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Abstract. This paper is intended as an investigation of parametric estimation for
the randomly right censored data. In parametric estimation, the Kullback-Leibler
information is used as a measure of the divergence of a true distribution generating a
data relative to a distribution in an assumed parametric model M. When the data is
uncensored, maximum likelihood estimator (MLE) is a consistent estimator of min-
imizing the Kullback-Leibler information, even if the assumed model M does not
contain the true distribution. We call this property minimum Kullback-Leibler infor-
mation consistency (MKLI-consistency). However, the MLE obtained by maximizing
the likelihood function based on the censored data is not MKLI-consistent. As an al-
ternative to the MLE, Oakes (1986, Biometrics, 42, 177-182) proposed an estimator
termed approximate maximum likelihood estimator (AMLE) due to its computational
advantage and potential for robustness. We show MKLI-consistency and asymptotic
normality of the AMLE under the misspecification of the parametric model. In a
simulation study, we investigate mean square errors of these two estimators and an
estimator which is obtained by treating a jackknife corrected Kaplan-Meier integral
as the log-likelihood. On the basis of the simulation results and the asymptotic re-
sults, we discuss comparison among these estimators. We also derive information
criteria for the MLE and the AMLE under censorship, and which can be used not
only for selecting models but also for selecting estimation procedures.

Key words and phrases: Approximate likelihood, information criterion, Kaplan-
Meier estimator, maximum likelihood estimation.

1. Introduction

Suppose that X, ..., X, are i.i.d. random variables from an unknown distribution
Fy(z) with probability density fo(x). Parametric inference is done within an assumed
parametric family of densities M = {f(z;0);0 € ©}, which may or may not contain
the true density fo. If M contains fo, there exists 8y € © such that fo(z) = f(z;6),
and 6 is called the true parameter value. In this case, our aim is to estimate 8 based
on the model M. On the other hand, if fy is not contained in M, what should be
estimated within the model M? A simple answer is that we should try to know the
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nearest f(x;6) to the true density fo(z). Cramér (1946), Wald (1949) and Akaike (1973)
pointed out that the maximum likelihood (ML) principle aims to know a value of &
maximizing [ fo(z)log f(z; 8)dz. This means that a purpose of the ML principle is to
find a parameter # which minimizes the Kullback-Leibler information

.0)) — fo(z)

(1) KL(fo(), 1(6)) = [ fole) log 3235,

which is a measure of the divergence of fo(z) relative to f(z;6). Under suitable regularity
conditions, the maximum likelihood estimator (MLE), which is defined as a value of
6(€ ©) maximizing the likelihood function []..; f(X;;9), is a consistent estimator of
65 which minimizes (1.1) (Cramér (1946), Wald (1949), Takeuchi (1976)). We call this
property minimum Kullback-Leibler information consistency (MKLI-consistency). We
note that the MKLI-consistency implies the consistency in usual sense when M includes
fo-

In the analysis of lifetime data, an important problem is censorship of observations.
Fori = 1,...,n, let X; and Y; be random variables which represent a lifetime and a
censoring time of the i-th individual, respectively. In lifetime data analysis, X; and Y;
are not directly observed, and we can observe

(Zi, 6) = (min(X;, Y3), I(X; < Y3)),

where I{A) denotes the indicator function of the set A. We agree that §; indicates
whether X; has been censored or not. The set of observations (Z;, 6;), 1 < i < n is called
randomly right censored data in survival analysis and reliability theory.

Let G(y) be an unknown distribution of the censoring time with density g(y). Sup-
pose that Y;,...,Y, are i.id. from G(y) and X,’s are independent of ¥;’s. Our main
goal is to draw some inference on the true distribution of X;, i.e. Fp, while G is a nui-
sance parameter. The nonparametric maximum likelihood estimator of Fy is given by
the Kaplan-Meier estimator (Kaplan and Meier (1958))

. n 8] HZH<z)
(12) Fn(l') =1- H [1 - m]

i=1

bl

where Z(1) < --- < Z,,) are the ordered values of Z;, and §; denotes the concomitant
associated with Z(;y. In the uncensored case, i.e. all §;’s equal one, the Kaplan-Meier
estimator F),(z) coincides with the empirical distribution function F,,(z) = Y, I(X; <

When the parametric model M is assumed for the distribution of X;, the log-
likelihood function is given by

(1.3) In(0) =>_ {6ilog f(Z:;8) + (1 - &) log F(Z;;0)}

i=1
where F(z;8) = [I(u > z)f(u;6)du (see Kalbfleisch and Prentice (1980), Section 3.2).
The maximum likelihood estimator is an element én € © which attains the maximum
value of [,,(6) in ©. As mentioned above, when all X;’s are observable, the MLE is

MKLI-consistent. However, under random censorship, 8, is not MKLI-consistent when
M does not contain fo.
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For example, suppose that the true distributions of X; and Y; are the Weibull
distributions :

folx) = AB(A2) " exp{-(Ae)’},  g(y) = €B(&y)° ' exp{~(¢y)®}, (z>0,y>0),
where 8 > 0, A > 0, £ > 0, and an assumed model is the exponential distribution model:
M = {f(z;6) = 0exp(—06z);0 > 0}.

In this case, the MLE is given by 6, = (331, 6)/(32", Z:), and it converges to A®(\ +
£P)FT -1 /p(14871 ) in probability as n — oo, where I'(-) is the Gamma function. On the
other hand, 65 which is a parameter value minimizing (1.1) is A/T'(1 + 8~!). Therefore,
if B+ 1, 8, is not consistent to 6. We see that S = 1 implies that the assumed model
contams the true distribution.

In this paper, we consider another estimator é;, which is defined as an element in
© which maximizes

Ir(6) = n/log f(x;0)dE, (x).

When all X;’s are observable, the log-likelihood function can be expressed as
n
Zlog f(X;;0) = n/log f(z;0)dF,(z).
i=1

Thus I (6) is a natural extension to the censored data in the sense that the empirical
distribution F), is replaced by the Kaplan-Meier estimator F),. It is noted that, when all
8;’s equal one (uncensored case), [%(8) = 1,,(6) and therefore 8% = 6,, holds.

This idea of parametric estimation based on censored data was first proposed by
Oakes (1986), and which is referred to as approximate maximum likelihood procedure.
Oakes (1986) uses Efron’s version of the Kaplan-Meier estimator which sets F),(z) = 1
after the largest observation. Although in this sense the estimator 6’* is slightly different
from Oakes’, we call 9* approximated maximum likelihood estimator (AMLE). It is also
a special case of M-estimators discussed by Wang (1995), in which strong consistency is
studied.

Although a considerable number of studies have been made on parametric esti-
mation for censored data, little attention has been given to the misspecification of the
parametric model. Our main concern are to consider the parametric estimation under
the misspecification and to discuss comparison of the MLE and the AMLE from this
point of view.

In Section 2, we give some results on asymptotic properties of the AMLE, which
include a result concerning the MKLI-consistency. In Section 3, we report on a simulation
study to investigate mean squared errors of the estimators, and discuss comparison of
them. In Section 4, we derive information criteria corresponding to the MLE and the
AMLE, and which are extensions of Takeuchi (1976)’s TIC.

2. Asymptotic properties

In this section, we discuss the MKLI-consistency and the asymptotic normality of
the AMLE 9* We begin with the following assumptions:
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(A1) The parameter space © is an open interval in R.

(A2) f(z;8) is continuous for almost every z.

(A3) All probability density functions in the model M have the same support.

(A4) n*(0) = [ fo(z) log f(z; 6)dzx has a maximum at 63, and for any 8 # 65, n*(63) >
7" (6).

(A5) For any 0 # 65, there exist d(f) > 0 and a function hg(X) with
J fo(z)he(z)|dz < oo such that

f(X:6)
sup log ———= < hg(X).
o107 —031<do)  J(X;65) o(X)

(A6) For a sufficiently large K > 0, there exists a function ho(X) with
[ fo(z)ho(z)dz < 0 such that

f(X;0)
sup log < ho(X).
oo —03 1>k T(X:65) )

All of the above assumptions are independent of G which is the distribution of the
censoring variable Y;. In the case that all X;’s are observable, the MLE converges to
@ in probability under these assumptions, where 65 is defined by the assumption (A4)
and it gives the nearest density in M to the true density fo. In this case, the MLE is
MKLI-consistent. Considering the MKLI-consistency of the AMLE @7, we also assume

(A7) 1R, < 7¢ for TR, = inf{z : Fy(z) =1}, 7¢ = inf{y : G(y) = 1}.

If 7, > 7¢ holds, Pr{6; =0 | X; > 7¢} =1, i.e. X; in [rg,00) is certainly censored.
The assumption (A7) guarantees observability of X; on the whole of the support of fo(x).
In a large number of practical situations, 7, = T¢ = 00, hence the assumption (A7) is
satisfied.

The following theorem states the MKLI-consistency of éx *, and it can be proved
using the law of large numbers of the Kaplan-Meier integral by Stute and Wang (1993).

THEOREM 1. Under the conditions (A1)~(AT7), the AMLE 7, converges to 63 in
probability as n — oo.

The conditions (A1)—{A6) are well-known conditions under which the MLE is MKLI-
consistent for uncensored data (Takeuchi (1974)). In censored case, the assumption (A7)
is essential for MKLI-consistency of the AMLE 6.

We next consider the asymptotic distribution of 8%. Let Fy(z) = 1 — Fo(z), G(y) =
1 — G(y) and H(z) = Fy(2)G(z), and we assume the following conditions:

{B1) For every z, the partial derivative of f(z;8) of the third order with respect to

0 exists.
(B2) For any &’ € ©, there exist a positive number ¢ > 0 and a function M (z) such

that

lg;logf(m 9)|<M(1) forall 8€ (6 —c, & +c¢)

and [ M(z)fo(z)dz < 00
(B3) ffo(:c)ai;flogf(:c;e)dz2< 00
(B4) [ folz) { & log £(z: )} {G(2)}dz < o0
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(B5) [ fo(x) | £ log £(z30)| {H(2)}1/2dz < oo

The conditions (B1)and (B2) are the well-known regularity conditions for the asymp-
totic normality of the MLE in the case that all X;’s are observable. The condition (B3)
corresponds to the condition of existence of the Fisher information in the case that M
includes fo. It is also noted that these three conditions are independent of G. The
conditions (B4) and (B5) are essential for the asymptotic normality of 6}, and these are
needed for the asymptotic normality of the score statistic /ndl};(8)/80. In the example
of the previous section (fo and g are the Weibull distributions and M is the exponential
model), a necessary and sufficient condition for (B4) and (B5) is A > £, which means
Pr{é;, =0} < 1/2.

Under the above conditions, we can prove the following theorem by using the results
of Stute and Wang (1993) and Stute (1995).

THEOREM 2. Under the conditions (A1)—(AT7), (B1)-(B5), n(f% — 63)—9
N(0,0*%(83)), where —9 denotes convergence in distribution, o*2(8) = I*(6)/{J*(6)}?,
82
J*(8) = —/fo(z)ﬁlogf(x;ﬁ)d:c and

Note that in I*(f), by putting G = 0 (no censoring) formally, the first term is equal

[ 7o) { g0 1t e>}2

and the second term vanishes. Thus, in this case 6*2(f) reduces to the well-known
variance formula (Takeuchi (1976)).

When M includes fo, the asymptotic distribution of /(6% — 6) is normal with
mean zero and variance

f(x;60) [ Blog f(z;60) > F(x;6) @8log F(z;60))°
é(m)o{ 50 } da - {c‘:(x)?z{ 98 O}dG(”

[/f(fv;f?o){%logf(w;(?o)}zdﬂ:r

If there is no censorship (G = 0), the asymptotic variance (2.1) reduces to

[/f z; 00){ log f(z; 60)}2da:}

We next consider the asymptotic properties of the MLE #,,, which attains the max-
imum of [,(0) defined by (1.3). Under the suitable regularity conditions (Andersen et
al. (1993)), the MLE 6, converges to 6 in probability as n — oo, where f is defined by

to

(2.1)

-1

/fo(a:)(?(m) 10gf(:c;50)dx+/13‘0(m) log F(z;60)G(dz)
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= max {/fo(a:)é(z) log f(z;8)dx + /Fb(:v) log F(z; O)dG(m)} .

[SS)

In general, 6 is not equal to 65. If there is no censorship (G = 0), fo is equal to 6.
And when M contains fg, it holds that by = 6% = 6y (the true parameter). In this case,
the MLE 0, is a consistent estimator of #, and under suitable conditions, n'/? (9 —8o)
converges to N(0,a%(f)) in distribution, where o2(§) = 1/I(6) and

(2.2) 1(0) = / (@ 6)G( :c){ log £(z; 6)}2da:+ / Flz; 9){ log F'(; 9)} G ().

When the model M does not always contain fy, the AMLE 63,"1 is MKLI-consistent
and the MLE 4,, is not. Hence, in this case, the AMLE is better than the MLE. On the
other hand, when M contains fy, both are consistent estimator of the true o.

THEOREM 3. When the model M contains the true density fo, the asymptotic
relative efficiency of the AMLE 9* with respect to the MLE b,, is not greater than one.

This theorem relates to loss of information of AMLE pointed out by Oakes (1986)
p.182. Although the definition of the AMLE is slightly different from Oakes’ as we have
mentioned before, the loss of information of 6“ is similar to Oakes’ AMLE under correct
specification of the parametric model.

3. Simulation results

In the previous sections, we consider the estimator 9;'; by regarding
1 .
11:00) = [ 1og £(z:0)dFu(2)

as an estimator of f fo(z) log f(z; 8)dz. However, Mauro (1985) and Stute (1994) pointed

out that [¢ (z)dF,(z) has a nonnegligible bias as an estimator of [ ¢(z)fo(z)dz, for
every integrable . Stute and Wang (1994) suggested a jackknife corrected Kaplan-
Meier integral

/ P(@)dF(2) + Anp(Ziry)

as an estimator of [ () fo(z)dz, where

n—1 12— 1—j\%u
(3.1) A, = - 5[n](1 — 5[n_1]) H —_—

and Z;, and 6, are defined in (1.2). They reported that this estimator has smaller
bias than [ go(a:)d}:"n(a:) for ¢(x) = z. However, they also reported that the jackknifing
has led to an increase in variance. We consider an estimator 827X which attains the
maximum of [%7%(8) in ©, where

H(0) = 15(6) + nArlog f(Z(n); 6).
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Table 1. Simulation results for MSE and SB of 8y, é; and é,‘;J K. Ax=20

B 1/3 5/6 1 5/4 2
Pr{é = 0} 0.442 0360 0333 0.296 0.200
n=20
6, MSE 7.345 0.629 0.371 0.251 0.157

SB 2.969 0.105 0.011 0.006 0.044
é; MSE  4.894 0.736 0.461 0.273  0.090

SB 1.613 0.156 0.071 0.026 0.003
g‘;JK MSE 3.884 0.678 0.465 0.306 0.112
SB 1.114 0.039 0.009 0.001 0.000

n = 50
A MSE 1935 0.228 0.131 0.104 0.095
SB 1.221 0.052 0.002 0.014 0.052
- MSE 0.733 0.233 0.158 0.096 0.034
SB 0.319 0.035 0.015 0.005 0.000
é;JK MSE 0.576 0.250 0.187 0.123 0.043
SB 0.203 0.002 0.000 0.000 0.000

n = 100
A MSE 1.128 0.123 0.063 0.062 0.076

on. SB 0.855 0.039 0.000 0.018 0.054
é; MSE 0.263 0.110 0.075 0.046 0.017
SB 0.121 0.012 0.005 0.001 0.000

é;JK MSE 0.206 0.135 0.100 0.065 0.021

SB 0.070 0.000 0.000 0.000 0.000
The smallest MSE is written in bold script.

In this section, we discuss comparison of the estimators based on a simulation study.
Following the example of the previous sections, we assume that

; Xi ~ fo(z) = AMB(Az)Pexp{—-(A2)?}, Vi~ g(y) =By’ L exp{—y°}
M = {f(z;0) = fexp(—0z); 0 > 0}.

Thus the parameter value we should estimate is 85 = A\/T(1 + 871), and the MLE is
given by 8, = (3°7; 6;)/(3 1, Z:;). From an expression of the Kaplan-Meier integral
by Stute and Wang (1994), the AMLE is given by 6* =1 />y WiZ;), where

6' i—1 . 5{j]
W, = —1 n—J i=1,2,...,n.
Thoiri it \n—j+1) 2,

The estimator 8,”X is expressed as

é;JK 1+An

C AnZmy+ Y Wil
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Table 2. Simulation results for MSE and SB of 8p, 8% and 8;7%; 8 = 1.0

n 20 50 100
A 1/2 1 2 1/2 1 2 1/2 1 2
Pr{6 = 0} 2/3 1/2 1/3 2/3 1/2 1/3 2/3 1/2 1/3

= MSE 0.045 0.122 0.371 0.016 0.043 0.131 0.008 0.021 0.063

fn SB 0.001 0.003 0.011 0.000 0.000 0.002 0.000 0.000 0.000
é; MSE 0.125 0.199 0.461 0.048 0.070 0.158 0.025 0.034 0.075
SB 0.066 0.061 0.071 0.025 0.018 0.015 0013 0.007 0.005

é;JK MSE 0.074 0.173 0465 0.033 0.077 0.187 0.022 0.047 0.100

SB 0.007 0.005 0.009 0.000 0.000 0.000 0.000 0.000 0.000
The smallest MSE is written in bold script.

Sample size are n = 20, 50, and 100. For a fixed A = 2.0, varying ’s and each n,
100000 samples were drawn and the mean squared error (MSE) and the squared bias
(SB) of each estimator were computed; results are shown in Table 1. The probability
that X; is censored is Pr(6; = 0) = 1/(1 + A?), and A = 2.0 was chosen so that the
probability is 1/3 when 8 = 1.0 (this means f; € M). After exploring various 3, five
values of 3 (1/3, 5/6, 1, 5/4, 2) were chosen. When 8 = 5/6 or 5/4, the assumed model
M can be considered to be near to the true distribution. When 8 =1/3 or 2, it is far
from the true.

Similarly, a simulation for a fixed # = 1.0 and varying X’s was carried out. Results
for A=1/2, 1 and 2 are shown in Table 2. The values of A = 1/2, 1 and 2 represent 2/3,
1/2 and 1/3 censoring probability, respectively.

From Table 1, it is seen that an estimator which has the smallest MSE for all 3 does
not exist. When 3 is near to one, the MLE 8, is best among three estimators. However
it has larger bias than é;J K. When § is far from one, either 8% or 6%/% is best, and
superiority of them to 8, is remarkable for large sample size. For large 5, 9:, is best, and
reversely é;J K is best for small 3. It occurs because the censoring probability Pr{é = 0}
decreases with . If the probability is small, both é; and é;‘;’ X have small biases, and
their MSEs mainly depend on the variances. This is the reason é; is best for large 8.
On the other hand, if the censoring probability is large, the biases are serious and hence
627K is best. On the whole, 877X has small bias and large variance.

From Table 2, we can see that the MLE 6,, is best among three estimators when the
assumed model contains the true density. This superiority is remarkable in case of heavy
censorship. This implies that in such case much information is lost by AMLE relative
to MLE. In comparison between 87 and 6%7K, 87X is better than 67 in case of heavy
censorship.

4. Information criteria under censorship

In this section, we derive information criteria under right censorship. To do this, we
consider the multiparameter case. Let f(z;f) be an assumed parametric density with
p-dimensional vector of unknown parameters. The information criteria such as AIC
(Akaike (1973)), TIC (Takeuchi (1976)) and GIC (Konishi and Kitagawa (1996)) are
derived as asymptotically unbiased estimators of

/ folz) log f(z;n)dz,
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where 7 is some estimator of . In AIC and TIC, the MLE is used as 1, and more general
estimator (functional estimator) is used in GIC. In the censored case, we consider the

AMLE 8., and the MLE 8, as 7.
We first consider estimation of

(4.1) [ h@oe e
Expanding log f(z; 9:) as a Taylor series about 8, we have an approximation
a* * 1 * x/0%\ /a* *
(4.2) /fg(a:) log f(x;6,,)dz ~ /fo(:r) log f(z;603)dx — 5(0n —83)'J*(65)(8,, — 6y),
where
% { 82

(4.3) 709 = - [ g 108 1@ 6)dFo(z).
The first term on the right-hand side of (4.2) can be similarly approximated as
@) [ fole)log 1 (z:05)cz

— [0 £(@i8,)dBu(@) + [ {108 1(2:03) — log f(ws8) b (2) — M

~ [rog a8;)aEn(o) - { [ 08 65100 0) | @ - 09

36 -0y { [ oo s )t} @, -6
—.2 n 0 80601 0g J(Z;0g n\T n 0
~ [ o8 £(w:8)aEn(z) - 56, — )T @)@, - 65) - M,

where

M = [ 1og f@i85)dFn(z) - [ folz)log £(2:65)da-
From (4.2) and (4.4), we have

/ fol() og £ (z;0))dz ~ / log £ (z;05)dEn(z) — (8], — 65)'J* (036}, — 65) — M.

Put
rg) = [{ZREfE {20e O (Gt are)
- [ e { [ PR D ar o} { [~ 2D i)} acie),

then the asymptotic covariance matrix of \/5(9; —8;) is given by J*(65) "1 (65)J* (65) 1.
Hence we have an approximation

B(6, 87" 63} - 63)] ~ trace {J*(65)"'I"(63)} .
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If there is no censorship (G = 0) and the assumed parametric model contains the
true density, E[(0,, —6;)'J" (86)(8:; —8;)] ~ p/n, since J*(8;) = I"(6;). Thus in this case

we can estimate (4.1) by
1 e %
- {Zlog f(Xi:8,) - p} ,
=1

since E[M| = 0. This is Akaike (1973)’s AIC.

In general case, we have to estimate J*(6;), I*(6;) and E[M]. By substituting Gn,
F, and G, into 6}, Fp, G’ where Gn 1s the Kaplan-Meier estimator of G, J* () and

I (65) are estimated by J (0 ) and I @ ) respectively. On the other hand, E[M] is a
bias of a Ka.plan—Meler integral [ log f(z; 65)dE,(z). Hence we can estimate E[M] by

—Ay log f(Z(n); n) using Stute and Wang (1994)’s jackknife bias correction, where A,
is defined in (3.1). Thus we can estimate (4.1) by

(4.5) / log f(z;0.,)dE,(z) — %trace{:f*(@:)_lf* @)} + Anlog F(Z(n); 6.,),

and which can be regarded as an information criterion for the AMLE under censorship.
If there is no censorship, the criterion (4.5) coincides with Takeuchi (1976)’s TIC,

since the third term is zero, and J~ (9;) and I" (é;) reduce to

Zam log f(X;;6,)  and %Z{%logf(xuon)}{ log £(Xi; n)},

i=1

respectively.
We next derive an information criterion corresponding to the MLE On, and which
is an asymptotically unbiased estimator of

/fo(w) log f(:v;én)d:c,

where the MLE @n is a solution of the likelihood equation

- ) ; 8. -, _ &
> {63 108 £(Zisbn) + 1 - 8) g log F(Zib) ) =

i=1

Under some regularity conditions, the MLE 6, converges in probability to B, as n — oo,
where ) is a solution of an equation

/C_r'(:c)% log f(z;00)dFy(z) + /F0($)—36—0 log F(z;00)dG(z) = o.
Expanding log f (z;@n) as a Taylor series about 8o, we obtain an approximation

/ fol@) log £(z;0,)dz ~ / fol) log f(z:Bo)de
+{ [ fato) 1o i) | B - )
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1 nm =
—5(0n —8o)' J*(80)(0,, — 0o).
The first term on the right-hand side can be approximated as
/fo(m) log f(;80)dz
= /10g f(x:bn)dpn(x) + /{log f(:l:,é()) — log f(zaén)}dﬁn(x) - M
~ [1og swibnsatnto) - { [ s e Bl @)} 6.~ )
1o 2t resh v
+5 (0 — 80)'T" (B0) B — 80) -
where J*(6) is defined in (4.3) and
11 = [ 10g f(@i80)dFn(a) - [ fola)log £ z: 8o}
Thus we have
(4.6) /fo(a;) log f(z;0,)dz ~ /log f(z;0,)dE, (z) —
o ~
+{ [ 1) gy o a8e)d
7] ~ . P
- [ 7108 S@ibu)afi(a) | 0, ~ o).
Let v;(8) be a p-dimensional random vector defined by
(0) = 6-g1 f(Z:i;0)+ (1 - 6-)31 F(Z;;6)
vl - 180 Og 19 2 ao Og 29 .
Then it holds that

A LI _
(4.7) 6 — B0 = —J(60) I;vi(ﬂo)+op(n /2y,

where
2 2 _
8) = / G(m)% log f(z: 8)dFy(z) + / F’g(x)b—a%? log F(z; 0)dG (z).

From Theorem 1.1 of Stute (1995), we have an expression
48) [ gglofsibo)ifi(e) - [ fo(w) g log f(aibo)d Zu, (B0) + 0pn™112),

where

Olog f(Z;;6)

u;(0) = 6{G(Zi)} 50

+ (1= 6:)71(Z:;0) —7.(Z:;8)
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—/f Blogf(m;ﬂ)

v, (2:8) = / MdF( ) and
Ta(z:6) = / ) "g}*uf)da(m.

Noting E{vi{f0)} = E{u; (80)} = o, from (4.7) and (4.8), we can approximate the expec-
tation of the third term on the right-hand side of (4.6} by
1 - - - 1 - ~ -
(4.9) —;E{uﬁ(ﬁo)J(ﬁg)'lvi(ag)} = —Etrace[.](ﬁo)_IE{v,;(Gg)u;(og)}].
Put

K0 = [ { Fres@o) { o toes(@:0) | aFia)

£(z;0) = / mé(u)(%log F(u;8)dFo(u) + / ” Fo(u)%logﬁ(u;e)da(u),

an

then we have
(4.10) E{v;(80)u}(00)} = K(Bo) + D(Bo),

where

D0) = [ Foo) | 35108 F(i6) - (A(@)} €(a:6)] 7 (w100 (@)

From (4.6), (4.9) and (4.10), we obtain an approximation
E{ / fo(z) log f(z;0n)dz — / log f(a:;én)dﬁ‘n(:c)}
~ —TlLtrace[J(ég)‘l{K(ég) + D(Bo)}] — E(3).
If fo € M, then fo(z) = f(z;80) and hence
(@) (i) = (Flaibo)}™ [ 1(080) g5 10g fluio)du = 5108 Faido)

Thus in this case D(f) = O. It is also obvious that D{fy) = O if there is no censorship
(G = 0). In these special cases, we do not have to estimate D(#). In general case,
however, we have to estimate not only J(8), K(fo) and E(M) but also D(). Since
E(M) is a bias of a Kaplan-Meier integral, we can estimate E(M) by —A, log f (Z(n), 8,).
The matrices J(6), K(fo) and D(8,) are estimated by substituting 8,, F, and G, into
8, Fy and G, respectively. Denote by J(8,), K(8,) and D(8,.) the estimators of J(6p),
K(8,) and D(6y), respectively. We obtain an information criterion corresponding to the
MLE as

(4.11) / log f(z; 8)dEn(z) — %trace[:f(én)"l{f((@n) + D(B1)}] + An10g £(Ziny; 6r).

If there is no censorship, the criterion (4.11) coincides with TIC.

The two information criteria (4.5) and (4.11) can be used to select estimation proce-
dures. If (4.5) is greater than (4.11), then the AMLE is better than the MLE, otherwise
the MLE better than the AMLE.
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5. Concluding remarks

In many practical situations, it seems that the assumed model M does not contain
the true density fo. In the parametric estimation for the censored data, it is very
important that whether M contains fy or not. When M does not contain fo, the
maximum likelihood estimation does not provide the nearest density to fp even if the
sample size n is sufficiently large. The parametric estimation for the censored data has
not been discussed from this point of view. In this paper, we showed that the AMLE
is MKLI-consistent but the MLE is not. The AMLE is worse than the MLE when M
contains fy, and it is better when not so.

As pointed out by Miller (1983), the Kaplan-Meier estimator can be inefficient
compared to parametric survival estimators. If we can firmly believe that the assumed
model is correct, we should analyze data by using the parametric model and MLE. If the
parametric model is roughly correct, it is worth considering the parametric model and
AMLE. In this sense, AMLE is an intermediate between the nonparametric approach
(Kaplan-Meier estimator) and the parametric MLE approach.

On these grounds we have come to the conclusion that the assumed model must
be checked carefully in analysis of censored data. In particular, if the values of MLE
and AMLE are significantly different for large n, the possibility of misspecification is
strong. In this paper we derived information criteria for MLE and AMLE, and which
are extensions of Takeuchi (1976)’s TIC. The information criteria can be used not only
for selecting parametric models but also for selecting estimation procedures between
MLE and AMLE.

6. Proofs

ProorF oF THEOREM 1. Appling the law of large numbers of Stute and
Wang (1993), it can be shown

lim Pr{ sup /log f(m;G*) dF,(z) < 0} =

n—co 10—63(>e f(z;65)

in a similar way to the proof of Lemma in Takeuchi (1974), p. 156. From this, we have

Pr{|6X — 03] > €} <Pr{ sup /log fla;6 dﬁ‘n(x) >0 —0
16—63 > f(z;65)

for any e > 0. O

PROOF OF THEOREM 2. Under the assumptions, it holds that I (%) = 0, and
expanding I (%) as a Taylor series about 6, we have

*' D% * [ n* A * 1 #1  AND* *
0= ln (an) = ln (00) + ln (00)(071 - 00) + Eln (9)(071 - 00)21
where 6 lies between 8% and 63, so that

. n (00)
(6.1) vn(b;, - 65) = 1— \/_ e :
=15, (65) + %l; (6)(67 — 6)
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From the law of large numbers of Stute and Wang (1993), 12" (83)/n — —J*(85) a.s..
Under (B4) and (B5), which correspond to the condition (1.9) and (1.10) of Stute (1995),
respectively, the numerator of (6.1)

f 7 (65) = —v/m / log £ (; 63)dFw (z)

converges in distribution to N(0,17(6)) by the central limit theorem of Stute (1995).
From the condition (B2), it follows that I% ()/n is Op(1). Hence the quantity

15" (6)(8% — 83)/(2n) converges to 0 in probability. O

PROOF OF THEOREM 3. From Theorem 2.1 of Lehmann (1983), the asymptotic
relative efficiency of 8% with respect to 6, is given by o2(6p)/032(60), where 02(6;) and
o52(6p) are defined in (2.2) and (2.1), respectively. Put

Js(0) = | 16 90){ log £ (2 %)}2 and

f(z;60) { 8log f(z;6s) F(x;80) [8log F(z;60) 2
G| 5 }dI‘ G "} 4@,

then 032(6o) = I (60)/{J3 (60)}? and I3(f) can be expressed as

15(6o) =

I3 (60) = E[{(G(Z:))"' L}’

where 8
Li=bigg log f(Zi;60) + (1 — 5) 10gF(Zi;9o)-
On the other hand, I(6y) defined by (2.4) can be written as I(6) = E[L2%]. Hence we
obtain
b)) _ {J5(00)
og?(6o)  E[L}E[{(G(Z:)) ' Li}?]
Noting
_ _ ) 2
BIG@) L) = J3(00)+ B | (1~ 8)(G(2) " { £ 108 F(Ziito) | }
> J()‘(Gg) > 0,
we have

o®(fo) _ _ {ElG(Z:) L7}
05%(60) ~ EILYE[{(G(Z:) ' Li}?]

The last inequality holds from Cauchy-Schwarz inequality. O

<1
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