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Abstract. The problem of the nonparametric minimax estimation of an infinitely
smooth density at a given point, under random censorship, is considered. We es-
tablish the exact asymptotics of the local minimax risk and propose the efficient
kernel-type estimator based on the well known Kaplan-Meier estimator.
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1. Introduction and some definitions

Suppose Ti,...,T, are iid random variables (lifetimes) with common distribution
function F' and density f and suppose Ci,...,Cy, are iid random variables (censoring
times) with common distribution function G. Assume that the lifetimes and censoring
times are independent. According to the classical random censorship model, one observes
the bivariate sample (Z1,81), ..., (Zn,6n), where Z; = min(7T;, C;) and §; = I{T; < C;}.
Estimation problems with censored observations arise often in lifetitne research, and in
medical and biological applications the random censorship may be a realistic model. We
suppose F' and G are unknown and our goal is to estimate the density f(z) at a given
point z, using the observed data.

The problem of density estimation under random censorship is not new and has long
been treated in the literature (see Mielniczuk (1986), Lo et al. (1989), Kulasekera (1995),
Huang and Wellner (1995) and further references therein). Many interesting aspects of
the problem were investigated in those papers and all these studies led to a better
understanding of risk computations for Kaplan-Meier based estimators. However, in the
context of the well established minimax estimation framework, the issue of optimality
of considered estimators remained open. Typically, the notion of asymptotic optimality
is associated with the so called optimal rate of convergence of the minimax risk. It
is an interesting and challenging task to derive the exact asymptotic behaviour of the
minimax risk in the density estimation problem and to find an estimator achieving this
asymptotics. Results of such kind have only been obtained in a limited number of studies
for models with independent identically distributed observations.

We now elucidate all the above mentioned notions. To make the problem of minimax
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density estimation feasible, one typically restrict oneself to a certain nonparametric class
of densities F described usually by some smoothness assumptions. As a measure of
quality of an estimator f, introduce the mazimal risk of the estimator and minimaz
risk:

Ro(fus F) = Ro(fu, Fox) = Jsc‘elg_Ef(fn(x) — f(2))?,

(1.1) To(F) = ro(F,z) = i}lfRn(fn,f, x),

where the infimum is taken over all estimators f,,.

The minimax risk expresses the least possible mean loss when the worst case happens
and, in a way, reflects the complexity of the estimation problem over the class F. In
practice, however, only one density is in the background. This raises the question how
to characterize the difficulty of estimation problem contributed solely by this particular
curve. A natural way to do this is to localize the risk function. To be more precise, let T
be a topology on the class F. For each neighbourhood V' € T define the local mazimal
risk of an estimator f,(z) and local minimaz risk as R,(f,,V) and r, (V) respectively.
The estimator f, is called locally asymptotically minimaz (or just efficient) at f if there
exists a neighbourhood Vj 3 f such that for any neighbourhood V, f € V C V§ (from
now on we will just say: for any sufficiently small neighbourhood of f)

Ru(fn,V) _

V)

with the convention 0/0 = 1.

Ibragimov and Hasminskii (1982) derived the exact asymptotics of the global min-
imax risk over a class of multivariate densities with compactly supported characteristic
functions. The exact asymptotic behaviour of the local minimax risk for the class of
analytic densities was studied in Golubev and Levit (1996) and in Belitser (1998), in
noncensored case and under censorship, respectively. The major difficulty for the class
of analytic densities is that there are no efficient kernel estimators with compactly sup-
ported kernels due to the phenomenon of the “long-range reciprocal memory” contained
in two separated sets of values of an analytic function. Therefore, the censoring may
cause problems in estimation of analytic densities. However, in Belitser (1998) it has
been shown that one can choose a kernel with exponentially decreasing tails under con-
dition that censoring is not of severe influence. The proof of efficiency of the estimator
is based on the martingale technique and is rather involved.

In this paper we consider a class of infinitely smooth functions, somewhat broader
class than the class of analytic functions. In this case, as we show, there are efficient
estimators with compactly supported kernels. This facilitates also the use of the result
of Lo et al. (1989) about strong representation of the Kaplan-Meier estimator by a
sum of independent random variables in the proof of the upper bound. The treatment
of the lower bound is based on the van Trees inequality and is in essence similar to
that in Belitser (1998). A certain useful tool, the Approximation Lemma, plays an
important role in the proofs of the main results. It reflects the fact that any density
from the considered nonparametric class can be approximated by a sequence of smooth
functionals with a negligible approximation error, thus linking our problem with a regular
estimation problem. We establish the exact limiting behavior of the local minimax risk
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and propose an efficient kernel-type estimator. The constructed estimator is basically
a modified Fourier integral estimator introduced by Konakov (1972) and Davis (1975).
The modification consists in trimming the so called sinc kernel K(u) = sinu/(wu) by a
suitably chosen compactly supported infinitely smooth function.

2. Main results

Denote from now on the Fourier transformation of an absolutely integrable function
f by f:f(t) = [ e f(y)dy. In the proofs we shall use notations Cy, Cy, ... for generic
positive constants which are assumed to be different in different proofs. Unless otherwise
specified, all asymptotic relations refer to n — oo.

Define now the nonparametric class F5 of underlying densities and the topology 7s
on it.

DEFINITION 2.1. For given P,6 > 0, 0 < r < 1 denote

(2.1) Fs = Fs(P,r) = {f() : (2m)7! /exp(2§|t|r)|f(t)l2dt < P} .

One can easily see that functions from this class are infinitely differentiable. Note
also that the class F5 is quite broad: the Gauss, student and Cauchy distributions are,
among many others, for appropriate 8, in this class, as well as their mixtures.

DEFINITION 2.2. Let S5 and Us = Us(r) be the topologies on Fs(P,r) induced by
the distances

ps(fr9) = sup If(y) — 9@ + sup IF'(y) — g W)+ f | (y) — 9(v)| dy,

) 1/2
pulf9) = ( [ewtesinife - é(t)lzdt) + [ 176 - swan

respectively. U is a strong topology—closeness with respect to p, implies, by the formula
for the inverse Fourier transform, closeness of all derivatives in the uniform topology: for
g, h e F &5

R 1/2
sup g™ (y) — R ()| < C1 ( / t2™|g(t) - h(t)|2dt> < Capu(g, h).
Y

Therefore, S5 C Us. Let T5 be any topology on Fs(P,r) such that S5 C 75 C Us.

Remark 2.1. Sj and U; are possible choices of weak and strong topologies respec-
tively, for which the properties stated in the assertions below hold locally uniformly,
i.e. for each f € F5 there exists a neighbourhood V(f) such that these properties hold
uniformly over this neighbourhood. In fact, in assertions concerning the upper bound
for the local minimax risk, one need to prove the local uniformity only for the topology
S5, and in assertions concerning the lower bound only for the topology Us.

Now we describe a class of kernels to be used in the construction of the estimator.
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Denote, for some positive b, 3, 4, m > 0,

Aexp (——1 ) —-b<y<bd
(2.2) ar(y) = ¢-(y,5,8) = (0% ~y2)p )’
0, Y g (_b, b)’
1/r
(2.3) Gn = an(m, 6,7) = (logn+ gzéloglogn) ’
Q0 s = sulrmbn) = for y£0 and 5a(0) =an/r,

where the constants § and r appear in the definition of the class F; and the constant A
is defined by the requirement:

(2.5) ¢-(0) = 1.

Note that s,(y) = anK(any) with K(y) = siny/(ny) (cf. Konakov (1972) and Davis
(1975)). The other constants are chosen according to the following conditions:

(i) the constant b is any fixed number such that b + z < 7, where 7¢ = inf{y :
G(y) = 1} and z is the point at which we want to estimate the density f;

(ii) the constant 3 is any fixed number such that 8/(8 + 1) > r, where r is the
parameter in the definition of the class Fg;

(iii) the constant m is any fixed number such that m/2 > 1/r — 1.

Note that if > 7, then even consistent estimation of f(z) is not possible. Next
introduce the kernel

(2.6) On(y) = dn(y,7,6,m) = g-(y)sn(y),
and define the following estimator

@27) ﬁ=ﬂm=/mw—wmwx

where F, (y) is the Kaplan-Meier estimator, a well known nonparametric efficient esti-
mator of the distribution function F(y):

(2.8) Faw)=1- ] (;’j;—jl)%,

i:Z(,-) <y

with the convention 0° = 1. Here the Z(;y denote the ordered sequence of Z;’s and the
A;y’s are correspondent indicators. A rich literature is devoted to this estimator and its
properties (see Andersen et al. (1993) and further references therein).

Remark 2.2. As is shown in Weits (1993), in case of Hélder-type class, the Kaplan-
Meier estimator is not optimal with respect to the convergence rate of second order
minimax risk. The problem of second order efficiency of a smoothed version of the
Kaplan-Meier estimator for the infinitely smooth class will be treated elsewhere.

Remark 2.3. Since, by the standard formula for the Fourier transform of the prod-
uct of two functions,
1

(2.9) én(t) = %(Q\r * I[—a,.,a,.])(t)’
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$n(t) is nothing else but a smoothed indicator of [—an,ay]. Here * is the convolution
operation and Is denotes the indicator function of set S. In words, convolution of a
function with the kernel ¢, in the time domain corresponds to “smooth thresholding”
the Fourier transform of the function in the frequency domain.

Note also that the function §.(t) is even. The asymptotic behaviour of ¢.(t) for
0 <r<1,as [t| — oo, is described in Fedoruk ((1977), p. 229). We adapt this result in
a simplified form, suitable for our purposes: for some positive A; and A,

(2.10) 16, ()] < Ay exp{—Azt//#+V},  0<r <L,

The constants A;, A2 depend in general on b, 3.

Denote a A b = min{a,b} and F(u) = 1 — F(u). In the next theorem the local
asymptotic performance of the estimator f,, with respect to the topology 75 is established.
The proofs of the theorems are given in the last section.

THEOREM 2.1. Let fo € Fs be such that z < 7¢ A Tr, and distribution function
G is continuous at point x. Then, for any sufficiently small neighbourhood V (fo), the

relation
limsupn(log n)~Y/" By (fa(2) - £(@))? < ()

n—oo

holds uniformly over f € V(fq), where

(211) 1) = 7*4,5) = it

and the estimator f,(x) is defined by (2.7).

Theorem 2.1 gives an upper bound for the local minimax risk r,(V): for a sufficiently
small neighbourhood V'(fo)

lim sup n(log n) ~Y7r, (V) < limsupn(logn) ™" R.(f, V) < sup o2(f).
fev

n—0o0 n—oo €

If we can provide a lower bound for the local minimax risk, coinciding asymptotically
with the upper one, then we clearly determine the asymptotic behaviour of the local
minimax risk. The next theorem describes the lower bound for the local minimax risk.

THEOREM 2.2. For any neighbourhood V C F,

lim inf n(logn)~Y"r, (V) > sup a?(f),

where the local minimaz risk 7,(V) and 0%(f) are defined by (1.1) and (2.11) respectively.

In view of Theorems 2.1 and 2.2, the estimator fn is efficient. Indeed, for each
f € Fs and for any sufficiently small neighbourhood V(f),

lim sup E¢(fn(z) — f(x))?/rn(V) = 1.
fev

n—0o0
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Remark 2.4. A distinguishing feature of the estimator (2.7) is that it does not
depend on a specific neighbourhood while being efficient.

Moreover, as an immediate consequence of Theorems 2.1 and 2.2, we obtain the
asymptotic behaviour of the local minimax risk.

COROLLARY 2.1. Let fy € Fs be such that z < TaATF, and suppose the distribution
function G is continuous at the point x. Then for any sufficiently small neighbourhood

V(fo)

lim n(logn)~/"r, (V) = sup o2(f).
n—oco fev

Remark 2.5. Since o2(-) is a continuous functional, this implies also that

: . -1/r — L 2 — 42
Ym lim n(logn)™/"ra(V) Hm supo (f) = o*(fo)-

Remark 2.6. It should be mentioned that the results on local minimaxity are
stronger than the global results. Indeed, the global results can be easily derived from
Theorems 2.1 and 2.2 provided the condition of uniform boundness f(z) < M is in-
cluded in the definition of the nonparametric class to ensure that the minimax risk is
not infinite.

Remark 2.7. Using the result of Lo et al. (1989), one can derive a central limit
theorem and a law of iterated logarithm for the estimator f,(z):

V(logn) MCD(fy(2) ~ £(2) S N(0,0%(f,2)  n— oo,
lim sup v/n(logn) /" (2loglogn)~/2|fa(x) — f(z)| = 0(f,2)  almost surely.

n—oo

Here —9 means convergence in distribution and o2(f, z) is defined by (2.11).

Remark 2.8. In the proof of Theorem 2.1 we have to assume that the constant b
from (2.2) is chosen in such a way that z + b < 7p,. Although this seems to be rather
restrictive at first sight because we do not know the density fo, we can assume this
without loss of generality. The point is that we can let the constant b depend on n
so that b, — 0 as n — oco. Provided b, converges to zero slowly enough, one needs
to modify only slightly the proof of the Approximation Lemma 4.1 in the following
manner. By the most detailed analysis of Fedoruk’s asymptotics for §.(t) as t — oo
(see Fedoruk (1977), p. 229), one finds that A; = A;(b,) and A; = A,(by,) (see (2.10)),
which leads to C7(b,) — 00 as b, — 0 in (4.4). Choose b, in such a way that b, — 0
and C7(b,) = o(logn) as n — oo. All the other proofs remain unchanged.

3. Auxiliary results

In this section we provide technical results which we will need below.
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LeEMMA 3.1. Let g-(y) and ¢,(y) be defined by (2.2) and (2.6) respectively, and

let the function h(y) be continuous at x and satisfy [ g2(z — y)|h(y)|dy < co. Then, as
n — 0o, the relations

/ 8(z ~ h(y)dF(y) = h(z)f(z) / #2(y)dy + o (logn) /")
_ h@)f(z) (1ogn)1/" + o((log n)*/™)

T 28
hold locally uniformly in f € Fs.
ProoF. To prove the second equality, by (2.4) and (2.5), write

2 _ 2 2
/ ¢ (y)dy /|y|3a;‘ L Pny)dy + /;y|>a;1 L Pn(¥)dy
=a+o) [ dwdy+om [
lvl<an lyl>an

(1 + o(1))anm~2 / SI°() 4 4 O(1)an / SIn*y)

2 2
lyl<e? Y yl>a’? Y

e Sa)dy

1/r
o) = 2 (1E2) 7 (140,

where a,, is defined by (2.3).

Let us prove the first relation. Let O.(z) = {y : |t — y| < €} be the open interval
around z of radius € = e, such that e, — 0 and ¢;2(logn)~Y" = o(1) as n — co0. We
obviously have

[t - hiware) - Horr(e) [ Sway
= [ #E - (60 - @) dy
[ ghe— ) ()@ — h@)f(E) dy
(Oc(x))°
So it is enough to prove that the right hand side of the last identity is of order o ((log n)t/ ™)
locally uniformly. According to (2.4) and (2.6), one can bound the function ¢2(z — y)
outside the interval O.(z) by ¢*(z — y)(we,) 2. Therefore, the inequality
[ -0 h)I@) - @) dy
(Oe(x))€
<G [ e )b+ 1dy = of(logn)'/)
(Oc(2))€
holds locally uniformly due to the fact that our topology is stronger than the topology

induced by the sup-norm (see Definition 2.2). Next, owing to this fact again, it is easy
to see that

/ 82(z — y) (h@)F(y) — h(z) f(2)) dy = o(1) / &2 (y)dy
O.(z)
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locally uniformly and the first equality is proved. O

LeEMMA 3.2. The functional fyoo ¢dn(z — u)dF(u) is bounded uniformly in y and
locally uniformly in F € Fs.

PRrRoOOF. Fix some € > 0. Denote D;(y) = O.(z) N (y,+00) = (by,b2), D2(y) =
(Oe(z))€ N (y, +00), where O, () is the open interval around z of radius e. Then

Yn(y) = /D i $n(z — u)dF(u) + /D » bn(x — u)dF(u) = I + I,

say. The second term I3, the integral over Ds(y), is clearly bounded locally uniformly.
For the term I, we first note that for any u € O,(z)

|f(u) = f(@)| < sup [f'()llu— 2] < Calu— x|
y€O0(x)

locally uniformly since sup,co, () | f'(¥)| is bounded locally uniformly (see Definition 2.2).
Consequently,

| < f(=) + 02

/ On(z — u)du / |z — u|dn(z — u)du
Di(y) D1(y)

< Cp+Cort / gr(z —u)du < Cs
D (y)

locally uniformly because f(z) is also bounded locally uniformly and

/ dn(x — u)du
Di(y)

LEMMA 3.3. Let the function hy(u) be an integrable function, let the function ha(u)
be of bounded variation such that ha(—o0) = Ha. Then

/ b (u)ha (v)ha (1 A v)dudy = / ( / ” h1(u)du)2 dha(v) + Hy ( / hl(u)du)2 ,

provided the left hand side or the right hand side of this equality is well defined.

< Cy. 8]

/“"(br’) gr(a;lu)sin Y
an(b1—z) T

PROOF. Denote Hy(u) = [ hy(v)dv. Integrating by parts twice, we obtain

/ ha(u)hq (v)ha(u A v)dudv

_ / () ( /_ uoo hl(v)hg(v)dv> du + / ha () ( /u T b (v)hg(u)dv) du

- [me (- [ ha(0)dH() ) du+ [ Iy ()halu By )

_ /hl(u) (—ha(u)Hi (u)) du + Ho (/ hl(u)du)g
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+ / b (u) ( /_ ; H (v)dhg(v)> du + / o (1) ho () Hy (1) s

- / B (u) ( /_ ; Hl(v)dhg(v)) du + H, ( / by (u)du)2
__ / ( /_ ; H (v)dhg(v)) dH; (u) + Ha ( / hl(u)du)2

= /(Hl(u))zdhz(u) + H; (/ hl(u)du)z- o

The following result which is due to Lo et al. (1989) gives a representation of the
Kaplan-Meier estimator as an average of independent random variables plus a remainder
term. First introduce some notations:

Y dF(u)
9W) = L2 Fryreas:

BV a0 =6z bt = —FO9(Zi A ) + £ 1z < 1,80 = 1),

where H is the distribution function of Z;.

LEmMMA 34. (Lo et al. (1989)). Let F be continuous. Then
. 1 <&
Faly) = Fy) + — > _&() + Ra(v),
i=1

where forany T < TP A7g and any a > 1

sup E|R,(¥)|* = O((logn/n)*) as n — oo.
y<T

Remark 3.1. Actually, the result of Lo et al. (1989) concerns the case of nonneg-
ative “lifetimes” Xi,...,X,. It is however a straightforward matter to extend this to
any continuous distribution function F'.

Remark 3.2. Tracing the proof of this lemma, one can show that this representa-
tion holds locally uniformly over a sufficiently small neighbourhood of any F such that
T < 7g A TF, in the topology generated by the distance in variation.

Remark 3.3. Note that the random variables &;(y), i = 1,...,n, are bounded
uniformly in y < T, independent and, by routine calculations,

(3.2) E&(y) =0, E(&»)&) = Fy)F(ug(y Av).
4. Approximation lemma

The following lemma is of particular importance. It reflects the fact that each
function from the class Fs can be approximated with a negligible error by a sequence
of “smooth functionals”, which exhibits a close resemblance of our density estimation
problem with the problem of estimating a smooth functional.
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LEMMA 4.1. (APPROXIMATION LEMMA) Asn — oo, the relation

2
(f énta=wiar ) - 1t@)) =0 (™)
holds uniformly over Fs.

Proor. Recalling Definition 2.1, we obtain the following uniform bound:
, 2
([ énta-n1art) - 1))
1 2
N —itz (] _ 1\ Ff
= (35 [ ()~ DfOL)
1 £ 2 1 T4 2
< . _ _
< 5 [ expl2tr AP o [ exp{-201trHbu(o) - 1170
<Cr [ 16a(t) - 1P exp{-261t" Yt
< / " |6n(t) — 112 exp{—26]¢"}dt + C» / exp{—26|¢[" }dt
—Qy |t|2an
— 20, / " 16n(t) — 112 exp{—26]¢["}dt + O (n™Y)
0
since, according to Gradshtein and Ryzhik (1980), equation 2.621, and condition (iii),

/ exp(—26|t|")dt
|t|2an

0 1 [ logu\ ™ qu
=2/ exp(—26t" dtz—/ ( ) —
an ( ) or exp{28al} 26 u?

ogn)1-n)/7 1
r(zg);g/r;(log n)m (1+0(1))=0(n7").

exp{—2é8al }
= PV VS 1)) =
réay ! (L+of ))

Hence it suffices to prove that
An R
(4.1) | 16n(®) ~ 17 exp{=261e} = O ™).
Since the function §.(u) is even,

/ 16, ()| du < / 160 () du = / 60 (w)du
u>tta, u<t—an, u>a, —t

for t € [0,a,]. By (2.5), we have also that [ ¢.(u)du = ¢,.(0)2m = 2. By using the last
two relations, (2.9) and (2.10), we obtain that, for ¢t € [0, a,],

(42)  271n(t) = 1 = |(dr * [(—apn.an)(®) — 1|

~ | Ucaman(e = 0) - Dirtudd

/ Gr(u)du
|[t—u|>a,

< 2/ 'q\r(u)ldu < 03/ exp{_A2uﬂ/(ﬁ+1)}du
u>an—t a

n—t

< Cyexp{—Cs(a, — t)*/(B+1)},
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The last inequality follows from the following relations: for t € [a, — 1,a4)

o0
/ exp{—Aguﬁ/w“)}du < B < Bie®? exp{—Az(a, — t)B/(ﬁ‘“)},
a.

n—t

and for t € [0,a, — 1)

o0 o0
/ exp{—Aquf/ Bt} dy < Bg]

an—t
= Bjexp {—a%(an — t)ﬁ/(ﬁ"'l)} .

Recall now the c.-inequality (see Loéve (1963), p. 155):
(4.3) |h1 + h2|r < Cr|h1|r + Crlhzlr, r>0,
where ¢, =1 or ¢, = 27! according as r <1 or 7 > 1. So, we prove {4.1) by combining
(4.2) with the c.-inequality and the fact that 8/(8 + 1) > r (see condition (ii)):

(4.4) /0 " 18a(t) — 1 exp{—26]t]"}dt

W=D g {_fzzuﬂ/(ﬁﬂ)} du

n—1

< Cﬁ/ i exp{—2Cs(a, — t)?/P+1) _ 26"} dt
0

— Cs / exp{—2Cst®/B+1) _ 25(a,, — )" }dt
0

< Cs f " exp{—2C5tP/B+D) _ 95(ar, — 7)}dt
0

Cy

o0
< Cge™ 200 / —2C5tP/ BT 4 26t Yt = ———
S G f, plmRGtTE A 200 = Sog
uniformly over F5. O

Remark 4.1. As one can see from the proof of this lemma, a stronger bound on
the approximation error is in fact valid. Namely, the relation

([ onte =910~ 1) =0 (e

holds uniformly over Fs. Thus, we can make the error of approximation smaller by
choosing a larger m in (2.3).

Remark 4.2. Certainly, the proof of this approximation property is almost trivial
if ¢n(y) = sn(y), where the function s, is defined by (2.4) (cf. also Ibragimov and
Hasminskii (1982)). Let us clarify why this is a bad choice of the kernel function for
the estimator (2.7). The risk of the estimator is bounded from above by a sum of
two terms (see the proof of Theorem 2.1) which we call the approximation term and
the stochastic term. The first term is analogous to the bias term in the noncensored
case and comes from the approximation error. The second term has a stochastic origin
and is analogous to the variance of an estimator in the noncensored case. So, choosing
¢n(y) = sn(y) provides a small approximation error, while leading to a bigger stochastic
term since this function is badly localized in the time domain. The idea is to find a
proper localizing factor, the function ¢,(y), such that both the stochastic term becomes
smaller and the approximation property remains valid.
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5. Proofs of theorems

ProoOF OF THEOREM 2.1. Without loss of generality we supj)ose that the constant
b in (2.2) is chosen in such a way that x + b < Tr, A 7g; see Remark 2.8. Then z + b <
Tr A 7¢ uniformly over a sufficiently small neighbourhood of fy since our topology is
stronger than the topology induced by the distance in variation; see Definition 2.2. Now
using integration by parts, Lemma 3.4 (see also Remark 3.2 and (3.2)) and the elementary
inequality
(5.1) (@a+b)2 < (1+7)a®+ 1+, 0<v<1,

we have that, uniformly over a sufficiently small neighbourhood of fj,

(52) By ([ 6ate - vi(Fat) - F(y)))2
= 7 ([ (Fu) - F)dn(a - y>)2
< 822 [f 26 Pu)glu A dba(s - don(e - )
145y [ Fali)éa ) dy
<822 [f P Fulg A dba(z ~ don(e ~ )

+(1 + v HCin "2 (log n)?+2/7,

where g is defined by (3.1) and 7, is to be chosen later. We can apply Lemma 3.4
because the kernel ¢, (x — y) has finite support [z — b,z + b] such that z + b < 76 A TF
uniformly in a neighbourhood of fp.

Tedious but straightforward calculations lead to

/ F(t)F(u)g(u A t)ddn(z — £)dda(z - u)

2(p
/¢ l(_Gt(tdF(t / (T — t)pn(x — w)h(t Au)dF(u)dF(t),

where

e dF(u) o1
h(y) —/_m (F(u)2Gu-) Fy)Gy—)

By Lemma 3.3, we have

/ 6a( — )bn(z — wh(t A u)dF(u)dF(t)

= / ( /t - bn(z — u)dF(u))z dh(t) — ( / Sn(z - u)a’F(u))2
([ s -omres) gt (o -wares)
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Therefore,

//F t)F(u)g(u A t)dpn(z — t)dgn(z — u) </?¢__C_;w.

Now we evaluate the risk of the estimator (2.7). From the last relation, (5.2) and
again the elementary inequality (5.1) it follows that

Br(/ale) - 1))
2
= 5, ([ 6ule - 00dFs0) - F) + [ 0(o - )aF () - 1(0))

(1 + 'y.n)2 / 2 (a: — t)dF(t) + (7Y + 2 4+ 7,)Cr (log n)2H2/T
G- 2

97 [ onta - art) - f(x))

uniformly in a neighbourhood of fo. Next, choose <, in such a way that v, — 0 and
n(logn)/T — 0o as n — oco. Using the last relation, Lemma 3.1 and Approximation

Lemma 4.1, we obtain that

timsup(log )" By (falo) - 1(0))* < i

n—0o0

uniformly over a sufficiently small neighbourhood of fp. O

PROOF OF THEOREM 2.2. Let fo(y) be an arbitrary density from the neighbour-
hood V and let F; be the corresponding distribution function. Consider the following
family of densities:

fo(y) = fo(y, 2, ¢n, fo) = fo(¥)(1 + Olgn(z — y) — én(@)]),

where |6] < 8,,

3al@) = [ dula—1)folu)dy
and ¢, (y) is defined by (2.6) with

logn — mloglogn 1r
(5.3) an = ap(m,6,1) = 55

instead of a, defined by (2.3). Let 8, be such that €, < 6, < p,, where the positive
sequences €, and p, satisfy

1
R | 2n = o(1).
e2n(logn)t/r o(1), pun = o(1)

One can choose for example 8, = n~1/2(logn)~1/(“47),
The proof of the theorem will proceed via the following two claims.

ProrosITION 5.1. For sufficiently large n, fg € V.
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ProOOF. Take € > 0 such that O.(fo) C V, where O.(fo) = {f € Fs : p(f, fo) < €}.
We prove now that f € O.(fy) for sufficiently large n where p = p, generates the strong

topology Us.
Denote ¥(y) = ¥(y,z) = fo(y)dn(z — y). First, by the Minkowski inequality, we
have

putfos o) = 11 [ exp 280 H b 0,2) - e‘sn<z>fo<t)l2dt)1/2
+61 [ 1566)(@a(e = ) = Fn(a))ldy
< 26, ( [ exp (2811} nz(t,x)|2dt)l/2
+26,16(@) ( [ exp 281} ]fo(t)lzdt)m
+0n [ 1o)(Bala = ) = 3a(a))ldy
< 2, ( / exp {26]¢["} |zz(t,m)|2dt>l/2 + C10n(log )"

Since 8,, = o(n™/2), it suffices to show that the first term on the right hand side of the
last inequality converges to zero as n — 0.
Note that

b(t, ) = (2m)) / €7 folt + ) () du.

Using the generalized Minkowski inequality (see Nikol’skii (1975), p. 20), Definition 2.1,
property (2.9), and the ¢,-inequality (4.3), we obtain that

(/ exp {26[¢|"} Iiﬁ(ff‘,vﬁ)lzdt)l/2

<o ( J| [ ety =it + wiaran

s \ 1/2
dt)

< 02/ (/Iexp {6t]"} eiz”fo(t+u)<£n(u)'2dt)1/2 du

SC’Q/(/'exp{6]t+ul"}fo(t+u)exp{6|u|r}q§n(u)’2dt>1/2du
<Cs (/GXP {26t} |f0(t)l2dt)l/2/exp {61ul™} |$n (u)|du

<y / exp {6[ul"} B ()] du

< Cul [ exp 2810} (@0 # I ) () )2

2
du)1/2

~au( [ l [ e 0 el = DIy D
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< Cy /(/ |exp {8lul"} G (u — )I(_q, any (B)| du)/2dt
< s( [ exp (2616} dr()Pdt) " [ SN T g, 0y )i
< Cant2( [ exp (261t} dr(6) )

since, by equation 2.621 from Gradshtein and Ryzhik (1980), (5.3) and condition (iii),

. exp{éal,} (1-r)/r -r
/eﬁlul Lo any(u)du = 3/ (logu) s — exp {6a%} a} (1+ o(1)

br b or

2n1/2(log n)1/7-1
— - |
~ 7(26)Y/7 (log n)™/? (1 +0(1)) < Crv/n

Now evaluate, by (2.10),
f 2|5 (1) [2dt < Ay / exp{26]t]" — 245 [¢/F/B+DYdt < G,

Recalling the condition on the 8,, we finally obtain that

pu(fo, fo) < Cobnn'’? + C16,(logn)/"
< Copnn!/? + Cipa(logn)t/™ = o(1)

asn— oo. 0

If X; is distributed with density f¢(y), then the corresponding observation (Z;, A;)
has the density

foly,7) = (foly)(1 — G@))) (ew)1 - Fe(y)))' ™", T€{0,1}.

Let I(6) be the Fisher information about 8 contained in the observation (Z, A), i.e.

2
10) = E; {Hlogjge(Z,A)] .

PROPOSITION 5.2. Asn — 00,

_ fo(zx)G(z) [logn r
I:itilznf(ﬂ)— 0 - ( 25) (1 +0(1)).

ProoOF. By straightforward calculations,

(6n(z — 1) = Ba(@))2folw)(1 - G(y))dy
16) = / T+ 8(pn(z — 1) — %(z))
/{f” fo8)(Gn(z — 1) — Ba(2))du}?dG(y)
1— Fy(y)

=11+ I,
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say. Split the second term in the right hand side of the last inequality into two parts:
the integral over (—co,z + €] and the integral over (z + €, 00):

{fijoo Jo(w)(@n(z — u) — ¢n(z))du}?dG(y) z+e o0
/ 1— Fy(y) Z/_oo +/z+e=121+122,

say. The integral [  fo(u)(#n(z — u) — @, (2))du is bounded for y € (—o0,z + €] by
Lemma 3.2 and Approximation Lemma 4.1. Obviously,

1 - Fy(y) = (1 - Fo(y))(1+0(1)) = (1 - Fo(z +€))(1 + o(1))

for y € (—o0,z + €]. Therefore, the integral I3; is bounded.
Further note that

/_y Fo(w)(¢n(z ~ u) — ¢n(2))du = — /Oo fo(u)(@n(z — u) — Gn(z))du

and the function ¢,(z — y) is bounded for y € (z + ¢, 00). Therefore, for y € (z + ¢, 00)
and sufficiently large n,

{20 fo(w)(¢n(z — u) — dn(z))du}?

1 — Fy(y)
S fo(u)(@n(z — u) — §u(x))du}? < Ci{[;° fo(u)du}?
B 1— Fy(y) = 1-Fy(y)

C1(1 - Fo(y))®
= < Cy(1 - F < 0.
G- R +o(1) = U~ o) =
Thus, we obtained that Iy; is also bounded and consequently I5 is bounded uniformly
in 4, 0| < 6, for sufficiently large n.
According to Lemmas 3.1 and 3.2, it is not difficult to see that

logn

I = - 1/r
h= [ 82~ DAo)Ca + o) = BEZE (1E0) T 4 oy

uniformly in 6, || < 6,,. The proposition is proved. O

Now we proceed to prove the theorem. Introduce v(z) = 8, 1vy(8;; ), where vy(z)
is a probability density on the interval [—1,1] such that vo(—1) = (1) = 0, vo(z) is
continuously differentiable for |z| < 1 and it has finite Fisher information

b= [ (4@ @)de.

The function v(z) is a probability density with support [—8,,8,]. It is easy to calculate
the Fisher information of the distribution defined by density v(z) : I(v) = Iy0;2. Under
these conditions, one can apply the van "Trees inequality for the Bayes risk below (see
Gill and Levit (1995)): for any estimator f,,

) (f (8fa(x)/86) v(0)d6)’
/Efe(fn — fo(2))*v(6)d8 > n [I(6)v(6)d6 + I(v)
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Using this, Propositions 5.1 and 5.2, we obtain that

ra(V) = inf sup Ef(fn — f(@))* 2 ipf S Eg,(fa — fo(x))?
v 2
> int / Br(fn — fo@)Pu(0)a0 > LSO,
_ (fo(:c)(rﬁn(O) — Pn(2)))?
n [ I1(0)v(6)d6 + 1,652

(fo(@)/m)?(log n/(26))*/7 (1 + o(1))
~ nfo(z)G(z)(log n/(26))V/7w=1(1 + 0(1)) + Joen”

fo(z) (logn\'/"
= nwoé(z:) (T) (1+0(1))

as n — o0o. This implies that
. _ T
limi n(logm) 7 r(V) > oS = o2(f)
The function fy; was chosen arbitrarily from the neighbourhood V and hence, by the
same reasoning, this relation is valid for any function f € V:

lim i£f n(logn) Y r (V) > 62(f).

Therefore
lim inf n(log n) Y "r, (V) > sup o2(§),
n—o0 fEV

which proves the theorem. O
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