von Mises test W2 and the Anderson-Darling test A%2. In comparison with
1,10,0, both W? and A? behave quite similar; each of the three tests does best in about
the same number of cases.

As our procedure was an omnibus one we compared it with the two procedures
recommended by D’Agostino and Stephens (1986). Sometimes one has special classes of
alternatives in mind. Then one should use a test directed at them. Examples of such
tests are Gail and Gastwirth (1978), Lewis (1965) and Klefsj6 (1983).

The results of Table 3 can also be compared with parts of Table 4 in Baringhaus
and Henze (1991) and parts of Table 2 in Baringhaus and Henze (1992); in doing so, it
turns out as well that the new test has high power against many alternatives.

The power of the idf tests could certainly be improved by an adaptive choice of the
weight function; this remains a point of further research.

3. Testing for normality

In this section, we consider the problem of testing the composite hypothesis Hp :
Fe N ={N(u,0?) : u€R,0? > 0} against the general alternative H; : F ¢ N. Again,
we propose a test based on the idf, which, in case of a random variable on R with finite
expectation, is defined by

W(t) = B(X - ) = /_ F(z)dz,

where y~ = —min{y,0} (the use of the same symbol as in Section 2 should cause no
confusion). Accordingly, the empirical idf is

n

t
1
In(t) = / Fal@)dz = —— 3 (X; ~ 1{X; < 1}
—oo i=1
Let ®, ,2 and ¢, ,2 denote the distribution function and the density of the N{u,o?)-
distribution, respectively; furthermore, ® = @97 and ¢ = @p1. If X ~ N(u,0?), we
write 1, ,2 instead of 1. By differentiation, one can verify the representation

(3.1) Y02 (@) =(z - p‘)q}.u,a2 (z) + 0'29011-,02 (z), r€R.
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Since
tl_lfg_)("pn(t) - "pp,a'z (t)) =i - Xm

an integral statistic without weight function (as in case of the exponential distribution)
cannot be used. A possible test statistic is

T 5 | 0nlt) = bz, 520z, a3 00

Let ¥; = (X; — Xn)/6n, i = 1,...,n, where 62 = n~ 1 30_,(X; — X,)? denotes the
empirical variance. The substitution u = (t — X,,)/én, and (3.1) yield

(3.2) fo=n (;1; > - )" - (wd(w) + w(U))) (u)du
= [ Zwetwas
where

Zo(u) = % S (-0 - (B +pw)}, ueR

LEMMA 3.1. T, has the following representation:

7, -2 28y (1- 220 - Z=viaa - o/w)) + 2(%:) )

2m i=1 \/_
£ 3 (- G V)1 + YY) - (%A Yo V),
i,7=1

where £V y = max(z,y) and z Ay = min{z,y).

PROOF. (3.2) yields

(33) fo=1Y [ w-Ye- YW

n §,j=1 Y max(¥,Y;)

=23 [0 + o) - )olad

4 " () + o(w) o) du

-0

1 n n
= ~ -Zl L(Y;,Y;) 2;12(1/3-) +nls.
15.7= J=
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Since
[aee)ia= o), [ o) = sp(e)+ 2(a),
where [ f(z)dz denotes an indefinite integral of f, we have in the case Y; < Y;

L(Y,Y;) = 1- &(Y) + (1 - 2(¥;)ViY; - Yip(¥;).

Furthermore,
/ o (z)dz = #@(\/2}),
[av@is = —35@)
[e2@ee)is = 5 o0(E) - p@a@),
[a*e@)el)s = 50%@) - zp(x)2(@) - 30°(@),
and hence

1(%) = 51— 82(%)) - S=Y;(1 - $(VEY) + ¢2(¥;).

=i

Using

/903(x)dx = %/—ECI)(\@J:),

/z@(x)wz(z)d:c = —%cpz(:n)@(.’r) + g@(ﬁx),

[#@e = 196 - 2p@9°@) - @0 + Lo,

gives the value I3 = 1/3++/3/(27). Plugging all results into (3.3) yields the assertion. O

Note that, being a function of Y3, ...,Y;, T, is invariant with respect to transfor-
mations of the form z; — az; + b(a > 0). Consequently, we may assume g = 0 and
0% =1 in the following.

Let ¥ = (u,0?), and write Py for the measure belonging to the df ®,, »2. Similarly
as in Section 2, we use the Hilbert space L, = Ly(R, B, Py) of functions on R which are
square integrable with respect to Py to prove the weak convergence of T,,. If (+,-) and
| - || denote the inner product and the norm in Ly, one has T, = || Z,||?; in particular,
Tn is a continuous functional of Zn.

The estimator ¥, = (X,,52) of ¥ has the representation (2.3), where l(z,0) =
(x — p, (z — w)? — o%). The function

g(t7$) = (1: - t)_ - \II(O,I)(t) - l(CB, (07 1))V,9\I/(t,’(9)|,9=(0,1),
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is the analogue of g in (2.5); in view of

Oy (t)
o

Oy (¢ 1
= “(I)y,az (t), gzg ) = '2'90;1.,::2 (t)a

it can be written as

L@ + o).

gt.z) = (=1~ + (@ - 1)2() - 5

g(+, ) has the following properties:

g(’z) € ff?: T € Rv

El§(t, X)] = /_ it o)e(@)ds =0, teR,
ﬂM&XWFdﬂléfmme4<m.

THEOREM 3.2. a) Let W denote the centered Gaussian process with covariance
function

k(S, t) = E[g(s’ Xl)g(ts XI)]
= ®(s)(1 + st) + tp(s) — 3p(s)p(t)/2
—t®(t)p(s) — sB(s)p(t) — 2(s)@(¢)(1 + st)

for s < t. Then, under Ho, ~Zn—>DW in Lo.
b) Under Ho, T,—P||W||2.

PROOF. Defining a random variable with values in Lo by
- 1 &
W = 77 2,90 %)

and proceeding like in Section 2 yields the weak convergence of Z,. A series expansion
of w5 (t) about ¥ shows that T, — |Zal|? = op(1) for n — oco. Noting that, by a)
and the continuous mapping theorem, || Z,[*—P||W||?, and using Sluzky’s Theorem,
the assertion follows. O

Table 4 shows the empirical (1 — &)-quantiles for different values of the level & and
the sample size n. The entries in Table 4 are the 20% trimmed means of 100 Monte-Carlo
simulations, each based on 10000 replications; here, we always used ¥ = (0, 1).

Let %,(c) denote the (1 — a)-quantile of 7, under M. Similarly as in Section 2, it
can be shown that the test which rejects the hypothesis of normality if T, > Z.(a) is
consistent against each fixed alternative distribution with positive finite variance.

To judge the power of the test based on T, for finite samples, we conducted a
simulation study with various alternatives to normality. Random numbers are generated
by routines of the IMSL-library. Besides the findings for T,, we provide the results
of the Anderson-Darling test A% and the Shapiro-Wilk test SW, the latter performed
with the help of the IMSL routine DSPWLK. The two procedures are the omnibus tests
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Table 4. Empirical critical values of s,

1 — o

n 0.5 0.9 095 0975 0.99
10 0086 .0233 .0300 .0371 .0468
15 .0085 .0239 .0310 .0384 .0485
20 .0085 .0244 .0316 .0392 .0494
30 .0085 .0247 .0321 .0397 .0502
50 .0085 .0249 .0324 .0401 .0507
100 .0084 .0250 .0325 .0403 .0507
200 .0084 .0251 .0327 .0405 .0512
500 .0084 .0252 .0328 .0406 .0509
1000 .0084 .0252 .0328 .0406 .0511

Table 5. Empirical power against stable distributions, n = 50, a = 0.05, 100000 replications.

statistic Th SW A2

b 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
a=20 5.0 5.0 5.0 5.1 5.1 5.0 4.9 5.0 4.9
a=1.8 389 41.1 47.8 37.5 39.7 47.0 36.2 378 43.0
a=16 691 726 82.1 65.8 69.6 81.3 674 703 78.3
a=14 887 909 966 857 884 964 881 902 951
a=1.2 97.3 98.1 99.6 959 97.1 99.6 974 98.1 99.5
a=1.0 99.7 99.8 100.0 994 99.6 100.0 99.8 99.8 100.0

recommended by D’Agostino and Stephens (1986). Groeneveld (1998) cites more recent
studies that also indicate that the Shapiro-Wilk test has good general power properties.
Certainly, other classical tests as in Gastwirth and Owens (1977) could also be considered.

Table 5 shows the results for the family of stable distributions S(a,b) with charac-
teristic function

b)) = exp(—|t|® exp(—ibn(1 — |1 — a|)sign(t)/2)): a#1
pltia,b) { exp(—|t|(1 + 2iblog |t| sign(t) /7)) : a=1

(-1 <£b<1,0<a<?2). For b= 0, the distributions are symmetric; in particular,
S(2,0) is the normal distribution N(0,2), and S(1,0) is the Cauchy distribution.

For each of the three tests, the power increases if the stable distributions become
more heavy-tailed (i.e. if the characteristic exponent a decreases) resp. if b (and thus the
skewness) increases. This result is in contrast to a simulation study of Baringhaus et al.
(1989), Table IV, where b had no influence on the power of any of the tests (including
Shapiro-Wilk). 7T, has a slightly higher percentage of rejection than the Anderson-
Darling test and the Shapiro-Wilk test for almost all values of the parameters a and
b.

Tables 6 and 7 show the power of the three tests against symmetric and skewed
alternatives, respectively. All distributions are described in more detail in a simulation
study of Pearson et al. (1977). Sp and Sy denote distributions from the Johnson system;
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Table 6. Empirical power against symmetric distributions, n = 20 and n = 50, a = 0.05,
100000 replications.

statistic Th SW A2
distribution B2 n=20 n=50 n=20 n=50 n=20 n=2>50
S$5(0,0.5) 1.63 224 78.3 44.7 99.2 37.1 90.1
Tukey(1.5) 1.75 12.3 51.8 25.6 93.3 20.9 67.7
Beta(1,1) 1.80 10.0 42.5 20.5 88.3 17.3 58.1

Sp(0,0.707)  1.87 8.3 33.2 15.0 75.0 13.3 44.9
Tukey(0.7)  1.92 6.5 24.8 11.6 66.1 10.7 35.3
Tukey(3.0)  2.06 3.9 10.2 6.6 4.3 6.1 16.6

Beta(2,2)  2.14 3.9 9.3 5.4 26.6 5.8 13.2
Sy (0,3) 3.53 7.6 9.2 7.5 8.0 7.2 8.5

t10 4.00 9.4 13.4 9.6 11.6 8.9 11.9
Logistic 420 114 17.4 11.4 14.1 10.6 15.9
Su(0,2) 451 122 19.0 12.3 15.6 11.4 17.3

Tukey (10} 5.38 74.0 99.0 80.2 99.4 91.2 100.0

Laplace 6.00 26.8 52.1 25.8 41.2 27.3 54.4
SC(0.20,3) 7.54 36.2 67.5 36.8 60.8 34.8 65.3
S§C(0.05,3) 7.65 18.2 32.6 19.1 32.7 17.2 28.9
8C(0.10,3) 8.33 27.1 50.0 28.2 47.7 25.5 46.2
5C(0.20,5) 11.22 70.1 96.7 70.1 95.2 70.9 96.4
8C(0.20,7) 12.84 84.6 99.5 84.8 99.3 85.4 99.4
5C(0.10,5) 16.45 53.6 84.3 54.5 83.4 52.1 824
SC(0.05,5) 19.96 34.8 62.0 35.7 62.2 33.6 59.1
8C(0.10,7) 21.49 66.5 93.1 67.2 92.9 65.6 92.3
8C(0.05,7) 31.40 44.2 74.3 45.0 74.8 43.1 72.1

Sy(0,1) 36.19 42.6 76.0 42.0 68.8 42.3 75.8
Sy (0,0.9) 82.08 50.5 84.5 49.8 78.6 50.9 85.1

ta o0 23.6 44.2 23.6 38.6 224 42.2
to o0 53.0 85.9 52.5 81.3 52.8 85.7
11 o0 86.7 99.7 86.3 99.4 88.2 99.7

SC (scale contaminated) and LC (location contaminated) are mixtures of two normal
distributions with the same expectation and different variances and with different ex-
pectation and the same variance, respectively. The distributions are ordered by their
kurtosis value 8;. The first seven distributions in Table 6 and the first five distributions
in Table 7 are platykurtic (82 < 3), the others are leptokurtic (82 > 3). The results for
the Shapiro-Wilk test differ to some extent from the results of Pearson et al. (1977); this
effect may be due to the number of only 200 replications in their study. For distributions
with 32 < 3, the Shapiro-Wilk test is clearly better than the test based on Tn and the
Anderson-Darling test. For symmetric alternatives with 8, > 3, the number of rejections
is comparable for each of the three tests for sample size n = 20; for n = 50, T, and A2
are often better than SW. For skewed alternatives with 2 > 3, the tests behave very
similar.

Summarizing the results of the power study, the test for normality based on the
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Table 7. Empirical power against skewed distributions, n = 20 and n = 50, a = 0.05, 100000

replications.
statistic T, SW A?
distribution VB B n=2 n=50 n=2 n=5 n=20 n=50
Sp(0.533, 0.5) 0.65 2.13 56.1 97.5 72.5 100.0 64.9 99.1
Beta(3,2) -0.29 2.36 6.5 16.2 7.4 28.8 7.3 17.6
Beta(2,1) —-0.57 2.40 24.1 67.9 30.5 90.0 26.3 72.0
SgB(1,2) 0.28 277 6.2 10.4 6.1 11.9 6.0 9.5
Sgp(1,1) 0.73 2.91 28.0 71.3 30.0 83.5 26.5 69.0
LC(0.20,3) 0.68 3.09 29.0 69.3 25.8 62.8 26.6 64.7
LC(0.20,5) 1.07 3.16 88.6 100.0 62.8 100.0 88.1 100.0
LC(0.20,7) 1.25 3.20 98.7 100.0 98.7 100.0 98.6 100.0
Weibull(2) 0.63 3.25 14.5 36.1 15.0 43.7 134 31.1
LC(0.10,3) 0.80 4.02 26.0 56.7 24.6 51.8 22.5 50.8
X%O 0.89 4.20 23.9 56.1 24.1 59.2 21.0 48.5
LC(0.05,3) 0.68 4.35 17.9 35.1 18.2 33.3 16.0 29.7
LC(0.10,5) 1.54 5.45 75.6 97.8 76.2 98.0 72.7 97.1
Sy(-1,2) 0.87 5.59 21.2 43.3 20.6 39.0 18.9 374
XE 1.41 6.00 50.2 914 52.8 95.6 46.6 89.3
LC(0.10,7) 1.96 6.40 87.7 99.5 88.0 99.5 87.4 99.4
LC(0.05,5) 1.65 7.44 52.4 83.6 54.3 85.3 49.2 80.1
X% 2.00 9.00 78.1 99.6 83.5 100.0 77.6 99.7
LC(0.05,7) 2.42 10.36 65.2 92.3 65.6 92.6 64.5 91.6
X? 2.83 15.00 95.7 100.0 98.4 100.0 97.1 100.0
Weibull(0.5) 6.62 87.72 99.5 100.0 99.9 100.0 99.8 100.0
Sy(1,1) —-5.30 93.40 73.6 98.0 72.2 96.8 71.1 97.4

Lognormal(0,1,0) 6.18 113.94 91.2 100.0 93.2 100.0 90.5 100.0

integrated distribution function compares favourably with the other tests for heavy-tailed
alternatives. In comparison with the Shapiro-Wilk test, power against alternatives with
B2 < 3 is fairly low; for such distributions, the Shapiro-Wilk test was the best omnibus
test in the study of Pearson et al. Presumably, use of an additional parameter in the
weight function as in the case of the exponential distribution could improve the power of
the idf-test against short-tailed alternatives, but in many situations safeguarding against
such distributions may be of minor importance.
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