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Abstract. In this article a goodness of fit test for distributional assumptions re-
garding the residual lifetime is proposed. The test is based on a Vasicek type sum
log-spacings estimators of a dynamic version of Kullback-Leibler information. The
specific distributional hypothesis considered is of the unformity over [0,1]. However,
the test can be used for testing any simple goodness of fit hypothesis. The asymptotic
distribution of the test statistic together with a tabulation of the critical points for
different sample sizes are given. Finally, the power function of the test is empirically
studied in comparison with some competitors, and the test appears to be meritorious.
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fit tests, consistent tests.

1. Introduction

Let T be a random variable representing time to failure of a system. For example, it
might be the time to failure of a bio-system or the time to failure of an engineering system.
Let F(t) = P(T < t) be the lifetime distribution of 7' with the survival function F(t) =
1 — F(t). We assume that F is differentiable with density function f(t) concentrated
on the interval [0,1]. Consider the problem of testing the null hypothesis Hp that the
residual lifetime distribution of a system given that it has survived until time say to is
the uniform over (tp,1). That is, given that the age of a system is ¢, we want to test
F($+t0) . l—z-1g

- = forall 0<z<1—1t.
F(to) 1—1, ora == 0

(11) H() N

The alternative to Hy is

Flz+ty)) ,1-z—tp
1.2 a—=
(1.2) H Fl(to) 1—to

for at least one z in [0,1 — £o].

If H} states that Flatto) _ Foletto) gy o)) 7 > 0, where Fy is continuous and fully
F(to) Fo(to)

specified distribution, then our test of uniformity also allows one to test Hg; see Lemma 1.
The main purpose of this paper is to propose a method for testing (1.1) against (1.2).
In Section 2 the test statistic based on the dynamic version of Kullback-Leibler
information is formulated and its main properties are stated. An advantage of our test
statistic is that it incorporates information about the age and therefore it can be used for
testing of a certain probability model for the residual lifetime distribution. In Section 3,
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the percentage points of our test statistic were estimated for various sample sizes and
levels, discussed how to implement the proposed test and gave an illustrative example.
Section 3 also compares the powers of the proposed test with other competing tests.
Finally in Section 4, we derive the asymptotic behaviors of our test statistic.

2. Test statistic

To discriminate between the two hypotheses (1.1) and (1.2), we use the dynamic
version of Kullback-Leibler discrimination information function between two residual
lifetime distributions given by

S(z)
(2.1) K (F, Fo; o) = ;Et )) log %(% iz
to Z0 Fa(te)
v E ) ' flz)
log F(to) + H(F,to) F(t) lOg fO(a")dz
where
(2.2) H(F;tg) = Jé:&)) log lf:g: )) dx
1 _
- o [ (@) 108 (a)dz | - tog Fito).

It is well known that K (F, Fy;tp) > 0 and the equality holds if and only if If ((f)) =

;0((:)) for all z > to; Ebrahimi (1996) and Ebrahimi and Kirmani (19964,19965).
olto

In our situation, discriminating between %2 the true residual survival distribu-

Fo(z+to) _ 1 — totO the residual survival distribution

Fb(to)
for the uniform (0,1), the equation (2.1) reduces to

tion at age tp and the corresponding

(23) K(F,Fg,t()) =lOg (1 —t0)+H(F,t0)

The discrimination function (2.3) is a measure of disparity between residual lifetime
distribution at age fo and corresponding residual lifetime distribution for the uniform
(0,1). Under the null hypothesis Hp in (1.1) K(F, Fp;ts) = 0, and large values of
K(F, Fy; to) favor H,.

Since evaluation of (2.3) requires complete knowledge of F, then K (F, Fy;to) is not
operational. We operationalize K(F, Fy;to) by developing the discrimination information
statistic as follows.

Given a random sample Tt,...,T,, from F, let T(1),...,T(n) be the n ordered
observations. To estimate H(F';to) in (2.3) we write

1
(2.9 A(Fsto) = ~log F(to) = g5 [ 1og (557 7(5)) do.

F(to)
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Now a natural estimate of (2.4) can be constructed by replacing F(t) and F(t)by Fp(t) =
15" JI(T < t)and Fo(t) = £ 57, I(T: > t). Also using a difference operator in place
of differential operator, the derivative of F~!(p) can be estimated by

( -1 ;
o (T(i+m) =T —m)), —=<p<_,
i=m-+1,...,n—m
n , m 1—1 i

(2.5) Um,n(p) = < %(T(z-{—m)—T(l)), pszi, - <p< e i=1,...,m
n n—m ¢—1 i
. —T(i - <=
5 (T(M) —T(E-m), p>——, ——<ps_,
li=n-m+1,...,n

It should be mentioned that we can adjust (2.5) for the end points using methods
described by Ebrahimi et al. (1994). However, our study shows that tests based on
adjusted and unadjusted estimators perform the same.

From (2.5), an estimate Hy, n(Fn;to) of H(F;tp) is

_ 1 1
26) Hpn(Faito) = — log Falto) — ——— f log(timn (B))dp
Fo(to) Jr.(to)

n—j7+1

= -1
og n

1 = n . .
- n_j+1glog%(T(H—m)—T(z—m)),

_;1__2“:10 w(T(i+m)—T(z’—m))
n—j+1i=j " om ’

for T(j —1) < to < T(), j=2,...,n, where T(;) =T(1) if i < 1, T(#) = T(n), i > n,
and m is a positive integer smaller than % and is called window size. If 0 < to < T'(1),
then

(27) Hyo(Faito) = == > 10g o= (T3 +m) = TG —m)).
i=1

It should be mentioned that if 5 = 0, then H,, ,(Fy,;0) coincides with the estimator
proposed by Vasicek (1976).
We estimate the right hand side of the equation (2.3) by

(2.8) Km,n(to) = log(l — to) + Hm,n(Fn;tO)-

Large values of K, »(fo) indicate that the residual lifetime distribution at age ?o is not
uniform. Therefore, for given m and n we reject Hy in favor of H, at the significance level
a if Ky p(to) = Cmon(to, @), where the critical point Cp, n(to, @) is determined by the
(1 — a)-quantile of the distribution K, »(to) under the null hypothesis Hp. In Equation
(2.8) if tp = 0, then K, »(0) coincides with the statistic proposed by Dudewicz and van
der Meulen (1981) for testing uniformity over (0,1).

The proposed test statistic in (2.8) for the uniform goodness-of-fit test under dis-
cussion has wider applicability than has been indicated previously. The following lemma
extends the applicability in one direction.
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LEMMA 1. (Ebrahimi and Kirmani (1996b)). Let X and Y be two non-negative
random variables with distribution functions Gy and Gz respectively. For any monotone

function ¢,
K(X,Y;t0) = K(G1,G2;t0) = K(#(X), d(Y); ¢(to)).

Lemma 1 simply says that testing for Hj is equivalent to testing for Hy, where Hy
is the true residual survival function of Y = Fy(T') at age Fo(to).

3. Implementation of the test

The asymptotic distribution of K, »(fo) can be obtained and is given in Section 4.
However, the sampling distribution for small sample sizes is interactable. We determine
the critical points Cp, »(to, @) of the statistics K, n(to) by the means of Monte Carlo
simulations for a equal to .01, .05 and .10.

For selected values of the sample size n(n = 5, 10,12, 14, 16, 18, 20, 25, 30, 35, 40, 45,
50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 170, 190, 200) we generated N = 10000 sam-
ples of size n from the uniform distribution on (0,1). The random number generator
used in the study is due to Ahrens and Dieter (1974). This random number generator
uses a multiplicative congruential method with modulus (2)3? and sets z;4; = az; mod
(232), where a = 663608941. For our purpose we use o = 1. It should be mentioned
that this generator has period 1073741824. The TESTRAND test was performed to this
random number generator and it did pass the test, see Karian and Dudewicz (1999). The
TESTRAND tests are a set of 19 chi-squared tests developed by Dudewicz and Ralley
(1981) that can be used to test quality of random number generators. For each sample,
the statistic Ko, »(to) was calculated for each m such that m < 2 and for different values
of 2g. For each m, ty and n, the upper a-quantile of the distribution Ky, (t0), Crm,n(to)
under the null hypothesis was estimated from the 10000 sample values of K, »(to) gen-
erated by this Monte Carlo experiment.

REMARK 1. It should be mentioned that we first used the IMSL uniform random
number generator with a = 397204094 to determine critical points Cp, n(to, ) of the
statistics Km n(to). It was noticed that this random number did not pass the TES-
TRAND test. Furthermore for the small sample sizes the critical values obtained under
this random number generator were substantially different from the ones given in Tables
1-4. In fact, the only example in the literature of this phenomenon that I am aware of
is by Chen et al. (1999).

To assess the accuracy of our estimates of Cp, n(to,@) one can use the methods
described by Dudewicz and van der Meulen (1984), see also Karian and Dudewicz (1999).
For example, when n = 10, ¢ = .1, m = 3 and a = .01, we estimated Cp, ,(to, )
by Z(9900) = .7839, where Z(1),Z(2),...,Z(10000) denote the order statistics of the
sample of N = 10000 values of K3 10(.1). In order to assess the precision of our estimate,
we construct 95% confidence interval for C310(.1,.01) using the methods described by
Dudewicz and van der Meulen (1984). The 95% confidence interval goes from .7485 to
.8053 which is accurate to at least £.0284.

For each n and #g, the m that gives the maximum Ci, ,(to, @) produces the most
conservative test, and the test that gives the minimum C,, »(to, @) produces the least
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Table 1. Values of m corresponding to minimum critical points of Km n(to)-

to

n 1 .2 3 4 .5 .6 T .8 9

5 2 2 2 2 2 2 2 2 2
10 3 3 3 2 2 2 2 4 4
12 3 3 3 2 2 2 2 4 4
14 3 3 3 2 2 2 2 4 4
16 3 3 3 2 2 2 2 4 4
18 4 4 4 3 3 3 3 5 5
20 4 4 4 3 3 3 3 5 5
25 4 4 4 3 3 3 3 5 5
30 5 5 5 4 4 4 4 6 6
35 5 5 5 4 4 4 4 6 6
40 6 6 6 5 5 5 5 7 7
45 6 6 6 5 5 5 5 7 7
50 7 7 7 6 6 6 6 8 8
60 7 7 7 6 6 6 6 8 8
70 7 7 T 6 6 6 6 8 8
80 7 7 7 6 6 6 6 8 8
90 8 8 8 7 7 7 7 9 9
100 8 8 8 7 7 7 7 9 9
110 8 8 8 7 7 7 7 9 9
120 8 8 8 7 7 7 7 9 9
130 9 9 9 8 8 8 8 10 10
140 9 9 9 8 8 8 8 10 10
150 9 9 9 8 8 8 8 10 10
170 9 9 9 8 8 8 8 10 10
190 11 11 1 10 10 10 10 12 12
200 11 11 11 10 10 10 10 12 12

conservative test. However, the simulation reveals that for large n(n > 100) the maxi-
mum and the minimum are very close. That is the most conservative test and the least
conservative test are almost identical. Furthermore, the least conservative tests showed
the highest power, in comparison with other statistics, against several alternatives con-
sidered in the power study reported in the next section.

Table 1 shows the least conservative window sizes corresponding to various sample
sizes and different values of #3. Observe that the least conservative m increases as n
increases. Tables 2-4 give the minimum Cy, »(%o, @) for several sample sizes and several
values of tg.

To implement the test statistic Ky, »(%0), we must first fix a window size m. We
recommend the least conservative m. Therefore,

(a) Use Table 1 to find the window size corresponding to sample size n and to;

(b) Use one of the Tables 2-4 to find critical point Cy, ,(to,a) and reject Hp if
Ko n(to) > Cm n(to, ). It should be mentioned that if n > 200 then use the asymptotic
distribution of K, »(to) under Hy from Section 4 to compute the approximate critical
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Table 2. Critical values of K n(to)-statistics (Crm,n(to, a))-

(a=.01)

to
n .1 2 .3 4 .5 .6 7 .8 9

5 2568 2.639 3.241 3.623 4.123 4.938 6.123 8.156 9.232
10 .7839 1.165 1.282 1.298 1.635 1.815 1.936 2.565 3.135
12 .7368 .8938 .9653 1.128 1.573 1.713 1.916 2.463 2.918
14 .6438 .7436 .8636 .9142 9754 1.173 1.865 2.130 2.716
16 .5831 .6158 .6306 .7945 .8125 1.065 1.785 1.988  2.703
18 .5639 .5973 .5928 .7381 .7926 1.063 1.712 1937 2.628
20 4312 5123 .5695 .6507 .7160 .9063 1.669 1.888 2.338
25 .4015 4168 .4836 5156 .7032 .8359 1.438 1.858 2.325
30 .3352 .3558 .4045 4636 .5573 .7150 1.012 1.801 2.323
35 .2895 3156 .3692 .4056 .5989 .6162 .8162 1.786 2.320
40 .2598 .2835 .3188 .3575 4212 .5336 .7406 1.577 2.296
45 2369 2756 .2698 .3109 .4026 .4563 .63217 1.331 2.193
50 .2187 .2308 .2592 .2982 .3548 .4424 .5930 1.235 2.106
60 .1963 .2131 .2398 .2638 .3158 .4163 .5063 .9632 2.036
70 .1892 .1992 .2063 .2346 .2853 .3589 4921 7763 1.783
80 .1697 .1783 .1835 .1965 .2406 .2685 .3821 .6187 1.629
90 .1415 .1489 .1678 .1893 .2107 .2561 .3468 .5680 1.404
100 .1315 .1386 .1554 .1718 .2009 .2381 .3093 .5187 1.268
110 .1298 .1318 .1495 .1665 .1863 .2275 .2862 .2965 1.162
120 .1267 .1287 .1365 .1532 .1795 .1938 .2659 .3789 .9190
130 .1213 .1197 .1293 .1483 .1603 .1873 .2413 .3656 .8910
140 1132 .1163 .1206 .1386 .1568 .1803 .2308 .3632 .8491
150 .0974 .1047 1179 .1325 .1486 .1750 .2219 .3478 .8283
170 .0895 .0965 .1126 .1227 .1363 .1613 .2087 .2936 .6875
190 .0863 .0892 .1102 .1213 .1258 1477 01993 2797 .6293
200 .0816 .0864 .0992 .1069 .1216 .1449 .1893 .2759 .6174

point.
The following example illustrates the calculation procedures.

3.1 Ezample
Grubbs (1971) has given the data on mileages for 19 military personnel carriers that
failed in service. The mileages are
162 200 271 320 393 508 539 629 706 778

884 1003 1101 1182 1463 1603 1984 2355 2880
An important question is whether the failure time for a personnel carrier with zero
mileage on it is exponentially distributed; this is discussed by Ebrahimi et al. (1992).
In fact, they were unable to reject that the failure time is exponentially distributed.
Here, we examine whether the remaining lifetime of a personnel carrier with ¢y miles
on it, could conceivably still have arisen from an exponential distribution. That is, we
test the hypothesis that the remaining lifetime has the distribution function of the form
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Table 3. Critical values of the Km. n(to) statistics (Cm,n(to,a)).

(a = .05)

to

1 2 3 4 .5 .6 T .8 9
5 2268 2.366 2.881 3.168 3.468 4.138 5.268 6.333 T7.015
10 .5923 6098 .7320 .7994 .8953 1.051 1.460 1.582 2.133
12 .5836 .6178 .6938 .7663 .8568 .9926 1.326 1.401 2.028
14 .5653 .5853 .6821 .7635 .7835 .9805 1.321 1.389 1.993
16 .4616 .4672 .5416 .5955 .6831 .8138 1.138 1.386 1.976
18 .4165 .4533 .4831 .5367 .5912 .7863 .9683 1.381 1.957
20 .3255 .3726 .4087 .4749 .5687 .7056 9132 1.380 1.921
25 2873 .3013 .3495 .4058 .4428 .6162 .8381 1.376 1.903
30 .2666 .2692 .3001 .3449 .3926 .4952 6591 1.322 1.835
35 .2456 .2632 .2866 .3069 .3685 .4136 .6053 1.203 1.754
40 2109 .2212 .2454 .2709 .3192 .3980 .5291 1.036 1.723
45 .1903 .2056 .2169 .2473 .2032 .3787 4635 .9805 1.719
50 .1750 .1849 .2061 .2250 .2676 .3308 .4335 .8327 1.620
60 .1632 .1803 .1835 .1916 .2033 .3106 4106 .7835 1.439
70 .1498 .1595 .1658 .1623 .1841 .2738 .3693 .6012 1.108
80 .1305 .1413 .1363 .1493 .1663 .2103 .3005 .4658 .9865
o0 .1186 .1323 .1205 .1402 .1605 .2016 .2813 .4069 .9391
100 .1060 .1118 .1254 .1385 .1585 .1892 .2421 .3907 .9101
110 .0938 .1167 .1173 .1268 .1403 .1605 .2268 .3615 .8B267
120 .0865 .1023 .1039 .1205 .1328 .1576 .2039 .3181 .7532
130 .0814 .0965 .1013 .1137 .1265 .1438 .1865 .2973 .6315
140 0813 .0903 .1003 .1093 .1185 .1403 .1805 .2813 .6121
150 .0812 .0887 .0954 .1064 .1182 .1399 .1794 .2749 .5002
170 0736 .0834 .0913 .0963 .1116 .1376 .1636 .2638 .5093
190 .0693 .0732 .0876 .0907 .1065 .1206 .1596 .2392 .4832
200 .0682 .0716 .0789 .0880 .0989 .1183 .1478 2264 .4677

3

F(z | to) = %—) = exp(—A(to)z)-

For illustration we use to = 350. Using the Lemma 1, we transfer the data to
y = 1~ exp(——%ti), i = 1,...,19. The question now is whether the conditional
distribution of Y — (1 — exp(—232)) given that ¥ > (1 — exp(—323)) is the uniform over
(.3,1). To answer this first we find the window size using Table 1, m = 4. Then, we use
the equation (2.8) for the transferred data y1,...,¥19 to compute Km,»(.3) = .107. For
n =19, m = 4 and a = .1 Table 4 gives the critical value .3885 < C110(.3,.1) < .5163.
Thus we cannot reject the null hypothesis that the remaining lifetime of a carrier with
350 miles on it has an exponential distribution. That is the exponential distribution
with mean 997 provides an adequate fit for the remaining lifetime of a personnel carrier

with 350 miles on it.
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Table 4. Critical values of K n(tg) statistics (Cm,n(to, @)).

(x=.1)

to
.1 2 3 4 5 6 7 8 .9

5 2031 2268 2.563 2956 3.013 3.923 4.987 5.328 6.921
10 .5666 .5752 .6712 .7385 .8588 .9990 1.392 1.485 1.997
12 .5428 5763 .6328 .6883 .8313 .9516 1.312 1.389 1.988
14 5027 .5415 5962 .6365 .7712 .9235 1.128 1.328 1.926
16 .4638 4938 .5621 .5701 .6532 .7758 .9912 1.316 1.903
18 .3987 .4286 .5163 .5628 .6382 .7033 8738 1.304 1.876
20 .3032 .3454 .3885 .4396 .5154 .6368 .8718 1.294 1.808
25 .2651 .3153 .3338 .3965 .4123 .5963 .7895 1.286 1.719
30 .2416 .2936 .3087 .3168 .3835 4317 .6155 1.138 1.693
35 .2189 .2598 .2938 .2958 .3316 .3852 .5585 1.038 1.613
40 .1896 .2012 .2221 .2414 .2972 .3444 4575 9132 1.593
45 .1728 .1835 .2059 .2153 .2493 3242 .4263 .8835 1.438
50 .1563 .1728 .1939 .1976 .2396 .3151 .3968 .7136 1.380
60 .1439 .1648 .1798 .1886 .2103 .2838 .3732 .6510 1.213
70 .1328 .1416 .1537 .1656 .1815 .2668 .3217 .5883 1.010
80 .1256 .1329 .1278 .1531 .1575 .2238 .2832 4557 .8526
90 .1073 .1138 .1203 .1368 .1501 .1938 .2398 .3938 .7932
100 .0951 .1001 .1119 .1237 .1403 .1658 .2097 .3354 .7486
110 .0895 .0987 .1039 .1302 .1356 .1532 .1983 .3031 .7052
120 .0813 .0905 .0963 .1196 .1205 .1483 .1825 .2828 .6315
130 .0773 .0867 .0985 .1103 .1178 .1368 .1703 .2531 .5085
140 .0731 .0803 .0903 .1063 .1102 .1305 .1603 .2457 .4982
150 .0720 .0789 .0858 .0946 .1061 .1246 .1566 .2399  .4942
170 .0695 .07T12 .0813 .0879 .1008 .1103 .1403 .2185 .4621
190 .0638 .0698 .0756 .0813 .0938 .1098 .1308 .2095 .4057
200 .0627 .0650 .0716 .0791 .0882 .1043 .1297 .2009 .4027

3.2 Power determination under seven alternatives

To provide information on the power of K, (o), the Monte Carlo study of the
power of our test was carried out under seven alternative distributions. For each sample
size n (n = 20,50,100), N = 10000 samples of size n were generated from the uni-
form (0,1) and for each alternative these samples were transformed to the alternative
distribution by the application of the appropriate inverse function.

We consider the following alternatives:

Ap:F(z)=1-(1-2)* if 0<z<1 (fork=15,2)

1
By :F(z) =2%1zF, o0<z< % =1-21(1 - )k, 5 <<l (fork=1523)
1
Cy : F(z) = .5 —2F71(5 — )*, 0<z<2
=.5+25"1(z — 5)k, %_1:51 (for k = 1.5,2)
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Table 5. Powers of .05 tests against some alternatives based on 10000 replications.

n  Alternative t9=.3 to=.5 to=.7

20 Ays 43 .30 .20
50 .69 .51 .33
100 91 .80 .52
20 A2 .54 .49 .39
50 .95 .81 71
100 .98 .88 .80
20 Bis .60 .51 .39
50 .79 .68 .52
100 .92 .82 .70
20 B .92 .86 71
50 97 91 .83
100 .99 .94 .90
20 B3 .98 9 .79
50 .99 .96 .93
100 1 .92 .86
20 Cis .18 1 .08
50 .39 .21 12
100 .75 .51 .39
20 Cq .61 .20 .16
50 .85 .74 .67
100 .99 .87 .80

Alternatives Ay, By and C) were also used by Stephens (1974) and Dudewicz and van
der Meulen (1981) in their studies for comparisons of several tests for uniformity. First
we computed K (F, Fy;to) using equations (2.1) and (2.2) for these alternatives. Under
the alternative Ay, K(F, Fo;to) = logk + % which is free from ¢o. (This is always true
as long as F and Fj are proportional; see Ebrahimi and Kirmani (1996a)). We observe
that as k increases the discrimination between the uniform and the alternative Ay gets
easier and easier for any to. Under the alternative By,

log(1 — to) — log(1 — 2%~ 1¢§) + log(k2F~1)
—1g k ko
K (F, Fo;to) = +IER R2((3)  log(§) — 155) — thlogta + ] if 10 < 3
logk + l—i—k if tg > %
We note that as k increases, for any tg, the discrimination between the uniform and the
alternative By gets easier. Finally under the alternative Cg,
log(1 — to) — log(% +2671(.5 — tg)*) + log(k2F1)
+-§_'_22i—:11((’.°5;_1t)5|;[(.5—t0)" Iog(.S—to)—(%)k log Z—ék-—-('—‘r’_km)—k] if to<i
log(1 — to) — log(.5 — 28~ 1(to — .5)%) + log(k2*~1)

ak—1x_1 (tg—.5)F 2 k i
+%—2k-1%zo—?5)"[ 0 " _(to—.5)* log(to—.5)—(3) log2—é,;] if to>1.

K(FyFO;tO) =
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Table 6. Power comparison of Km,n(to) versus the test with highest power.

n to=.3 to=.5 tg=.7
20 Ais =.52,K = .43 Q=.45K=.30 Q=.19,K=.20
40 =.75,K = .50 = .68, K = .47 Q=A47,K=.33
20 Az W?2=71,K =.55 W2 = 60, K = .49 W2 =.2K=.38
40 =.99,K = .93 Q=97,K = .84 Q=.45K=.6
20 By ENT=051,K=.59 ENT=.33K=.51 ENT=.12K=.39
40 ENT = 63,K=.72 ENT=.56,K=.58 ENT=.38,K =.46
20 B3 ENT =.82,K=.92 ENT=.62K=.8 ENT=.42K=.71
40 ENT=.93,K=.93 ENT=.91,K=.91 ENT=.68K=.72
20 Bs ENT = .95,K=.97 ENT=.93,K=.90 ENT=.78K=.79
40 ENT=1,K=1 ENT =1,K = .95 ENT = .94,K = .91
20 Cis U? = .33, K =.19 U?=.16,K = .12 U2 =.08K=.08
40 U? = 48, K = .36 U? = 37,K =.22 U? =23 K=.12
20 Cq U? = 60, K = .51 U? =.25,K = .20 U2=.18,K =.16
40 U? = 86,K =.79 U? =77, K = .69 U? = 51,K = .62

Q: log statistic, W2: Cramer-Von Mises statistic
ENT: Dudewicz and van der Meulen statistic, U2: Watson statistic

K: Our proposed statistic

Again we observe that as k increases the discrimination between the uniform and
the alternative C} becomes easier.

We estimated also the power of our test Ky, »(to) at to = .3,.5,.7. Table 5 shows the
estimated powers at significance level oo = .05. The powers for the K, »(to) statistic are
based on the window sizes reported in Table 1. These choices of m gave the maximum
power for our statistic. We observe that K,, »(to) performs very well. However, the
simulation reveals that the proposed test is generally more powerful for smaller ¢ than
larger to. We also observe that our test has higher power for larger k& than smaller k
which is consistent with the actual values of K (F, Fy;tg).

3.3 Power comparisons with other tests for uniformity

If L is the number of T;’s larger than ¢¢ then L has a binomial distribution with
parameters n and F(ty). Given L = £ the set of T; exceeding ¢ is a random sample
F(x)
Flto)”
conditional uniformity one can produce an independent identically distributed uniform
[0,1] sample by computing Il*}tt and test the null hypothesis Hy by applying any test of
uniformity to the £ resulting values.

Tests of goodness of fit of a uniform distribution have been proposed by many
authors, see Dudewicz and van der Meulen (1981). To compare the power of our proposed
test, we consider the Kolmogorov-Smirnov D, Cramer-Von Mises W2, Kuiper V', Watson
U2, Anderson Darling A2, log statistic Q, x? and the entropy based test of Dudewicz
and van der Meulen (1981), ENT against the alternatives Ay, By, Cx and for sample
sizes 20 and 40.

Given the findings of Dudewicz and van der Meulen (1981) Table 3, from their table

of size ¢ from the conditional survival function of Now, on the null hypothesis of
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we take the statistic with the highest power and compare it with our proposed test
Kpmn(to). In Table 6 we report the estimated powers at significance level a = .05 at
tg = .3, .5 and .7.

We observe that for the alternative B our proposed test K has the higher power
than the ENT test. Under alternatives 4 and C our test does not perform as well as
the test with the highest power. However, for larger ¢¢ our test is competitive with the
best test.

4. Asymptotic properties of Hp, n(Fy;to) and Ky, (to)

Our goal here is to obtain the asymptotic properties of Hy, »(Fn;to) and K, »(to).
In this section, the limits are taken as m,n — co and T+ — 0 unless otherwise stated.
The following theorem states the consistency of H, n(Fn;to) and consequently

Km,n(to)-

THEOREM 1. Let ty,...,t, be a sample from F with a density function f and a
finite variance. Then

Hunpn(Fai to) = H(F;to),
for any ¢o€[0,b],b < 1.

PROOF. First observe that given £, = Y ;- , I(t;—%o), where I(a) = 0 or 1 according
to a > 0 or a < 0, there is a sample of size Z;, from }%I (y — to) and 4, is Binomial
0

random variable. Now using Theorem 1 of Vasicek (1976) the result follows. This
completes the proof.

From Theorem 1 it is clear that our proposed test K, »(to) in (2.8) is a consistent
test.
To investigate the asymptotic distribution of K, »(to) first notice that for a fixed

toe[0, 8], b < 1 if we define

n—-m+1

(4.1) L(m,n) = Z log(Y (i +m) — Y (i) — log(1 — £o),
=0

where Y (0) = ¢ and Y(n + 1) = 1 with Y(1), Y(2),...,Y(n) are the order statistics
of the random sample Y}, ...,Y,, and m is a positive integer, then using Cressie (1976)
one can show that if m = o(nl/ 3) and Y3,...,Y, is a random sample from the uniform
distribution over (g, 1),

-1/2
(4.2) (3%) [L(m,n) + (n+2 — m){log (n+ 1) + 7 — R(1,m — 1)}],
is asymptotically standard normal as n — oo, where v is Euler constant .5772 and
R(l,m-1)= L5 +---+ 1 +1if m > 2 and R(1,0) = 0. (This result comes from the
fact that if Y is the uniform over (¢,1), then Y=t is the uniform over (0,1).) Thus,

6m 1/2
(4.3) (7) [L(2m,n) + (n+ 2 — 2m){log (n + 1) + v — R(1,2m — 1)}]
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is asymptotically standard normal. Finally, following similar arguments used by Dudewicz
and van der Meulen (1981) one can prove that

(4.4) (V6mn)[A(m,n) + log2m + v — R(1,2m — 1)],

is asymptotically standard normal, where m = o(n'/37%), § > 0 and A(m,n) = D
log 5%(Y (i + m) — Y (i — m)) — log(1 — to).

The following theorem gives the asymptotic distribution of K, »(to) which is the
finite mixture of normal distributions.

THEOREM 2. Under Hy, as n — oo and m = o(n/3-%), § > 0,
n
(45) P(Kmn(to) <) = 3 &(v6mk(y+log 2m+y— R(1,2m 1)) (/’é) 18k (1 )F,
k=0 )

where R(1,m —1) = L5+ -+ 2+ 1 if m > 2, R(1,0) =0 and ® is the distribution
function of the standard normal distribution.

Proof. The proof relies heavily on the fact that given £, = > " | I(t; — to), there
is a sample of size {;, from the uniform distribution over the interval (t9,1) and £, is

Binomial random variable with parameters n and 1 — t,.
Now, with some reorganization, Hy, »(Fn;tp) in (2.6) can be written as

I TR S T o P g
(4.6) Hin,n(Fnito) = ~ =3 ;mg 5——(T(i+m) —T(i —m)).

When #, belongs to an interval [0,b], b < 1, given ¢;, from (4.3) and (4.4) it follows that
Ko n(to) is asymptotically normal. Furthermore, using the fact that £;, is Binomial,

P(Kmn(to) <y) = 3 P(Kmnlto) <y | &, = k) (k) (1 - to)*t5™*

NE

a
Ii

0

2
M=

®(V6émk(y + log2m + v — R(1,2m — 1))) (E) (1 —to)ktn*.

x
1l

0]

This completes the proof.

Based on the asymptotic distribution of K, »(t9) under Hy (Theorem 2), approx-
imate percentiles can be obtained by the equation (4.6). A simple approximation to
(4.6) can also be obtained simply by replacing the average over k by the single normal
cumulative distribution function with k& = nty. That is,

(4.7) P(Kmn(to) <y) = ®(v6mnto(y + log2m + v — R(1,2m — 1))).

We have compared the percentiles of K,, »(to) for different values of n and ¢y using
the approximation given by (4.7) and estimated percentiles from Tables 2-4. It seems
that only for n > 200 our asymptotic result becomes reasonable. For this reason, the
Monte Carlo values of the percentages given in Tables 24 will be needed for most
practical applications.
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