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Abstract. The paper considers statistical models with real-valued observations
i.i.d. by F(z,65) from a family of distribution functions (F(z,8);0 € ©), 8 C R*, s >
1. For random quantizations defined by sample quantiles (F;; *(A1),-. ., Fi {{(Am=1))
of arbitrary fixed orders 0 < A1 < +-- < Ajp—1 < 1, there are studied estimators
8s,n of 8y which minimize ¢-divergences of the theoretical and empirical probabili-
ties. Under an appropriate regularity, all these estimators are shown to be as efficient
(first order, in the sense of Rao) as the MLE in the model quantified nonrandomly by
(F~Y(A1,60),..., F7(Am-1,80)). Moreover, the Fisher information matrix Im (6o, A)
of the latter model with the equidistant orders A= (A\; = j/m : 1 < j < m—1) arbi-
trarily closely approximates the Fisher information J(8) of the original model when
m is appropriately large. Thus the random binning by a large number of quantiles
of equidistant orders leads to appropriate estimates of the above considered type.

Key words and phrases: Minimum divergence estimators, random quantization,
asymptotic normality, efficiency, Fisher information, optimization.

1. Introduction and basic concepts

This paper deals with the minimum distance point estimation in the case where
the initial information about data and hypothetical parametrized models is reduced by
partitioning the observation space, and the distance is measured by the divergence of
reduced hypothetical and empirical distributions. Partitioning is sometimes practical
because it reduces the numerical complexity of estimation. Often data are themselves
grouped into classes satisfying various easily verifiable criteria, e.g. in the econometry and
sociometry. Partitioning also allows one to use distances not applicable to unreduced
data and models, for example the minimum Pearson divergence estimator has in this
sense been employed by Neyman (1949), or the maximum likelihood estimator (MLE) is
obtained by minimizing the information divergence of Kullback.

The MLE is known to be efficient in regular models but is also known to be non-
robust. The main reason for introducing ¢-divergences different from that of Kullback
into the point estimation is the efficiency and, at the same time, robustness of many
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¢-divergence estimators, see Lindsay (1994).

In this paper we consider arbitrary parametrized models (F(z,6) : 8 € ©) with
parameter spaces © C R*, s > 1, unknown true values §3 € ©, and random observa-
tions Xj,...,X, iid. by F(z,6), * € R. By quantization we mean a partition of the
observation space R into m intervals (bins) specified by a vector

(1.1) Y=, ¥m-1), Yo=—0<Y < - <Ym-1 <00 = Y.

If F(z,6o) is absolutely continuous at all z € {y1,...,ym} then the exact specification
of the bins at their ends is irrelevant. The binning leads to the theoretical and empirical
probability distributions

(1.2) p(y,0) = (0;(,0) = F(y;,0) — F(y;-1,0) : 1 < j <m)
and
(1'3) pn(y) = (pnj(y) = Fn(yj) - Fn(yj—l) i1 S] < m),

where F,(z), ¢ € R, is the empirical distribution function. By minimizing the ¢-
divergence Dy (p(y,0); pn(y)) of the discrete distributions (1.2) and (1.3) over the pa-
rameter space © we obtain a minimum ¢-divergence estimator 0, (y, ). More precisely,
we define this estimator as a sequence of ©-valued measurable functions of the sample

Bn(y1¢)=9n(ya¢7X1a---7X’n), Tl=1,2,...,

with parameters ¥ and ¢, satisfying the asymptotic relation
P{Dy(p(y,0n(y,¢)); pn(y)) # inf D(p(y,0); pn(y))} = o(1).

Note that the ¢-divergence of arbitrary probability m-vectors p and ¢ is defined by the
formula

(1.4) Do)=Y 0 (Z), oce,
i=1 %

where @ is the class of all convex functions ¢(t), ¢ > 0, equal to 0 at t = 1. For every
¢ € & differentiable at t = 1

(1.5) o(t) ~ o(t) — ¢'(t)(t - 1),

where the right hand side belongs to ® and the equivalence means that the two functions
define the same divergence (1.4).

Hereafter ® stands for the subclass of convex functions twice continuously differen-
tiable in the neighborhood of ¢t = 1 with ¢(1) = 0, ¢’’(1) # 0. Obviously, we can assume
without loss of generality that ¢'(1) = 0 and ¢"(1) = 1 for every ¢ € ®.

Example 1.1. The nonnegative functions

1
Hla+1)/2 _ 5(a +1)(t-1)-1 tlat)/2 _ 4

(Ja[ = 1) " a[= 1)
2 2

¢a(t) =
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(cf. the equivalence relation ~ in (1.5)) with limits

h(t)=tlnt—-t+1~tlnt

and
¢_1(t)=—Int+t—1~—Int

have continuous and positive second derivatives
Pl(t) = —la'; 1t(““:”)ﬂ, a€R.

They define a class of modified power divergences

(16)  Dalp.d) =

m
Z p;'"“q}”“ -1 forall a# -1, a#1,
=1
with the well known Kullback and reversed Kullback divergences
(L.7) Di(pig) =) gjln % and  D_i(p;q) = Di(g;p)
j=1 g

as the limits for @ — 1 and @ — ~1. (The skew symmetry D_,(p;q) = Dy(g;p) for
remaining a € R is clear from (1.6)). Well known are also the Pearson divergence

m 2 m 2
P s
(1.8) Dipig)=% 2 -1=%" (p; — )"
i=1 ‘e j=1 gj

the reversed Pearson divergence (Neyman divergence) D_3(p; ¢) and the Hellinger diver-
gence (squared Hellinger distance)

Do(p;q) =2 (1 - Z \/ijg') = Z(\/I_’;’ - V&)

The original power divergences of Cressie and Read (1984) are 1-1 transforms of (1.6),

_ 4Dax41(p; q)
(1.9) L(p,q) = D111’ A€ER.

These divergences do not provide exactly the squared Hellinger distance (at A =
—1/2 they are proportional, with the factor 4). Also the skew symmetry about A = —1/2
in this family seems to be less practical than similar symmetry about O in the family
(1.6). For example, it may not be easy to recognize at first sight that I_g 357(p; ¢) means
the same as I_g 643(g; p), while for D_g 357(p; ¢) and Dy 357(g; p) this is easy. Note that
both families (1.6) and (1.9) can be obtained as 1-1 transforms of the o-divergences
R.(p;q), a > 0, see Liese and Vajda (1987). E.g.,

AA+1) exp{ARx+1(p;9)} — 1 for A> -1
I(piq) = .
2 exp{~(A+1)R_x(g;p)} -1 for A< -1
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It is easy to see that 8, (y, #1) is the MLE in the discrete model (1.2). Birch (1964)
formulated conditions on an arbitrary discrete model p(8) = (p;(6) : 1 < j <m), € ©,
under which the MLE in this model is efficient (first order in the sense of Rao (1961,
1973) briefly efficient in the sense of Rao). Morales et al. (1995) proved that these
conditions are sufficient for the Rao efficiency of all minimum ¢-divergence estimators,
¢ € @, in this model.

In the next section we present the Birch conditions for the model (1.2) and evaluate
the Fisher information I,,(6o,y) in this model. If the Fisher information J(6) in the
original model (F(z,6) : 6 € ©) exists then J(6p) — I,n (o, ¥) is positive semidefinite (cf.
Vajda (1973), in particular tr J(6) > tr I,,(6o,¥)). In typical situations this inequality
is strict, i.e. the estimators 6, (¥, ¢), @ € B, are not efficient in the original model. The
maximization of tr I,,(6p,y) leads to

(1.10) Yopt = a.rgmg,xtr[m(ﬁo,y)

which depends on the unknown 6 (cf. Ferentinos and Papaioannou (1979) and Tsairidis
et al. (1998)). Moreover, it is not clear whether for any € > 0 there exists m such that

(1.11) sup(tr J(6) — tr I, (0,¥)) < e.
ocoe

To avoid these difficulties, we consider in the next section the partitions
(1.12) Yo = (ij =F—1(/\j,90) 115 < m), M=0<A << Am—1 < 1= /\m,

where F~1(),0) = inf{z € R: F(x,0) > A} is the generalized inverse (quantile of the
order 0 < A < 1). If F(z, ) is increasing on R then all partitions (1.1) are in the class
(1.12). If F(x,60) is constant in an interval (z;,z») then the partition of this interval
has no influence on I (6o,). One can deduce from here that y,,, in (1.10) is achieved
in the class (1.12). Hence for

(113) jm(oo,A) = Im(f)o,yo), A= (/\1,...,/\m_1),
with g, given by (1.12), the optimization (1.10) is equivalent to the evaluation of

(1.14) Aopt = argmiixtrfm(ﬂo,/\).

For some models, e.g. for the models of location with © = R, Aopt is independent of
8y € ©, and for each ¢ > 0 there exists m such that

(1.15) sup(tr J () — tr I, (8, Aunif)) < &
fco

where

(116) Mnifz(Aun'if,j=j/m:]-Sjsm_]-)

leads to the uniform empirical distribution

(1.17) r(y,) = (1/m,...,1/m),

i.e. to the partitions g, = (F,;!(j/m) : 1 < j < m) of the observation space into
statistically equivalent blocks (see Devroye et al. (1996)).
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Of course, partitions (1.12) depend on the unknown quantiles F~1();, 6p), but these
can be replaced by the empirical quantiles F,;1();) of the same orders which almost
surely tend to the theoretical ones for arbitrary 8y € ©.

Therefore, in the next section we consider the random partitons

(1.18) Yo = (yn; = F;1(X;): 1< 5 <m)
for A= (Ay1,...,Am—1) assumed in (1.12), and the corresponding estimators
(1.19) b\ ) = bu(yns ), G €.

These estimators are defined by the asymptotic condition
(120)  P{Dy(p(n, b (A 4)),a(N)) # inf Dy (p(yn, ), a(N))} = o(1) as n — oo

for y,, given by (1.18) and

We formulate conditions for the Rao efficiency of all these estimators in the discrete
model p(y,,9), 8 € O, with g, given by (1.12).

By (1.13), under the mentioned conditions (1.14) defines an optimal binning and
(1.15) guarantees an z-efficiency of the bins defined by empirical quantiles of the equidis-
tant orders (1.16). The optimization (1.14) and relation (1.15) for A,,if are investigated
in the last section.

2. The Rao efficiency

Let us formulate in a slightly stronger form the conditions of Birch (1964) and
Morales et al. (1995) for the Rao efficiency of estimators 6,(yy, ¢), ¢ € ®, in the model
(p(yq,8) : @ € B) where y, is an arbitrary vector satisfying (1.1).

(B1) True 6 is in the interior of © and p(y,, fo) has all coordinates positive.

(B2) Gradient I'(y,,6) = (8/061,...,8/885)F(y,,0)! exists and is continuous at
every point # from the neighborhood of 6.

Under (B1), (B2) also the gradient G(y,,8) = (8/864,...,0/80,)p(ys,0)t and the
matrix A(y, ) = diag p(y,, 60) " 1/2G(y, 8) exist and are continuous at every point § from
the neighborhood of #5. Note that for any k-vector p and mapping ¢ : R — R, diag ¥(p)
in this paper denotes the diagonal (k x k)-matrix with entries ¥(p;),...,%(px) at the
diagonal.

(B3) Matrix A(yy,0o) is of rank s and s < m.

(B4) Mapping 8 — F(y,,6) is 1-1 on ©. 5

We are interested in similar conditions for the Rao efficiency of estimators 8, (A, ¢),
¢ € ®. Note that such conditions were previously formulated for the estimator 8, (A, ¢3)
but, as we shall see, they are not sufficient even for the consistency of this estimator. In
the conditions that follow we consider y, given by (1.12), and we need the identity

(2.1) p(yy,00) = ¢

valid for this g, and ¢ given by (1.21). Obviously, these conditions imply (B1)-(B4) for
gy, under consideration.
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(Al) True 6, is in the interior of © and all coordinates of ¢ are positive.

(A2) In the neighborhood of (y; 6o), F'(y, 0) is continuous and the gradient I'(y, §) =
(0/064,...,0/00,)F(y,0)" exists and is continuous.

Under (A2) also the function p(y, 6) is continuous and continuously differentiable in
6 at all points (y; 8) from the neighborhood of (y,; o), and has all coordinates positive,
similarly as p(yy,60) = ¢. Thus, in particular, we can consider in this neighborhood the
(m x s)-matrix functions

(22)  G(y,0) =(8/86y,...,8/90,)p(y,0)" and A(y,0) = diagq™'/*G(y, ),

with G = G(y,,6p) and A = A(y,, 0o)-

(A3) The matrix A = A(y,,0) is of rank s and s < m.
The (s x s)-matrix
(2.3) I=A'A
is under (A3) positive definite. Due to the continuity assumed in (A2), also I(y,8) =
A(y,0)*A(y, ) is positive definite in the neighborhood of (y,; 8). Obviously, (2.3) is the
Fisher information matrix of the reduced statistical model (p(y,,8) : @ € ©) at the point
Bo.

The continuity of F(y,6) which follows from (A2) implies in particular that, for
all 6 from the neighborhood of 6y, the functions z ~ F(z,6) are continuous in the
neighborhood of 3y, 1 < j < m — 1. At § = 6y we assume more.

(A4) F(z,6p) is increasing in the neighborhood of every yo;, 1 <j <m — 1.

'This assumption implies that F(y, 6p) is invertible in the neighborhood of y = y,. Com-
bining this with the monotonicity of F(z,6p) in the variable z € R, one obtains for any
sequence ¥,

(2.4) 1F @, 60) = Al = 0(1) = [y, — goll = o(L).

In the sequel we need the inequality
1 .
(2.5) S < IITl < mily]

which follows for all vectors v = (7,...,7%m) with the sum of coordinates equal zero,
and for I'= (T =y +---+7; : 1 < j < m), from the obvious relations

'y;‘-’ < 2(I‘12-_1 +1"32~) and T3 <jlh|?, 1<j<m, where[=0.
Using (2.5) one obtains for any 61, 82 € © and y,, y, satisfying (1.1),

1
(2:6) 5llp(y1,61) — P2, 02)Il < 1F(y1,61) — Flys, 02)Il < mlp(ys,61) — p(wa, 2],
where
F(y’ 0) = (F(y179)7""F(ym—1’0))7 9 e 9'
We also need the asymptotic formula
(2.7) 17 (o) + F (¥, 60) — 2Al| = 0p(n™"/?)

proved in Theorem 1 of Bofinger (1973) under the assumption that F(z, 6,) is continuous
and increasing in the neighborhood of yo;, 1 < j < m — 1. Using (2.5) one obtains from
(2.7) the following useful relation

(2.8) I o) + 2(Yn, 80) ~ 24|l = 0p(n~1/?).
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LEMMA 2.1. If (Al)-(A4) hold then

(2.9) . — woll = 0p(1)
and
(2.10) n'/2(p(y,,, 60) — ¢)>N(0,diag g — ¢'q).

PROOF. As stated above, (A2) implies (2.7) and (2.8). Using the inequality |||a|| —
16l < |la — b|| valid for all vectors a, b, one obtains from (2.7)

1Fa (o) = All = I F (4, 80) = M| + 0p(n™/2)

and from (2.8)
(2.11) 1P (o) — all = 1P(4n» 60) — all + 0p(n™*/2).

Since n'/2(F,(y,) —A)—=“N(0,A*(1 - X)), (2.9) follows from the first relation using (2.4).
Further, since p,(y,) — ¢ = n~1(Z, — nq) where Z,, is multinomially distributed random
vector with parameters n and ¢, it holds

(2.12) n'/2(pa(yo) — ) >N(0, diag ¢ — ¢'q).
Relations (2.11) and (2.12) imply (2.10).

LEMMA 2.2. If6,(\ ¢) is consistent and (A1)—(A4) hold then 0, (X, @) is efficient
in the model (p(yy,0) : 0 € ©) in the sense

(2.13) Gn(\, 8) = 60 + (pn(yo) — 9) diag g~ /> A" + 05 (n"1/?)
and asymptotically normal in the sense
(2.14) Va(Bn (X, ¢) — 60)5N(0,I71),

where A is the matriz figuring in (A3) and I is the Fisher information matriz defined
by (2.3).

PROOF. By assumptions about ®, let ¢(1) = ¢'(1) = 0 and let us introduce

auxiliary function
o) = (6% (222) 1< <m)
b

of vector variables (y;6) from the neighborhood of (yq; 6). It follows from (1.20) that
P{u(yy,6n(X, 8))A(Yn, 0n(A, 8)) # 0} = o(1)

where A(y, ) is defined in (A2). If we apply the Taylor formula to v(y,,,60) — v(¥o, fo)
and v(y,,, ) — v(¥,,0) and use the fact that ¢'(1) = 0 implies v(y,, fo) = 0, then we get
the desired result from Lemma 2.1. For details we refer to Menéndez et al. (1998).

It remains to formulate an appropriate consistency condition for the estimators
9~n(/\, #), ¢ € ®. To this end is needed an identifiability condition for true 6o similar
to (B4) in the model (p(y,,6) : 6 € ©). Bofinger (1973) in Theorem 2 formulated an
identifiability condition denoted there by (i), which is equivalent to (B4). Note that



284 M. MENENDEZ ET AL.

(A1)~(A4) are equivalent to the remaining conditions (ii)-(iv) of the mentioned theorem,
and to the conditions formulated in other places of that paper. In Menéndez et al.
(1998) we presented an example which demonstrates that (B4) is under (A1)-(A4) not
sufficient for the consistency. For the consistency is also needed the following extension
of Proposition 9.49 in Vajda (1989), established in Menéndez et al. (1998).

LEMMA 2.3. Let pp = (Pno, - .., Pnm) be a sequence of random probability vectors.
If for a fized probability (m + 1)-vector ¢ with all coordinates positive, and for ¢ € ®,

Dy(pn; q) = 0p(1)

then ||pn — q||* tends stochastically to zero with at least the same rate as Dy(pn;q) or,
more precisely,

lpn — gl < W,L(I)Dqs(pn;q) + 0p(Dg(Pn; 9))-

Now we can formulate the consistency condition.
(A5) For all y from the neighborhood of y,, the mappings 8 — F(y,) are 1-1 on
o.

LEMMA 2.4. If (A1)~(A5) hold then all estimators 6,()\, ¢), ¢ € ®, are consistent.

PrOOF. See the Appendix.

The results of Lemmas 2.2-2.4 can be summarized as follows.

THEOREM 2.1. If (A1)-(A5) hold then all estimators 6, (X, @), ¢ € ®, are efficient
in the sense of (2.13) and asymptotically normal in the sense of (2.14).

3. Optimum partitions and efficiency

In Section 2 we have shown that the random quantization (1.18) leads to the same
efficiency of minimum disparity estimators as the quantization (1.12). This efficiency is
in some sense characterized by the Fisher information figuring in (A3) and denoted in
Section 1 by Ip,(60,A). In this section we suppose for simplicity that the parameter 6 is
real, from an open interval © C R. Then, by (2.2) and (2.3),

" 75(80)?
3.1 Im 6 ,A = 2 ’
(3.1) =32
where are used the alternative symbols
¢
(3.2) 7(0) = (1 (0), .., Tm(0)) 2000, 0), 702 e,

df

for p(y,,6) given by (1.2) and (1.12) and for the gradient G(y,, ) given in (A2).
Since the partitions are specified by vectors A, an optimum partition Aop: can be
defined by the condition
I (Aopt) = mfx[m(eg,)\).
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By (2.1), 7(60) = (Aj — Aj—1:1 < j < m), and by (3.2)
7(0) = (s(6,A;) — s(0,Aj—1) : 1< j<m), where

_ dF(F~\(r,60),9)

. <7r<1.
(3.3) s(0,7) 0 , 0<7<1
Thus

= [s(B0, A;) — s(80, Aj—1)]?
3.4 I(00,A) =
(34) (60,7 E PV

Jj=1

and a necessary condition for (1.14) is the stationarity

0 a

If these equations have only one solution in the domain 0 < A\; < -+- < Ap—3 < 1, and
the function I,,(fg,A) is in this domain concave, then {3.5) is necessary and sufficient
for A= Agps.

Maximization of functions of the type (3.4) has been studied by Cheng (1975),
Nagahata (1985), Potzelberger and Felsenstein (1993) and Tsairidis et al. (1998). These
authors established under mild restrictions on the basic model (F(z,0) : 8§ € 8) the
existence of a solution of (3.5) which, under additional reasonable restrictions, is the
desired Aop:. Unfortunately, as can be expected, A,y in general depends on the parameter
85, with the exception of models invariant in an apropriate sense, such as e.g. the location
models. It follows from the results presented by these authors that the uniform Aynif
defined by (1.16) need not in general be A,p:. However, as follows from the numerical
results presented in these papers, and also from our own numerical studies, if m is not
too small then in the most common statistical models the absolute as well as relative
inefficiencies of the quantization (1.18) using Aynif,

IO Do) = IO, D) s Tty Suni)

are close to zero. A typical situation is illustrated by Table 1 presenting the situation in
three common location families (F'(z — 6) : 8 € R).

An obvious advantage of the empirical quantization using A,niy is that it requires
neither the knowledge of the true parameter 6y nor the knowledge of the basic model
(F(z,0) : 8 € ©) itself. Nevertheless, it guarantees the efficiency characterized by
the Fisher information I, (69, Aunis) in any underlying reduced model satisfying (A1)-
(Ab). This is a practical gain which certainly compensates the small relative inefliciency
I (60, Aopt) — Im (60, Aunis). To see how this argument practically works, look at the
following simple example.

Ezample 3.1. Consider the estimation of location, and assume that the model is
normal. If we employ an estimator 8,(Aunif, d), ¢ € ®, with m = 16, then it follows
from the last column of Table 1 that the relative loss :

pm =100 [Im()\opt) - Im(’\unif)]/lm(AOpt)
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Table 1. Fisher information I (80, Aunis) = Im(Auniy) for given location families. For the
logistic and doubly exponential families I (o, Aopt) = Im(Aopt) coincides with Iy (Aynis). For
the normal family the values of Ip,(Aopt) are in parentheses.

Family m=2 m=3 m=4 m=25 m=38 m=16
Logistic
1 0.2500 0.2963 0.3125 0.3200 0.3281 0.3320
F(z) = ==
Normal (0.6366) (0.8098) (0.8825) (0.9201) (0.9665)  (0.9905)
flz)= \/%e"z 0.6366 0.7932 0.8606 0.8970 0.9450 0.9778

Doubly exponential
J(@) = 3e1

1 1 1 1

Wi
EArS

Table 2. Relative asymptotic inefficiencies nm = 100 - (J — Im(Aunif))/T (in %) of the
¢~divergence estimators using Aynif in the location families of Table 1. For the location families
J = J(8) is constant for all § € R.

Family J=[Ld: m=2 m=3 m=4 m=5 m=8 m=16

Logistic 1/3 25 111 6.3 4 1.6 0.4

Normal 1 36.3 20.6 14 8.1 4.7 2.1
Doubly exponential 1 0 33.33 0 20 0 0

of asymptotic accuracy against 8, (Aopt, @) 15 1.27/0.9905 = 1.28%. In this case the model
is invariant, so that A,,; does not depend on the true 8y, but it strongly depends on the
assumption that the true model is normal. If the true model is logistic or doubly expo-
nential, then Aopt = Aynis. Therefore the relative loss p,, of 6, (Munig, @) in these models
will be zero. Replacing Aynif by Agp: for normal, we raise this loss to nonzero levels.
Hence the use of M,n;y guarantees a robustness of all estimators under consideration in
the class of location models with p,, small enough.

The problem of efficiency mentioned in the title of this section can be naturally
interpreted as the evaluation of absolute or relative asymptotic inefficiency

T (60) — Im(60, )
J (6o)

for estimators studied in this paper, where in this case we mean the inefliciency with
respect to what is achievable in the basic continuous model (F'(z,0) : 8 € ©).

Our regularity conditions (A1l)-(A5), guaranteeing the existence of informations
In (60, A), do not imply the existence of the information J(6p). The first question is,
therefore, when the informations 7 (6), 8 € ©, exist and whether J(6p) is always greater
than the information I,,,(6g, A) in the reduced models given by (3.1) or (3.4).

We shall consider the conditions for existence of Fisher informations 7 (6p), 6o € ©,
introduced in Vajda (1973) (condition Cc on p. 280 ibid.), namely that the derivatives
f(z,0) = df (z,8)/d0 of densities f(z,6) = dF(x,0)/dz exist at 8y for almost all z, and
for some & > 0 (possibly depending on 6p)

f(2,6) — f(z,60)\*
0 [ oo (e ) aoota <o

.7(00) - Im(oo,k) or
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Under this condition 2.0
flz,0
3.7 fo) =

For example, the doubly exponential model of location considered in Table 1 does
not satisfy the standard regularity assumptions of the asymptotic statistics but satisfies
(3.6) and, by (3.7), J(6y) = 1 for every location §y € R.

By Theorem 3 in Vajda (1973), if J () is finite then J(6p) — In(60,A) > 0 for
every A under consideration. If all densities {f(z,6) : ¢ € ©} have a common support
then Theorem 4 ibid. implies J(6o) = Im (6o, Adunif) + 0(1) asymptotically for m = rk,
any integer r > 1, and k — oo.

The values of J = J{6) and the relative inefficiencies of the ¢—divergence estima-
tors using Aunis in the location models of Table 1 can be seen in Table 2.

dr < 0.
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Appendix

PrROOF OF LEMMA 2.4. Obviously,

0 < Dy (P 6n (A, 8));9) < Dy(p(¥n, 60); ).
Using the Taylor expansion of ¢(t) around ¢t = 1 one obtains from (1.4) and (2.10) that
Dy(p(¥n,00); g) = Op(n~!). Consequently also
D¢(p(yn7 én(A, ¢‘))’ q) = Op(n——l)-
This together with the Lemma 2.3 implies |[p(y,,, 0o (), 8)) — q|| = Op(n~1/2). We shall
use only the weaker relation
(A1) 1P, 02(X, 9)) — all = 0p(1)-

Further, (A5) implies that there exists an open neighborhood U of 6y such that for all y
from a closed ball V centered at y, and € = ¢(y) possibly depending on y,

(A.2) |F(y,6) - Al <e=>0¢cU.
However, due to the compactness of V,
inf 0.
ylgvs(y) >

Moreover, the neighborhoods V' and U can be chosen so that the mapping F(y, ) is in-
vertible on V x U, with the inverse ¢(7) defined and continuous for 7 from the neighbor-

hood of A = F(y, 65). Finally, by (A1) and (2.12), (g 6 (A, 6)) — p(¥n, 60)1| = 04(1).
By the right-hand inequality in (2.6), this implies

LF (Y, 62X, 8)) = F (o, 60)ll = 0p(1).
Consistency follows from this relation and (A.2) by using the identities
@(F(ynv én(A’ ¢))) = éﬂ(Ay ¢)7 ‘P(F(yo, 90)) = 90
and the continuity of .
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