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Abstract. The lifetime of an ordinary k-out-of-n system is described by the (n—k+
1)-st order statistic from an iid sample. This set-up is based on the assumption that
the failure of any component does not affect the remaining ones. Since this is possibly
not fulfilled in technical systems, sequential order statistics have been proposed to
model a change of the residual lifetime distribution after the breakdown of some com-
ponent. We investigate such sequential k-out-of-n systems where the corresponding
sequential order statistics, which describe the lifetimes of these systems, are based on
one- and two-parameter exponential distributions. Given differently structured sys-
tems, we focus on three estimation concepts for the distribution parameters. MLEs,
UMVUEs and BLUEs of the location and scale parameters are presented. Several
properties of these estimators, such as distributions and consistency, are established.
Moreover, we illustrate how two sequential k-out-of-n systems based on exponential
distributions can be compared by means of the probability P(X < Y). Since other
models of ordered random variables, such as ordinary order statistics, record values
and progressive type Il censored order statistics can be viewed as sequential order
statistics, all the results can be applied to these situations as well.

Key words and phrases: Sequential k-out-of-n system, sequential order statistics,
order statistics, record values, progressive type II censoring, maximum likelihood
estimation, best linear unbiased estimation, uniformly minimum variance unbiased
estimation, exponential distribution, Weinman multivariate exponential distribution.

1. Introduction

k-out-of-n systems are important technical structures which are often considered in
the literature. Such systems consist of n components of the same kind with independent
and identically distributed (iid) lifelengths. All components start working simultane-
ously, and the system will work as long as k components function. Parallel and series
systems are particular cases of k-out-of-n systems corresponding to £ = 1 and k = n,
respectively. Other examples of systems with k-out-of-n structure are presented in, e.g.,
Meeker and Escobar (1998). For instance, an aircraft with three engines will not crash
if at least two of them are functioning, or a satellite will have enough power to send
signals if not more than four out of its ten batteries are discharged. In the conventional
modeling of these structures it is supposed that the failure of any component does not
affect the remaining ones. Hence, the (n — k -+ 1)-st order statistic from an iid sample
describes the lifetime of some k-out-of-n system. Due to this connection, the theory of
order statistics is utilized in the probabilistic analysis of these models and in the related
statistical inference. For detailed expositions on order statistics we refer to David (1981)

307



308 ERHARD CRAMER AND UDO KAMPS

XD el ) ez 20 ~ RO
x® | Z®  Z® .. O L E 2(‘)‘1’25‘;‘52)
1-Fa(z ;)
X1 Z{n——l) Z{r=1) '
Fa() = Fu(2{y ")
- 1—Fn(z§72_1))

X,,(.n) — Zgn)

1

line minima XEI) <...< X,E")

Fig. 1. Triangular scheme for sequential order statistics.

and Arnold et al. (1992).

The assumption that the breakdown of some component does not influence the
components at work will generally not be fulfilled in real life. For example, the breakdown
of an aircraft’s engine will increase the load put on the remaining engines, such that their
lifetime should tend to be shorter.

Sequential order statistics have been introduced as an extension of (ordinary) order
statistics to model ‘sequential k-out-of-n systems’, where the failures of components
possibly affect the remaining ones. This can be thought of as a damage caused by
failures or, as mentioned before, as an increased stress put on the active components.
The model of sequential order statistics is flexible in the sense that, after the failure of
some component, the distribution of the residual lifetime of the components may change.
For a more detailed discussion we refer to Kamps ((1995), Chapter 1.1) and to Cramer
and Kamps (1996).

The sequential (n — r + 1)-out-of-n system, the lifetime of which is described by the
r-th sequential order statistic, can be illustrated as follows:

Let Fi,..., F, be continuous distribution functions, and let zfl,)l < z§,21)1—1 <. <

zﬁ;—l) be real numbers. Consider a triangular scheme (see Fig. 1) (Z j(-i))lsisnylsjsn_i_{_l

of random variables. The random variables (Z\” 1<j<n—i+1 are supposed to be iid
i <1< +
according to the distribution function

Fi() - Fi(z{7 0, . ©
(i—11; ——, lsic<n Flnt1 = 790,
1 - Fi(z1, iq0

which is F; truncated on the left at the occurrence time z?;i)l 4o of the (i — 1)-st failure

in the system. Supposing zfl;i)z 42 to be the realization of the sample minimum in
line ¢ — 1 (cf. Fig. 1), the next failure time X% is modeled as the minimum in the
sample Zl(i), ceey Z,(fzi 41 of iid random variables with survival function (1 — F;(-))/(1 —
Fi(z(iml) )). These random variables represent the lifetimes of the remaining n — i+ 1

1,n—i+2
components after the (¢ —1)-st failure. A precise description in the general set-up as well

as the joint density function of the first r sequential order statistics based on Fy, Fs, ...
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Table 1. Parameter choices for models of ordered random variables (cf. Kamps, 1999).

model aj, 1<j<n
ordinary order statistics 1

generalized order statistics vi/(n—3+1)
k-th record values kfn—j+1)

progressive type II censoring (N+1—j— i;i Ry)/(n—3j+1)

are shown in Kamps (1995).

In a previous paper (Cramer and Kamps (1996)), the authors were concerned with
maximum likelihood estimators (MLE) of the model parameters in a sequential k-out-
of-n system based on the distribution functions F; = 1—(1—- F)*, 1 < { < n, where F' is
an absolutely continuous distribution function and a4, ..., a, are positive real numbers.
This choice of the distribution functions leads to the hazard function o;41f/(1 — F)
of each component at work on level i + 1, i.e., after the i-th failure, such that the
parameters ay, ¢g2,... model the influence of a failure on the remaining components.
The MLEs o, ...,a} of oy, - .., @, based on independent abservations of some sequential
(n — r + 1)-out-of-n system turned out to be independent, inverted gamma distributed
random variables (see Cramer and Kamps (1996)). Moreover, it has been shown that
the estimators are sufficient, strongly consistent and asymptotically normal with respect
to an increasing number of independent observations. We also considered simultaneous
maximum likelihood estimation of both the model parameters and the parameters of
specific distributions such as Pareto and Weibull distributions.

As mentioned above, the model discussed in Cramer and Kamps (1996) is restricted

to a particular choice of the underlying distribution functions, i.e., F; =1 — (1 — F)*,
1 < i < n. Aside from the interpretation in terms of hazard rates, this limitation is
reasonable in order to reduce the uncertainty in the model to the parameters a;, as,. ..
and the distribution function F'. Although this setting seems to be very restrictive, many
models of ordered random variables are included in the distribution theoretical sense.
Table 1 gives some examples of well known models along with the respective choices of
the parameters a;, 1 < j < n.
For more details and further models we refer to Kamps (1995, 1999). Since, in the
following, the model of progressive type II censoring becomes an important particular
case, we describe it in some detail. This sampling scheme proceeds as follows: N objects
are subjected to a life test. The random variables representing their lifetimes are assumed
to be independent and identically distributed. At the time of the first breakdown, R;
objects of the remaining N — 1 working components are withdrawn at random from the
experiment, such that N — R; — 1 items remain in the test. At the time of the second
failure, R; items are removed randomly, etc. This procedure is continued until n objects
have failed and the others have been withdrawn from the experiment. The sampling
scheme is represented by the censoring scheme (Rj,...,R,) and the number of items
N =n+ Z?=1 R; at the beginning of the experiment. Recent results for progressive type
II censored samples are provided by, e.g., Viveros and Balakrishnan (1994), Balakrishnan
and Sandhu (1995, 1996) and Cohen (1995).

In this paper, we consider one- and two-parameter exponential distributions and
focus on three estimation concepts for the distribution parameters. In Section 2 we
introduce the model and derive an interesting interpretation of sequential order statistics
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in the case of underlying exponential distributions. Following (Section 3.1), we derive
the MLE of the scale parameter assuming that the location parameter is known. Some
properties such as consistency and asymptotic normality are presented. By calculating
the Cramér-Rao lower bound, the MLE of the scale parameter is seen to coincide with
the uniformly minimum variance unbiased estimator (UMVUE). Moreover, since the
MLE is linear, it is the best linear unbiased estimator (BLUE) as well. Section 3.2 is
concerned with the two-parameter exponential distribution. We calculate the MLEs, the
UMVUEs and the BLUEs of the distribution parameters. In contrast to the case of a
known location parameter, the estimators of the scale parameter turn out to be different.
Furthermore, we present several properties of the estimators. Obviously, estimation
results for the particular models given in Table 1 are included. In Section 4 we summarize
some results on the UMVUE of P(X < Y) based on order statistics from a sample, whose
joint distribution is a Weinman multivariate exponential distribution (for details see
Cramer and Kamps (1997b)). We illustrate how these results can be applied to compare
two different sequential k-out-of-n systems represented by sequential order statistics
X,El), . ..,X,Erl) and Y*(l),...,)ﬁ(r"’), respectively. Moreover, we point out that these
results apply to estimation procedures based on record observations as well as on those
based on progressive type II censored data. In these situations the resulting estimators
of P(X < Y) simplify considerably, if the location parameter is assumed to be unknown.

2. Sequential order statistics from exponential distributions

In the present paper, we consider exponential distributions as underlying lifetime
distributions. Given this assumption, the definition of sequential order statistics sim-
plifies considerably. Let the two-parameter exponential distribution be defined by its
survival function

2.1) 1—F(t)=exp{—t_T“}, t> p,

with location parameter 4 € R and scale parameter ¥ > 0. We denote this distribution
by Exp(u,9). For an excellent survey on the exponential distribution we refer to the
collection of Balakrishnan and Basu (1995).

The general definition of sequential order statistics based on continuous distribution
functions F1,..., F, is given by

(& _ : -1 vy _ G (y (-1 ;

XP = _min  FOUREO) - REE)+REEY), 1<isn
where X{¥ = —co and (Y}(i))lgiSn,ISan—i-}—l is a sequence of independent random
variables with )/j(i) ~ F; (cf. Kamps (1995), p. 27). In the case of exponential dis-
tributions (2.1), the inverse of F;(t) = 1 — exp{—(a;/9)(t — p)}, t > u, is given by
F7Y(z) = —(®/a;)In(1 — x) 4+ p, € [0,1). Applying this distributional assumption, we
obtain:

LEMMA 2.1. Let (Yj(i))lsis,l,lgjs,l_,-ﬂ be a triangular scheme of independent ran-

dom wvariables, where the random wvariables (Yj(i))lngn_iH are #id according to
Exp(u,?/;), 1 <i<n, with 4 € R and positive real numbers ay, . ..,an and 0.
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Sequential order statistics X ﬁl), - ,X,E") based on these random variables are then
defined by

J
1 1 j j—1 j k
(22) x¥= Yl(,n)’ X =x9" 4 Y1(,Jn)—j+1 —Hp=pt Z(}/l(,n)—k+1 — 1),
k=1
2<j<n,
where }/1(,]7.1)—_7'4-1 denotes the minimum of Yl(j), . ,Yé{)jﬂ, 1<j<n

Hence, the distribution of x9 - p is given by the distribution of the convolu-
tion of independent minima from exponential distributions with possibly different scale
parameters and common location parameter zero.

The situation in Lemma 2.1 could be paraphrased as follows: If » — 1 components
have failed, the residual lifetimes of the remaining components are supposed to be expo-
nentially distributed with scale parameters #/a, > 0,2 <r <n.

The joint distribution of X Q) yeon ,X,.(,T) is given by the Lebesgue density

1 r { T .

(2.3) fxf )X )(331, ceyEp) = (727‘—)'1% ;l:[l [a,- exp {——%(n — i+ 1) (z; — xi_l)}] ,
where ¢ = z¢g < 7 £ .-+ € z,.. This distribution coincides with the distribution
of the first r (out of n) order statistics based on a Weinman multivariate exponential
distribution (cf. Weinman (1966), Johnson and Kotz (1972), p. 268-269, Block (1975),
p. 303), which in Cramer and Kamps (1997b) is referred to as WME, (u,9,&), & =
(a1,...,04,). Hence, our results contribute to the analysis of Weinman’s multivariate
exponential distribution. Regarding related works in estimation theory, we are only
aware of point estimation results for the parameters o; given by Weinman (1966) and
for the entropy of the distribution (2.3) (cf. Ahmed and Gokhale (1989)).

Putting o1 = -+ = a, = 1, we obtain in (2.3) the joint density function of ordinary
order statistics X , ..., Xy based on iid random variables X1, ..., X, with distribution
Exp(u, 9).

Remark 2.1. In Lemma 2.1, the situation of sequential k-out-of-n systems is de-
scribed in a distribution theoretical way, which means that we do not assign failures
to components. This may be done by analogy with Heinrich and Jensen (1995), who
present a general, bivariate set-up in the sense of Freund (1961).

Starting with a scheme (1’}(1))19,]‘571 of independent random variables, where the
(Yj(l))lﬁan are iid according to Exp(p,9/a;), 1 < i < n, let x = 1(,1,1), x® =
Xé,z,i, which denotes the second order statistic from the sample X 1(2) = x4+ (Y;(z) -
M)I{},j(l);éyl(’l'z}, 1 < j < n. Obviously, we have Xézz ~ X51)+Y1(i)_1 —pt (cf. Lemma 2.1).
This description becomes complicated in the next steps, and thus we proceed as in
Lemma 2.1, instead.

3. Estimation of location and scale parameters

Throughout this section, we are concerned with the following situation. We take a
sample of size s of possibly differently structured (n; —r; + 1)-out-of-n; systems, 1 < r; <
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n;, 1 <i < s, with ; (dependent) observations each, and with known model parameters
(aij)lﬁiSS,ISjSTi' This leads to the set of data (xij)lﬁiSS,lﬁjSTi with z;; < --- <z,
1<i<s. .

The corresponding sequential order statistics are denoted by (ng))lsiSs,lgjgm
which, by assumption, are independent with respect to the index .

3.1 Known location parameter
First, we consider maximum likelihood estimation of the scale parameter 9.

THEOREM 3.1. The MLE of 9 is given by

1 s I . ' ~
- E ZZ(”: -J+ l)aij(Xg) _ X,.(:i 1))

=1 j:]
. 0 ,
with X,Ei) =p,1<i<s R= Zf:l Ti

PROOF. Considering the log-likelihood function

l('ﬁ Hy (am)z,]y (zw)z,g) = Zlog + Z ZIOg Qij

=1 j=1

) Z Z(ni — i+ Dayj(zij — i j—1) — Rlogd,

i=1 j=1
the assertion directly follows. O

Remark 3.1. (i) In the situation of ordinary type II censoring described by ordi-
nary order statistics, i.e., a;; =1, r; =7, n; =n,1<i<s, 1< j <r, the results
of Theorem 3.1 can be found in Lawless ((1982), p. 102) and in Johnson et al. ((1994),
p. 514) in the case of one sample (s = 1).

(ii) In the particular case a;; = o for all j, the estimator ¥* can be written as

-

1 s . ri—1 )
=7 Do |-+ X+ > X9 —nip
i=1 j=
1 s [ ri—1
=z o |(m—ri +1) (x5 - )+Z(X(J)
i=1

which, for s = 1 and a; = 1 for all 4, leads to the representation usually found in the
literature (see, e.g., Epstein (1957), eq. (3), u = 0).

(iii) The result in terms of progressive type II censoring with s = 1 is given in Cohen
(1995) (u = 0).

The MLE ¥* possesses some interesting properties, which we summarize in the
following theorem.

THEOREM 3.2. In the above situation, with 9* = ¥*(R), we find that



ESTIMATION WITH SEQUENTIAL ORDER STATISTICS 313

(i) 9* ~T(R,9/R), i.e., 9* is a gamma distributed random variable with parame-
ters R and ¥/R. Its density function is given by

forlt) = ((gw)) RS 450

(il) BE(W*)* = %Zg—le!r)!(%)k, k € N; in particular, E¥* = ¥ and Var(J9*) = %.
Hence, ¥* is an unbiased estimator of ¥.

(iii) 9* is sufficient for ¥.

(iv) (9*(R))g is strongly consistent for ¥, i.e., 9*(R) — 0 a.e. w.r.t. R — oc.

(v) (9*(R))r is asymptotically normal, i.e., VR(9*(R)/9—1)—%MN(0,1) w.r.t. R —

ProoF. (i), (ii), (iv) and (v) are based on the fact that normalized spacings of
sequential order statistics with F' = Exp(0,1) are independent and again standard ex-
ponentially distributed (cf. Kamps (1995), p. 81; see Viveros and Balakrishnan (1994)
for the particular case of progressive type II censoring). Hence,

1 i i—
5 =i+ Deayy(XP - XTV) ~Exp(0,1), 1<i<s, 1<j<n,

and all these random variables are independent (X S?) =pu,1<i<s).
(iif) follows applying the Fisher-Neyman factorization criterion for sufficient statis-

tics (cf. Lehmann and Casella (1998), p. 35). O

THEOREM 3.3. The MLE ©¥* attains the Cramér-Rao lower bound. Since ¥* is
unbiased and linear, it coincides with the UMVUE and the BLUE of ¥.

PRrRooF. The log-likelihood function is shown in the Proof of Theorem 3.1. Differ-
entiating twice with respect to ¥ yields

32 i R
Wl(’ﬂ;#, (@ij)igs (X9)ig) = Z Z(nz j+ Doy (XSG — x40y + ok
i=1 j=1

Noticing that
1 ; i
5=+ Day(XP - X7 ~Exp(0,1), 1<j<m, 1<i<s,

(cf. the Proof of Theorem 3.2), we obtain for the Fisher information

2
(5(‘292“19 By (au)zjv (X J))Z,]))

The Cramér-Rao lower bound is thus ¥2/R (cf. Lehmann and Casella (1998), p. 116-120).
Since 9* is linear, unbiased and Var(9*) = 9%/R (cf. Theorem 3.2 (ii)), the MLE 9*
coincides with the BLUE and the UMVUE. O

It is possible to calculate the BLUE of ¢ by the classical GauB-Markov theorem as
well. This derivation is based on the covariance matrix of the sequential order statistics.
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Although we have already calculated the BLUE we compute the covariances, since we
need them in the next section.

In the case of an underlying exponential distribution (F = Exp(u,9)), the sequential
order statistics X S), X, f?") follow the distribution of order statistics from a Weinman
multivariate exponentla.l distribution WME,, (1,9, &), & = (®u1,...,Qin,), 1 <i < s.
We utilize this fact to calculate the covariance matrix ¥ of the sequentlal order statistics

x3. . xM 1<i<s.
From the independence assumption we conclude that the covariance matrix ¥ is a
block diagonal matrix ¥ = diag(%,,...,X;), where £; € R™*"™ is the covariance matrix

of (X (1) X,E:"))’ , 1 <14 < 5. We evaluate this expression for one block Z; applying

*f )"

the moment generating function of the Weinman multivariate exponential distribution,

ie.,
-1

( ) n,'—l 19 Ty
ex t X '7 = 1-— - tr
P Z jl;[(] (ni — ])ai,j+1 kg_l

(cf. Johnson and Kotz (1972), p. 269). This leads to the covariances (1 <j <k <r;)

Cov(XY X(k)) = Var(X(J)) = 9? Z:[(nZ v+ Doy 2 =9% (J) say.

*1 )

v=1
Hence, the covariance matrix of (XS), e ,Xi:i))’ is given by
ol o) 0 o]
dV D 2 L B
¥ = 92 a,(-l) af-z) az(?’) aEs) = 9?A,, say,
a(.l) al(.z) a’z(3) ag"i)J

with al(l) < az(-2) <o < a(r‘). Choosing a;; = 1 for all 1 < j < r;, &; reduces to the
covariance matrix in the case of a sample of ordinary order statistics from an exponential
distribution (cf. Sarhan (1954), Balakrishnan and Cohen (1991)). The inverse of A; is
given by

rbz(l) +b§2) _b£2) 0 0 ]
-5 P 46 —p® 0
A= 0 AL L A
b(n
| O

with bgj) = [(ns — 7 + Day;]?, 1 < j < ry, (cf. Roy and Sarhan (1956), Graybill (1983),
p. 187).

By this, we may complete the straightforward calculation to obtain the BLUE of ¢
(cf. Theorem 3.3). The GauB-Markov theorem leads to the representation

(ﬂ'A-lﬂ)—lﬁ'A-lf=(Z@A;lﬁ;) zﬁ, ML XY
i=1
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of 9%, where A = diag(Ar,...,Ay), X = (XD, x0 xQ .. x5y, 8
(Br,....Bs), and B; = (X xTy /9 1<i<s.

*1 )

Remark 3.2. Choosing particular values for the parameters a;;, the preceding cal-
culations lead to results for the particular models as pointed out in the introduction.
Previous results deal with only one sample, i.e., s = 1. For ordinary order statistics we
refer to Epstein (1957) and Engelhardt (1995). Progressive type II censoring is consid-
ered in Cohen (1995) and Balakrishnan and Sandhu (1995, 1996). In the model of record
values, i.e., a;; = 1/(n; — j + 1), the estimator ©* simplifies as follows:

e

The latter expression can be found in the dissertation of Houchens ((1984), p. 26) (see
also Arnold et al. (1998), p. 122).

3.2 Unknown location parameter
As in the preceding section we start with the MLEs of the distribution parameters.
We omit the proof since it proceeds similar to the case of a known location parameter.

THEOREM 3.4. The simultaneous MLEs of p and ¥ are given by
i = min{Xﬁ), X,.((i)} and

ZZ(n, J+1)a,J(X(J) X(] ), respectively,
1—13 1

. [1] ~ .
with X9 =, 1<i<s, R=Y"_,r

Now, we focus on some properties of the stated MLEs. First of all, it is shown
that the MLE [ of the location parameter and the MLE ¥ of the scale parameter are
independent. We make use of the following auxiliary result:

Let (V;);en be a sequence of iid random variables with V; ~ Exp(0,1), let (a;)jen
be a sequence of nonnegative real numbers and m € N. Then the following equations
hold for z,t > O:

31) P ZV <z+ Zaj V> at,5=1,...,m
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The second equation in (3.1) follows by induction on m.
Equation (3.1) enables us to establish the mentioned result.

THEOREM 3.5. (i) The MLEs § and ji are stochastically independent.
(i) & ~T(R—1,9/R), ji ~ Exp(s, 9/ 5_, (nicear)).
(ili) (,9) is a complete sufficient statistic for (u, 7).

PROOF. In the case s = 1, assertions (i) and (ii) are obvious (cf. Engelhardt
(1995), p. 85). Hence, suppose s > 2. From Theorem 3.4 we deduce the following
additive decomposition of ¥:

I=Z Z S (s — 5+ Dagy (XD — XU
1—1 j=2
1 2 (1) 2 -
tx Doman (X — ) — [ D micu | (- p)
=1 i=1
= 9] + 93, say.
‘The random variables 9] and ¥ are independent, because ¥} is a function of the spacings

X(J) X(J b , J = 2, and 95 depends only on the minima X,Ei), 1 < i < 5. Moreover,

since [ is a function of XS) , 1 £i < s, 97 and i are independent, too. Hence, it
is sufficient to prove that ¥3 and j are independent. We establish this assertion by
calculating the joint cumulative distribution function of i and ¥5. Putting a; = n;a4

and Y; = (X(l) —p) ~ Exp(0,9/a;), 1 < i < s, we rewrite 9} as follows

1 (< s ) o
= E (Z ai)/i - (Z ai) Y.l,s) ) M= }/]_,s + H, Yl,s = ._I{un )/;.'.
i=1 1=1 1=1,...,8
Hence, the calculation proceeds as follows (z > 0,y > p):
PW; <z, i<y

=P (Zs:aiYi - (Zs:ai) Y1 < Rz,Y1, < y—#)
i=1

i=1

=ZS:P (Zs:a,-Yi— (Zs:az) Vis <R,V <y-uY; =Y1,s>

=1

8 8

o u
—Z/ aYi<Re+| Y a|zz2<Yii#j| dP¥(z)
1—1 A#T i=1,i%#j
y—u s
:Z/ -2 Y o (1 “Rz/ﬂZ(R“’/ﬂ) ) dPY (z)
j=170 i=1,ij v=0

g e

where we have used (3.1) and that a;Y;/¥ ~ Exp(0,1). Having the preceding remarks
in mind, this proves the independence of ¥ and ji.
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Obviously, 95 follows a gamma, distribution with parameters s — 1 and ©/R. Since
97 ~ (R — 5,9/R) (cf. the Proof of Theorem 3.2) and ¥} and ¥} are independent, we
conclude that ¥ ~ I'(R — 1,9/R). The distribution of 4 immediately follows from the
representation of the joint cumulative distribution function.

The sufficiency of (f,9) is deduced from the Fisher-Neyman factorization of the
likelihood function. The completeness is proved as in Chiou and Cohen (1984). O

Remark 3.3. Suppose that Xi,...,X, form an iid sample from a normal popula-
tion with parameters p and o2, It is well known that the maximum likelihood estimators
of pand o2, ie, X =137  X;and s =137 | (X;— X)? are independent (cf. Bickel
and Doksum (1977) p. 20). Moreover, their distributions are given by M(u,0?/s) and
(s/o%)x%_,. Considering statements (i) and (ii) of Theorem 3.5, we observe an anal-
ogy in our situation, i.e., the estimators fi and ¥ are independent with distributions
Exp(p, 9/ ;_; nici1) and (R/ﬂ)xg(R_l). For the case of one type II censored sample
see Epstein and Sobel (1954) and David ((1981), p. 153). If we consider x in both situ-
ations as location parameter and ¥ and o? as scale parameter, respectively, the analogy
is striking.

From Theorem 3.5 we find the following results similar to those given in Theorem 3.2
for a known location parameter.

%@mm&LmE@hﬂﬁﬁwwmemmmmmnmz%m
and Var(d) = E5192. Hence, ¥ = 5E79 is an unbiased estimator of 9.

(it) (ﬁ(R))R is strongly conszstent for 9, ie., 19(R) — 9 a.e. wr.t. R — oo.
(iii) (9(R))g is asymptotically normal, i.e., \/—(19(R)/19 - 1)—-4N(0,1) w.rt. R —

PROOF. Assertion (i) is obvious. Statement (ii) is seen as follows: Writing

(32) B(R) = 0°(R) - =L () )

we conclude from Theorem 3.2 that 9*(R) — ¢ a.e. w.r.t. R — oo. Moreover, we have
from Theorem 3.5 that Y, = (3°;_; nicvi1) ((R) — p) ~ Exp(0,9). Hence, we find for
e>0

ZP({ 1n,om((R) l ) ZP(Y/R>5) gexp{——%}

se 1
= gexp {_3} 1 — exp(—¢/V) <

Applying a result given in Serfling ((1980), 1.3.4., p. 10) we conclude that Y;/R — 0 a.e.
w.r.t. R — oco. This establishes the assertion.
(iii) From Theorem 3.5 we know that #(R) ~ I'(R — 1,9/R). Hence,

R (@— +l) < 20,1)

R-1 9 R
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(cf. Johnson et al. (1994), p. 340). An application of Slutsky's Lemma (cf. Serfling
(1980), p. 19) proves the result. O

COROLLARY 3.2. (i) E(j)* = Z? 0 (ki'l”.,(_zj d ) 1¥=9; in particular, Eji =

g i

e S and Var = )2. Hence, the mean squared error (MSE) is
S e (B) = (g o) e ; P
given by MSE(j1) = (Sl’—)

. Thi (g1

(ii) (a(R))g is asumpmnmfh; unbiased provided Y .°, nja; = o0, i.e., Ei(R) —
w.r.t. R —oo. If 302, nia; < oo, the asymptotic bias is given by 9/ 3 oo — Mty
(iii) ((R))r is strongly consistent iff Y .o nion = oo.

PROOF. Assertions (i) and (ii) are deduced immediately from the exponential dis-
tribution of . The consistency is derived from the result that convergence of a sequence
of distributions (P¥*), to a degenerate distribution ¢; is equivalent to convergence in
probability of the sequence (Y;); to the point ¢t (cf. Serfling (1980), p. 19). It is eas-
ily seen that convergence in distribution to a degenerate distribution, i.e., g, holds iff
> ooy miay = oo. Additionally, the sequence (jfi(R) — ) g is decreasing and nonnegative.
Hence, a well known result yields that convergence in probability and convergence almost
everywhere coincide provided these assumptions. O

Since ¥ = %ﬁ is an unbiased estimator of ¥, we obtain an unbiased estimator [
of the location parameter u via a bias correction, i.e.,

_ (znzaﬂ)_l&.

Theorem 3.6 gives the variances of /i and U as well as their covariance. It extends a
result quoted in Cohen (1995) for s = 1 and ordinary order statistics.

THEOREM 3.6. (i) The UMVUE of ¥ is given by J. The variance of ¥ is

,192
R—-1"

Var(d) =

(i) The UMVUE of u is given by fi. The variance of ji is
R
(R = 1)(37=y mcin)?

(iii) Cov(f,d) = L 92,

(R-1) , Mol

92

Var(i1) =

PROOF. The theorems of Rao-Blackwell and Lehmann-Scheffé yield the optimality
of 9 and it, respectively. The values of the variances follow from the preceding corollaries.
In case of /i we have to take into account that i and 9 are stochastically independent. O

Asymptotic properties of the UMVUEs are obvious and can be derived directly from
Corollaries 3.1 and 3.2 applying the results for the MLEs. Thus, we omit the details.
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In the case of a known location parameter we have seen that the MLE, the UMVUE
and the BLUE of 9 coincide. This property does not generally hold true in the case of
an unknown location parameter, because the MLE f of u is nonlinear if s > 2. In the
following, the BLUEs of 1 and ¥ are deduced from the GauB-Markov theorem, which

yields the following matrix representation:

0} ..

(33 (V202 — (6, 1215, 12) (5, Lo 7R,
HBLUE

where 8 = (B1,...,8s) and §; = ([niaar] ™Y, X5 (i — G+ D] ™, 5 [(ni =5 +

Dai;]l™Y), 1 <4 < s. Ig denotes the vector (1,...,1)" of dimension R. The covariance

matrix of the BLUEs is given by

07 _ -

Cov( BLUE) = (B, Tp) A~Y(8, T)) "0
UBLUE

Evaluating these matrix expressions we obtain the following theorem. The proof follows

from equation (3.3) by some lengthy calculations, and it is therefore omitted.

THEOREM 3.7. Let R=Y 1 r,c l1=RY;_(mci)® - (3, niag1)? > 0 and
xQ=0,1<i<s.
The BLUEs of . and ¥ are given by

YBLUE = C[(Z(n,;au)z) Zz(nt —-Jj+1 a,J(X(’) Xﬁf'l))
i=1 i=1 j=1
(Z n,aﬂ) Z(n,a,l)QX(l)]
KBLUE = € RZ(" azl)zx(l) (z n,au) ZZ(n, -j+1 a,J(Xg) - ij_l))

i=1 i=1 j=1

Remark 3.4. (i) The condition ¢=! > 0 in Theorem 3.7 is fulfilled but for the
case of record values with only one observation in each sample, i.e., a;; = 1/n; and
r; =1,i=1...,s. Applying the Cauchy-Schwarz inequality this is directly seen from
the inequality ¢c=! > (R — 8) Y ;_; niag1 > 0 with equality in the first inequality iff
a1 = 1/n;, i =1,...,s. If we consider this particular model, we have R = s and the
matrix (8, Ig)’A~1(8, Ig) given in (3.3) is A = s(] ;). Observe that A is singular. In
this situation a linear unbiased estimator of (u,?) does not exist. It is only possible to
deal with so-called estimable linear combinations of y and ¥. Here, the BLUE of p + 9
is given by 2377 ; XS).

(ii) From equation (3.3) we derive the alternative representation

i=1

ri—1
YBLUE = — Z(Z (ni — 3+ 1)ou; — (ny —j)az:,m)(XiZ) — UBLUE)

+(n; — i + Do, (X, ( ) _ uBLUE))
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In the particular case of an ordinary k-out-of-n system and s = 1 this yields the result
of Epstein (1957).

(iii) In the case s = 1 the estimators given in Theorem 3.7 simplify considerably.
We obtain the representations:

1 & _ ; i
UBLUB = — > (m—j+ D (X - XY, psrve = X§) - dpLue.

=2
For completeness we give the covariance matrix of the BLUEs in an explicit form,
ie.,
9
Cov ( BLUE)
UBLUE

_ 2 1 (Efﬂ(mau)z — Yo i ) _
Ry (niain)? — (35 mioan)? \ — D011 micy R

Remark 3.5. As in the model of a known location parameter, particular cases are
found in the literature. For references see Remark 3.2. Considering the model of record
values, we have a similar simplification of the proposed estimators (for the BLUEs let
R>s+1andfor s=11letr >2):

MLE:  f=minX® =Xy
IR = Lo xip
UMVUE: ji= (1 n §2_1) min XV — i - ix,f?’ = m— 1(r1X£}) - X))
SR SR S S T - o=t L (xtro _ x)
) R___1,_1 si T R_1P = rl_—l(X - X.0)

BLUE:  pupLue =

i =1 1
RZX(” sZX(T = Tl_l(anl)—X,E?))

=1_1 (r) _ 31
= xlr) _
Ty — 1( *1 X*l )

YBLUE = Z X(Ti) X(l)
The expressions for the BLUEs (s = 1) are given in Ahsanullah ((1995), p. 45) (see also
Arnold et al. (1998), p. 127). It turns out that for s > 2 all estimators are different
whereas in the case s = 1 the BLUEs and the UMVUEs coincide. The mean squared
errors of the estimators in the record model are subsumed in Table 2.

The preceding results can be utilized to construct statistical tests an confidence
bounds w.r.t. the parameters ;1 and ¥. For instance, we consider the location param-
eter 4. We want to decide whether the location parameter is given by po = 0. The
corresponding decision problem reads

Hy:u=0eA:u#0.



ESTIMATION WITH SEQUENTIAL ORDER STATISTICS 321

Table 2. Mean squared errors in the record model divided by ¥2.

MSE/ 92 I ?
MLE ~ *
UMVUE (R_Rl =
BLUE s(RR—s) Rl—s

Considering the MLEs of u and ¥, we make use of the ratio of the MLEs, ie., T = ﬁ/@.
By Theorem 3.5, ji and 9 are independent and the distribution of T does not depend on
the parameter ¥ (cf. Remark 3.3). Hence, the ratio (R/[(R — 1) Y_;_, niu])T follows
an F-distribution with 2 and 2(R — 1) degrees of freedom. For a similar result in the
uncensored case we refer to David ((1981), p. 153).

The present result leads to classical tests. A similar observation holds for the test
procedures proposed in Cramer and Kamps (1996), which are applied to decide whether
the observed (n — r + 1)-out-of-n system is an ordinary one or a sequential one. It
turns out that the considered short-cut tests are well known in the context of testing
homogeneity of variances from normally distributed populations. In particular, Test A
is known as Hartley’s test and the likelihood ratio test coincides with Bartlett’s test,
respectively.

4, Comparing two sequential k-out-of-n systems

The estimation of P(X < Y), where X and Y are independent random variables
is considered, e.g., in stress-strength models and in the comparison of two treatments.
If X and Y are stochastically independent and exponentially distributed with the same
location parameter y, i.e., X ~ Exp(u,?;) and Y ~ Exp(u,?2), then P(X <Y) is given
by the ratio

Jo
U1 + 9 '

In a previous paper (see Cramer and Kamps (19975)), the authors derived the UMVUE of
P when sampling is from two Weinman multivariate exponential distributions WMEy, (u,
Y,a), & = (o1,...,0an,), and WME,,(4,92,8), 8= (B1,---,0n,) (see (2.3)), respec-
tively, with a common location parameter u. Subsequently, consider two independent
samples of type II censored sequential order statistics Xﬁl), X ,.(,r‘) and Y,,(l), e ,Y,.(T’)
based on exponential distributions Exp(u, ¥1/;), i > 0,1 < i < n,, and Exp(u, %2/5;),
Bj > 0, 1 < j < ng, respectively.

In case of a known location parameter the UMVUE of P is given by the piecewise
defined estimator

P=P(X<Y)=

nlal(Wl—u)) :

Fll—-ryliry,————=1, if njoy(Wy —pu) <n Wy —

. ( T T e Wa = ) 100(Wh — p) < npfy (Wa — )

d l—F(l—’I‘l l'T‘Q'M) if nlal(Wl—/.L) >n2,61(W2—,u) ,
)+ ’TL1O£1(W1—,M) ?

where W, = L E:;l(nl—z'+1)a,-(X£i)—X£i_l)),Wg= 1 Z;f__l(n2‘_‘j+l)ﬁj(Yt(j)-

nion nzf:

YU _1)), XO—-y©® —0and F (a, b; c; ) denotes the hypergeometric function.
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A similar, but in general more complicated representation holds in the case of an
unknown location parameter (cf. Cramer and Kamps (1997b)). In this situation, we
restrict ourselves to a special case, i.e., nja; = naB, where the UMVUE P of P(X<Y)
simplifies considerably. Denoting by Z = min{X 2 Y*(l)} the minimum of the combined
sample, we obtain the representation

(r =W, — Z)

(4.1) P= (ri—-1D)(Wa=2Z)+ (ro — 1)(Wy - Z)°

Although this assumption seems to be very restrictive, it includes some important par-
ticular cases. First of all, if the estimation of P is based on the observation of record
values of the underlying distributions, we have @y = 1/n; and ) = 1/n; (see Table 1).
Hence, the preceding assumption is fulfilled and the simplified estimator given in (4.1)
can be used. Moreover, if all observed values are upper record values, the estimators W,
and W, are simple, too. We find W) = X and Wy = v (see Table 1), such that
only the largest and the smallest observed record values in each sample are necessary to
estimate P(X <Y).

Another interesting model leading to the ratio (4.1) is given by two progressive
type II censored samples with the same sample size N. From Table 1 we conclude
that a; = N/n; and 8, = N/np. Thus, for minimum variance unbiased estimation
of P(X < Y) by means of data from two arbitrary censoring schemes (Ry,...,Rn,)
and (S1,...,8n,) with N = 3" R, +n1 = Y 2, Si + ng, representation (4.1) can be
utilized.

An important feature of the estimator P is given by the fact that it is possible to
calculate its density function ¢, i.e.,

(1 _ t)r1—2t7'2—2
(1 + (!T2—1)‘l91 _ 1) t)r1+r2—1’

(r1—1)92

p(t) =c- te(0,1),

where c is a normalizing constant. This is a particular Gauss hypergeometric distribution
(cf. Armero and Bayarri (1994), Johnson et al. (1995), p. 253). Some properties, such
as moments of arbitrary order, the mode and some symmetry properties are derived in
Cramer and Kamps (19975).

Remark 4.1. (i) The set-up leading to the estimator P in the case of an unknown
location parameter extends an approach of Bai and Hong (1992), who consider the case
of non-censored data from independent exponential distributions (o = --- = Olp, =
B1 =+ = Bn, = 1). The derivation of the estimator presented in Bai and Hong (1992)
contains an error, and therefore the resulting estimator is not the UMVUE of P(X < Y).
In this situation, a correct derivation of the UMVUE of P(X < Y) and the estimator
itself are shown in Cramer and Kamps (19974).

(ii) For special choices of the parameters oy, 8; (01 = -+ = ap, = B = -+ =
Bn, = 1) and 7y, 73 the representation of the UMVUE P* leads to the results of Tong
(1974) for the non-censored case and to those of Bartoszewicz (1977) for the type II
censored case.

The results can be applied in comparing two independent sequential k-out-of-n
systems in step r based on Exp(u, ¥ /a;) and Exp(p, ¥2/c;), 1 < i < n, respectively, with
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known parameters aj,...,0y,. After the (r — 1)-st failure in both systems, the lifetime
distributions of the remaining components are given by (T3 ~) Exp(y, 91/, ) and (T ~)
Exp(u,¥2/a,), respectively, which lead to the quantity of interest P(T} < T3) = P.
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