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Abstract. For translation and scale equivariant estimators of location, inequalities
connecting tail behavior and the finite-sample breakdown point are proved, analogous
to those established by He et al. (1990, Econometrika, 58, 1195-1214) for monotone
and translation equivariant estimators. Some other inequalities are given as well, en-
abling to establish refined bounds and in some cases exact values for the tail behavior
under heavy- and light-tailed distributions. The inequalities cover translation and
scale equivariant estimators in great generality, and they involve new breakdown-
related quantities, whose relations to the breakdown point are discussed. The worth
of tail-behavior considerations in robustness theory is demonstrated on examples,
showing the impact of the basic two techniques in robust estimation: trimming and
averaging. The mathematical language employs notions from regular variation the-

ory.

Key words and phrases: Robustness, breakdown, tail behavior, equivariance, loca-
tion estimator, regular variation.

1. Introduction and overview

Criteria for assessing robustness are often based on large-sample considerations.
This raises some concern about the relevancy of the asymptotic results; as an alternative,
tractable finite-sample criteria are sought. A successful and already well-established
robustness measure of this kind is the breakdown point (sometimes called also breakdown
value). Its data-analytic, non-probabilistic nature is particularly stressed by its most
used formalization, the finite-sample breakdown of Donoho and Huber (1982). It should
be said that the measure of robustness provided by the breakdown is somewhat crude:
there are numerous estimators with the same breakdown point and there are even many
estimators with the maximal possible breakdown.

A possible refinement of the breakdown concept was outlined in the pioneering
work of Jureckovd (1979, 1981a, 19815, 1985). She introduced a robustness criterion
depending on the tail behavior: large deviation probabilities of a location estimator are
compared to tail probabilities of the underlying distribution.

Suppose that X;, X5,..., X, are independent observations, identically distributed
according to a law Py with a distribution function F(z—9). Let T = T,(X1, X, ..., Xy,)
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be an estimator of the location parameter ¥¥. The tail behavior of T is expressed through

the quantity
— log Py[|T — 9| > a
H(a) '

We restrict our attention to the permutation-invariant T which are translation equivari-
ant:

BT,F(CL) =

To(zy+e,za+¢,...,2n+¢) =Tp(z1,22,...,20) +¢C
for any ¢. For such T we may assume, without loss of generality, that ¢ = 0 and

—log P[|T| > a]
H(a)

BT,F (a) =

In the sequel, we write F for the distribution function of P = Py. Let G(a) = F(—a) +
1— F(a) be its (two-sided) tail and H(a) = —log G(a) its (two-sided) cumulative hazard
function.

The asymptotics of By p(a) for a — oo (note the fixed sample size) indicate how
well the estimator performs in comparison with a single observation. In this respect, we
study

ET,F = lim inf BT.F(a) and ET,F = lim sup BT,p(a) .
a—0oo a—00
Clearly, Br < Br,p. He, Juretkovéd, Koenker, and Portnoy (1990) (HJKP) pointed out
a connection to the breakdown point €%: for those estimators which are also monotone
(non-decreasing in each argument),

(1.1) e <Brp<Brr<n-er+1,

for any F satisfying a minor regularity condition. Inequalities (1.1) of HIKP provide a
probabilistic interpretation of the breakdown point, and at the same time open a new
possibility for a more refined assessment of robustness, in the breakdown vein.

The requirement of monotonicity is, however, more restrictive than it might appear.
There are estimators which are not monotone: redescending M-estimators, shorth, loca-
tion versions of high-breakdown procedures used in regression, like LMS, S-estimators,
and others. For some of these, non-monotonicity follows from the result of Bassett
(1991), which says that the only monotone, translation and scale equivariant estima-
tor with 50% breakdown point is the sample median. This implies, for instance, that
the studentized version of Huber’s estimator is not monotone. A natural question in
this respect is whether the inequalities of HJKP are just a specific virtue of monotone
estimators, or whether they represent a more general “law of nature”.

In this paper, we settle this problem for scale equivariant estimators, satisfying
Tn(cxy,cxa, ..., cxy) = cTn(z1,Z2,...,2,), for any nonzero c¢. (Note that the defini-
tion of scale equivariance implies also symmetry with respect to the reflection of the
data around zero. This excludes asymmetric location estimators, like sample quan-
tiles.) Translation and scale equivariant estimators possess the following constant-fit
property: Ty(c0,c0,...,c0) = ¢T,(0,0,...,0) for any ¢, hence 7,(0,0,...,0) = 0 and
Tn(c,c,...,c) =c.

Section 2 contains prerequisities and all general theorems. Theorem 1 brings the
extension of HIKP inequalities for translation and scale equivariant location estimators.
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It is not exactly breakdown point but a related quantity which appears in our inequalities;
nonetheless, both breakdown indicators coincide in most practical cases.

Jureckova (1981a) and HIKP considered two general classes of distributions:

e distributions with ezponential tails (light-tailed, Type I): there are C' > 0, r > 0
such that H(a) ~ Ca”; this class covers the logistic and Laplace distribution (r = 1) as
well as the normal (r = 2);

e distributions with algebraic tails (heavy-tailed, Type II): there is M > 0 such that

H(a) ~ M log a; a representative of this class is the family of ¢ distributions (including
the Cauchy distribution).
We express the tail-heaviness more generally, via the exponent p of regular variation of
H (the definition is given below). It turns out that unlike for monotone estimators, the
lower bound in our analog of HIKP inequalities depends on p. It is the same as in (1.1)
for p = 0 (heavy-tailed distributions); but it is, in general, smaller for p > 1.

On the other hand; the upper bound in (1.1) holds in great generality; for heavy-
tailed distributions, as well as for light-tailed ones. Theorem 1 does not cover, from
technical point of view, some (very) heavy-tailed distributions, which are covered by
Theorem 2. This theorem introduces another breakdown-related quantity, and gives
not only the upper HIKP bound for all heavy-tailed distributions, but it yields also a
somewhat sharper upper bound for certain estimators.

This opens another theme of the paper. The HJKP inequalities determine the
tail behavior completely only for estimators with 50% breakdown; for others, they only
delimit its possible range. This raises concern about possible refinements, and finally
the ultimate determination of the tail behavior. The analyses of various examples, given
in Section 3, in some cases complement the work of Juretkovd, quoted above, and in
some cases give final determination of the tail behavior. The results are summarized in
Table 1 in Section 4, which brings also some concluding remarks.

Theorem 3 concerns the tail behavior of estimators which are obtained as the average
of a subset of observations, at light-tailed distributions. Theorem 3 applies also to
studentized M-estimators, showing that their tail behavior is the same under light- as
well as heavy-tailed distributions.

The proofs of theorems, as well as of some propositions from Section 3 are collected
in the Appendix, which contains also several auxiliary results on regular variation. These
might be useful in verifying the regularity conditions from Section 2.

2. Breakdown characteristics and tail behavior

We use the notation ~, o, O in the usual meaning [as defined on p. 1 of Serfling
(1980)]. A function g is called regularly varying if and only if for any A > 0 there is a
function ¢(A) such that

lim gz = @(A).

z—o0 g(z)
It is known [see Proposition 0.4 of Resnick (1987)] that in this case actually ¢(X) = N7,
where p is called the exponent (or index) of regular variation. If p = 0, then g is called
slowly varying. For more background on regular variation, see Bingham et al. (1987) or
Resnick (1987).
The first regularity condition imposed on P delimits the scope of our investigations.
(A1) F has a positive density: f(a) > 0 for all a € R.
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The results of Juretkova (1981b) reveal considerably different features of the tail
behavior for distributions with compact support, compared to the regular case.

The second condition expresses the amount of regularity needed to avoid symmetry.
Juretkové (1981a), as well as HIKP, originally considered symmetric distributions only;
instead of G(a) and H(a), (1 — F(a)) and —log(l — F(a)) were involved, respectively.
However, symmetry is not essential here, provided some regularity in the relationship
of the two tails is present. We formulate our results in the non-symmetric setting, to
avoid possible false impression that the theory applies only to symmetric situations. The
right tail of P is called dominant, if F(—a) = O(1 — F(a)) as a — oo; if, conversely,
1 — F(a) = O(F(—a)), then the left tail is dominant.

(A2) At least one tail of P is dominant.

It is possible that both are: for any symmetric P, for instance. In all subsequent
formulations and proofs, it is not important which of the dominant tails is considered—if
only there is one. Thus, the words “a dominant tail” should be read in this sense. Note
that (A2) is not satisfied only if (1 — F(a))/F(—a) oscillates from 0 to oo while a — oo.

Next condition makes possible to express tail-heaviness through regular variation.

(A3) The cumulative hazard function H of P is regularly varying with exponent p.

Since H(a) — oo as a — 00, we have always p > 0 in (A3), due to a property of
regularly varying functions [see Proposition 1.5.1 in Bingham et al. (1987)].

If p = 0, an additional condition may be needed. If the right tail is dominant, its
corresponding one-sided tail function is G(a) = Ga(a) = 1 — F(a); if the left tail is
dominant, then G(a) = G1(a) = F(a). The corresponding one-sided cumulative hazard
function is then H(a) = —log G(a).

(A4) If G is the one-sided tail function of a dominant tail, then limsup,_,,, G(va)/
G(ua) < 1 for any v > u > 0.

Some further properties concerning assumptions (A2)-(A4) are given in the Ap-
pendix; in particular, Propositions A.1 and A.2 show that (A4) follows from (A3) if
p > 0. It should be noted that conditions {A1)—-(A4) are satisfied by all known specific
distributions supported by the whole real line.

It is clear that distributions with exponential tails satisfy (A3) with p =7 > 0;
thus, they satisfy (A4) as well. It is also easily seen that distribution with algebraic
tails satisfy (A3) with p = 0 (the cumulative hazard function is slowly varying). We
were not able to establish (A4) for all distributions with algebraic tails; despite that,
(A4) holds for all typical representatives of this class, including all ¢ distributions. The
properties of regular variation suggest that (A4) is violated only for very heavy-tailed
distributions. Juretkovd (1981a) showed that a mixture of a light-tailed and a heavy-
tailed distribution inherits the heavy-tailed behavior. This fact follows (under slightly
weaker assumptions) also from our Proposition A.1, which also implies that the heavier
tail in asymmetric situations (when left and right tail differ in behavior) dominates. In
the popular contamination model (1 — €)F} + F, this means that the tail-heaviness of
the mixture depends only on the smaller of p's, no matter the magnitude of €. This is
somewhat paradoxical, in the light of the fact that (as shown below) the behavior of
Br g and Br r depends entirely on p. Note, however, that Br r(a) would probably
depend on ¢; we leave this topic for the further investigation.

Let x = (x1,Z2,...,2Zn) be a sample. The set of all “contaminated-by-replacement”
samples is denoted by B(z,m); it contains exactly those samples which can be obtained
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from & by replacing not more than m > 0 points with arbitrary values. Let

Br(m,z) = sup{|T.(y)|:y € B(z,m)}.

The finite-sample (called also Donoho-Huber) replacement breakdown point of T at z is
defined as
ep(®) = inf{m: Br(m,x) = oc}.

The (overall) breakdown point of T can be then defined as e} = infz %.(z), where T runs
over all possible samples. In many cases, the breakdown point is universal: £ = ek(z)
for all z.

In the study of tail performance of scale equivariant estimators, it is more useful to
measure rather “the worst-case performance over all samples”. Just taking the sup of 3
over all z would result in co; the solution is, in view of scale equivariance, to take

yr(m) = sup{Br(m,z):z € [-1,1]"}.

The constant-fit property of translation and scale equivariant estimators implies that
yr(m) > 1 for all m. Elementary, but important observations are: 7 is non-decreasing
in m; and
(2.1) pp = inf{m: yp(m) = 0o} < e¥.
The equality holds, however, for the vast majority of practical instances—in fact, the
exceptional cases can be regarded as pathological.

As a prolog to HJKP inequalities, Jureckovd (1981a) proved that any estimator
such that

(E) Th(X1,Xa,...,X,) lies within a convex hull of X;, X5,..., X,
satisfies 1 < Brr < ET, r < n. The inequalities are sharp: the arithmetic mean attains
n for distribution with exponential tails and 1 for algebraic tails—in this case, its tail
performance does not improve over that of one observation. We mention this result
because of the property (E), which is apparently a virtue of every reasonable location
estimator.

THEOREM 1. Suppose that (Al), (A2) hold and T is translation and scale equiv-
ariant estimator satisfying (E). If (A3) holds, then

(2.2) max{(m + 1) }yr(m)|~7:0 < m < 5§} < Br,j.
If (A3) holds with p > 0, or if (A3) and (A4) hold, then
(2.3) Brp<n-—pp+1.

Since yr(m) > 1, the maximum in 2.2 does not exceed p%. In the majority of cases,
the maximum is attained for m = p} — 1. If H is slowly varying (that is, if p = 0), then
(24) #r < Bpp < Brp <n-—py+1,

whenever (Al), (A2) and (A4) hold.
The form of (2.2) opens a possibility that under light-tailed distributions, a non-
monotone estimator possesses worse tail behavior than a monotone estimator with the
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same breakdown point. Though we do not know whether inequality (2.2) is sharp, in the
next section we give examples of estimators whose tail behavior is inferior to the lower
bound in (1.1), valid for monotone estimators.

As already mentioned, though (A3) and (A4) hold for a large class of distributions,
there is a possibility that (A4) is violated for distributions with very heavy tails (heavier
than those of the Cauchy distribution, for instance). For this reason, we present an
alternative way to assess (2.3) for distributions with slowly varying H. It employs
another type of breakdown concept, suitable, like vz and p}., primarily for location and
scale equivariant estimators. Moreover, in this vein we are able to obtain refined upper
bounds for the tail behavior under heavy-tailed distributions. Let

6T(m) = Sup{Tn(y):y € B(.’ﬂ, m) N (—OO, 1]n’z € (—00,01"’}.

Obviously, 67(m) is non-decreasing in m; and 6r(m) < 1 whenever T satisfies (E). Of
special interest are those m for which the equality holds; let } = inf{m:ér(m) = 1}.
The relationship between 77 and €} or u} is more delicate than that between the latter
two. Usually e} < 5}, but there are (again pathological) examples not satisfying this
inequality. On the other hand, the inequality can be sharp: for trimmed means, for
instance.

It can be shown by exact-fit considerations that for the estimators with maximal
breakdown point, e} = p}.. (The exact-fit point of scale equivariant estimators is equal
to the breakdown point at the sample with all points concentrated in ¢; and translation
equivariance further makes the exact-fit point universal, that is, not dependent on c.)
For odd n, €} and p} are both equal to n}. For even n there is a small difference: while
ep = prl(n+1)/2], 5 = [n/2] + 1. Note also that due to symmetry,

(2.5) —bép(m) = inf{T,,(y):y € B(z,m)N[-1,00)",x € [0,00)"},
hence there is no real need for notions symmetric to ér(m) and n7.

THEOREM 2. Assume that (Al), (A2), and (A3) with p = 0 hold. IfT is a
translation and scale equivariant estimator satisfying (E), then

(2.6) Brr<n—mp+1l.

In the vein of Theorem 2, an inequality for p > 0 (involving 7}) might be proved,
however, it would be inferior to that given by (2.2). On the other hand, Theorem 2
can yield stronger upper inequality than (1.1) for p = 0; note that in this case, (1.1) is
implied by (2.6) if e} < n7.

The quantity vz is very similar to the maximum deviation curve (MDC) introduced
by Croux (1996). MDC is defined in the same way as our 7z, only instead of 87 the sup
of |T,,(y) — Tn(z)| (instead of |T5,(y)|) is taken. Thus,

MDC(m) = sup{|Tn(y) — Tn(z)|:y € B(z,m),z € [-1,1]"}.

Croux uses [—1/2,1/2]" instead of [—1,1]™, but this is merely a matter of taste. MDC
may be more natural for the study of the bias behavior; however, yr is better suited for
our needs. For estimators satisfying (E),

(2.7 max{1,MDC(m) — 1} < yp(m) < MDC(m) + 1.
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Consequently, the “MDC breakdown point”, that is, the inf of those m for which
MDC(m) = o0, is equal to p%. In certain cases, MDC is equal to ~yr.

Jureckovd (1979, 1981a) proved that the mean behaves well under distributions with
exponential tails. The following theorem shows that this property is shared to an extent
by estimators obtained through averaging a subset of observations; for L-estimators,
a version of this fact was proved by Juretkovd (1981a). The decisive property is the
following one; it depends on m.

(M) If |T| > a, then there is a subset Y1, Ya,...,Y,, of X;, Xs,..., X, such that

I e Yil > a.

THEOREM 3. Suppose that F is continuous and H(a) ~ h{a), where h is a non-
negative, increasing, differentiable and conver function. If T is translation equivariant
estimator satisfying (M), then By p > m.

For distributions with algebraic tails, h(a) = Ca" and the assumptions of Theorem 3
are satisfied if r > 1, for the Laplace or normal distribution, for instance.

3. Some examples and their more detailed analysis

Monotone estimators. For monotone estimators which are translation and scale
equivariant (scale equivariance was not required by HJKP) inequalities (1.1) follow from
(2.4), Theorem 1, and the following proposition, which implies that 5 < u% (then
(2.1) yields equality, so that u} can be replaced by €% in the upper bound (2.3)). The
proposition also asserts that yr(pp — 1) = 1; hence the lower bound (2.2) reduces to €%
under any type of distribution.

PROPOSITION 1. For any translation and scale equivariant monotone estimator T
satisfying (E), (i) yr(m) = 1 whenever m < e%; (ii) £5 = p¥h < 0}

PrOOF. From Bassett (1991) it follows that any translation and scale equivariant
monotone estimator with breakdown point equal to £} must lie between the ¢} and
1 — €% sample quantiles. This implies that yr(m) < 1 for m < e%. The constant-fit
property of the estimators under consideration then implies that yr(m) = 1 for m < &%,
and also that yr(m) = oo if m > €}. Consequently, p% = €% and the max in (2.2)
is equal to €% for any p. Analogously, we obtain that é7(m) = 0 for m < &}; thus,
er <nr.0

All L-estimators with positive weights (including the median, all trimmed and Win-
sorized means) are monotone, translation and scale equivariant. Theorem 2 shows that
their exact tail behavior is lower than the upper bound given by Theorem 1.

PROPOSITION 2. For any L-estimator assigning a positive weight to the i-th and
(n — i + 1)-th order statistic, ny > n — 1.

Proor. If all points are in (—00, 0] and n— ¢ of them are allowed to be in (—o0, 1],
then still the i-th order statistic does not exceed 0; hence T' cannot be equal to 1. O

Note that, due to symmetry, an L-estimator assigns a positive weight to the i-th
order statistic, if and only if it does so to the (n — ¢ + 1)-th one. Proposition 2 and
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Theorem 2 combined with Theorem 1 show—as established by Juretkova (1985)—that
for all L-estimators, By p = Br p = €% if the underlying distribution is heavy-tailed
(with p = 0).

On the other hand, Theorem 3 yields for trimmed means the highest possible (by
inequalities of HJIKP) tail behavior under distributions with exponential tails (satisfying
assumptions of Theorem 3). To see this, just note that all trimmed means which trim k
observations on each side satisfy (M) with m = n — &k (note that if the trimmed mean is
greater than a, not only the average of the middle n — 2k order statistics, but also the
average of n — k largest order statistics is greater than a).

Another example of monotone, translation and scale equivariant estimator is the
Hodges-Lehmann estimator, whose properties slightly differ from those of trimmed
means. Again pup = €}, by Proposition 1; but here also n; = ¢% for odd n, thus
Theorem 2 gives the same bound as Theorem 1 in this case.

LMS and shorth. According to Rousseeuw and Leroy (1987), the location LMS is
the midpoint of the shortest “half” of the data—that is, the midpoint of the shortest
interval containing |n/2]| + 1 data points. The shorth is the average of the observations
lying in this interval. Clearly, both estimators are translation and scale equivariant.
Since both have breakdown point equal to |(n + 1)/2] for odd n, the result of Bassett
(1991) implies they are not monotone (which can be also seen directly). If more than
a half of the data points lie in [—1, 1], then the shortest half of the data must contain
at least one point from those lying in [—1,1]. This yields that the shortest “half” of
the data is contained in [—3,3]. Thus, if m < [(n + 1)/2], then y7(m) < 2 for the
LMS; in fact, y7(m) = 2 (allow the right endpoint of the shortest half tend to 3). Thus,
ep =pup=|(n+1)/2] +1. A similar argument shows that also n} = % for odd n.

The maximum in (2.2) is equal to p¥[yr(ph — 1)]7° = |1(n+1)] 277, For heavy-
tailed distributions with p = 0, the lower bound is the same as that for monotone
estimators. However, it can be much lower when p is equal to 1 or 2.

To get the better idea about the exact tail behavior of LMS, we derive the following
upper bound.

PROPOSITION 3. Assume (Al)-(Ad). For the location LMS,
= 1 2\” 4\? 2\’
. <{n-|=z o ) —-(2}) ).
(3.1) Brr< (n [2(n+l)J+1) (3) +[(3) (3) ]

PROOF. See the Appendix. O

For the shorth, we have again that € = p} = [(n + 1)/2] + 1; the same holds for
nr if n is odd. For m < e7,,

1
3771—!—[—2-71J+1—m_1+ m
= I

o] +1 B

yr(m) <
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(this bound is sharp, as can be easily seen). Now, the maximum in (2.2) does not exceed

(m + 1)([-21-nJ + 1):
(2m + [%nJ + 1)

(lser+]) (L))
(el n] + (o] )

However, for p = 2, the maximum in (3.2) is

IR
(1))

2(2[%74—1)2
(A R

and is attained for m < p} — 1 (which is a bit unusual, but not impossible).

However, the real tail behavior for distribution functions F satisfying the assump-
tions of Theorem 3 is much better: By p > |n/2] + 1, since the shorth is computed
by averaging the [n/2]| + 1 observations. For odd n, it is the same tail behavior as for
heavy-tailed distributions (and for monotone estimators). We can see that tail-behavior
considerations are able to distinguish between two very closely related estimators, which
otherwise have the same breakdown point and the same cube-root rate of convergence.
This shows the value of tail-behavior considerations.

(3.2) max 'm < pr

For p =1, (3.2) is equal to

priyr(ur — 177 =

M-estimators. Huber’s estimator. Although simple M-estimators with monotone
score functions are monotone, their studentized versions are generally not. In practical
use of M-estimators, some kind of scale adjustment is highly necessary: the “plain”
versions suffer not only from lack of scale equivariance (the mean and median are the only
exceptions), but also from possible non-identifiability [Mizera (1994)], and bad change-
of-variance and breakdown behavior [Donoho and Huber (1982)]. Consequently, some of
the approaches recommended by Huber (1981) should be adopted: either studentization,
or “Proposal 27 simultaneous estimation of location and scale.

Suppose that 3 is a monotone, even (that is, ¥(—z) = —9(z)) and bounded score
function. Let S = S,(X;, X5,...,X,) be a scale estimator. An M-estimator with score
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function ¢ studentized by S is defined as the solution T of the equation MT,S) = 0,

where
At,s) =3y ( - t) ,
i=1

for t € R and s > 0. For s = 0, we set the value of ¢((X; —t)/s) to be the limiting value
for s > 0: that is,

Alt,0) = Z sign(X; — t)

(we may suppose without loss of generality that —¢(—o00) = 9(00) = 1). Note that
monotonicity of i yields that

(3.3) A1, 8) > A(ta, s) whenever t; <t
and also, if 57 < s,
(3.4) ¢<ﬁ) zw(X"—t) if X;—t2>0,
81 S92
< ¢(X"_t) if X;—t<0.
83

Assoon as S is location invariant, T keeps the location equivariance of the non-studentized
version. Moreover, the scale equivariance of § implies that of 7. The studentized esti-
mator T' inherits also the breakdown point of the non-studentized version, provided that
the breakdown point of S is high enough.

The most common choice for S is MAD, the median absolute deviation from the
median. It is well-known that its breakdown point, as well as that of an M-estimator
studentized by it, is €4 = [(n + 1)/2] [see, for instance, Huber (1981)].

To compute yr(m), note first that if m < m* = e} — 1 and more than n — %
of X;’s lie in [—1,1], then S = MAD < 2. If ¢(¢) > 1 — d, then (3.4) yields that if
d < (n—2m)/(n — m), then

AM1+2¢,S)<—-(1-d)(n—m)+m=-n+2m+d(n—m) <0,

and, analogously, also A\(—1 — 2¢,S) > 0. Thus, by (3.3), yr(m) < 1+ 2¢,,, where
¢m is the smallest ¢ satisfying ¥(c) > m/(n —m). Note that ¢; < ¢z < -+ < s
Consequently, u} = 7.

A similar argument shows that also 9} = €7 for odd n: whatever is the value of the
scale parameter s in A(¢,s), the M-estimate can never be equal to 1 if all observation
are in (—oo, 1] and more than half of them in (—00,0]. Theorem 2 then establishes the
upper bound n — |(n + 1)/2] + 1 for the tail behavior under heavy-tailed distributions.
This bound applies also to other studentizing scale estimators, and also when location
and scale are estimated simultaneously—provided that the scale part breakdown point
is not less than |(n+1)/2].

If T is Huber’s estimator with tuning constant k, that is, the score function ¥(x) is
equal to max{-1,min{z/k,1}}, we have that ¢, = (km)/(n — m). Thus, the maximum
in (2.2) is equal to

1

* * - * 6* -
ulyr (- )7 = <5 (1 pop STl

-p
>ep(l+2k)7°.
n—5}+1) 2 er(1+2k)
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This bound suggests that Huber’s estimator might exhibit a similar loss in tail behavior
as the location LMS estimator. However, it is plausible that its tail behavior under
light-tailed distribution is rather that of shorth, since Huber’s estimator also performs
a kind of “averaging” in the middle of data. Let X1y, X(2),..., X() denote the order
statistics of the sample X, Xs,..., X,.

PROPOSITION 4. Let 9 be the score function for Huber’s estimator; let m = |(n+
1)/2]. If X(Ts,s) =0, then

l n
Li<— > X

i=n—m+1

for any s.
PRrOOF. See the Appendix. O

As a consequence, Huber’s estimator satisfies (M). Theorem 3 then yields that
Br g > [(n+1)/2] for distributions with exponential tails. Again, the result is valid for
any type of studentization, and also for the location part of simultaneous (“Proposal 2”)
estimators of location and scale (now even without any assumptions on the breakdown
point of the scale part).

4. Concluding remarks

As expressed by HIKP, robust estimators can be viewed as “minimax” in the tail-
behavior sense: they sacrifice some tail performance (especially under light-tailed dis-
tributions), in order to maintain it stable under all types of distributions (particularly
heavy-tailed ones).

Our findings relate this theoretical principle with the basic techniques for construct-
ing robust estimators: trimming and averaging. In a sense, they act in opposite di-
rections: trimming (note that not necessarily related to order statistics) ensures high
breakdown and good tail behavior under heavy-tailed distributions. Averaging the rest
of observations then rescues good tail behavior under light-tailed distributions.

Our examples also show that tail-behavior investigations are a worthy way of as-
sessing robustness. For instance, they are able to distinguish between the location LMS

Table 1. Breakdown characteristics and bounds on the tail behavior.

Estimator Breakdown Tail behavior (%)
charact. (%)

p=0 p=1 p=2

& wp mp > < > < > <
Sample mean 0 0 100 0 0 100 100 100 100
Sample median 50 50 50 50 50 50 50 50 50
29% trimmed mean 29 29 71 29 29 71 71 71 71
Hodges-Lehmann 29 29 20 209 71 29 71 29 71
LMS 50 50 50 50 50 17 33 7 22
Shorth 50 50 50 50 50 50 50 50 50

Huber’s M-estimator 50 50 50 50 50 50 50 50 50
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estimator and the shorth, two closely related estimators with the same breakdown point
and similar asymptotics. Also, tail-behavior considerations are of finite-sample, non-
asymptotic nature.

Table 1 contains a summary of our results for various location estimators. Figures
are simplified, in form of percentages of n, neglecting the additive terms vanishing with
increasing n, and also the subtle differences between odd and even n. We hope that
this simplification will make tail-behavior features more visible. Under heavy-tailed
distributions we understand those satisfying the assumptions of Theorem 2 with p = 0: ¢
family, for instance. Light-tailed distributions satisfy the assumptions of Theorem 3 with
p > 0: examples are the Laplace or logistic (p = 1) or the normal distribution (p = 2).
First four estimators are monotone: sample mean and median, trimmed mean (the
trimming proportion was chosen to allow for a comparison with the Hodges-Lehmann
estimator; analogous figures can be obtained for any other choice), and the Hodges-
Lehmann estimator. The last three estimators are non-monotone: LMS, shorth and
Huber’s M-estimator. Huber’s estimator can be either in its studentized, or simultaneous
location-scale (“Proposal 2”) form: the only requirement is that the scale part has 50%
breakdown point.

For all but the Hodges-Lehmann and the LMS, Table 1 gives the definitive assess-
ment of the tail behavior. The LMS is shown to be inferior to other 50% breakdown
estimators. The behavior of the Hodges-Lehmann estimators remains unsettled, in the
bounds given by HJKP.
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Appendix: proofs and some additional technical facts

We prove some auxiliary statements first. The first one of them shows that the tail
behavior depends on a dominant tail. It is formulated slightly more generally, to cover
also Lemma 2.1 from Juretkovd (1981a) about mixtures, where similar behavior takes
place: the dominant component, the component with heavier tails, prevails. Thus, when
¢1 + ¢2 = 1 below, the statement is about mixtures; on the other hand, for our proofs
we need the version with ¢; = ¢y = 1.

PROPOSITION A.l. Suppose that g(a) = ci1g1(a) + c292(a). If g2(a) = O(g1(a))
and gi(a) — 0 as a — oo, then —log g(a) ~ —log g1(a). Consequently, if H corresponds
to a dominant tail, then H(a) ~ H(a) and H is regularly varying if and only if H is,
with the same exponent.

Proor. Just note that

—log ley + ¢ g92(a)
—logg(a) _, o8 [ T 2srl(a)]
—log g1 (a) —log gi(a)

and that —log g1 (a) — oo as a — o©. The rest of the statement immediately follows. O



256 JOZEF KUSNIER AND IVAN MIZERA

PROPOSITION A.2. Suppose that g(a) is a positive function such that g(a) — 0 for
a — oo. If h(a) = —log g(a) is regularly varying with exponent p > 0, then

(A1) lim sup 9(va) <1

a—oo  g(ua)

whenever v > u > 0.

PrROOF. Just note that

lim sup g(va) = limsup e~ [R(va)~=h(ua)] _ |iy e—h(ua)lh(va)/h(ua)~1] _ 0,

a—00 g(ua) a—00 a—00

since the limit in the exponent exists and is equal to —c0. O

PROPOSITION A.3. If g is a positive function satisfying A.1, and h is an arbitrary
function such that h(a) — oo for a — oo, then

. —log[g(ua) —g(va)] _ ..  —logg(ua)
Jm, h(a) =m0

?

whenever v > u > 0 and the limit on the right exists.

Proor. The proposition follows from the equality

“log |1 - 4v®)
~ loglg(ua) - g(va)] _ ~logg(ua) ' )
h(a) h(a) h{a)

The limit of the rightmost term is 0 since the denominator is bounded. O

PROOF OF THEOREM 1. We first prove inequality (2.2). Let m* < u%. Note that
ifm>n—-m*4+1of X;’s lie in [-1,1], then |T} < K = yp(m* — 1). Let | X*| be the

(n — m* + 1)-th order statistic among | X1|,|Xa|,...,|Xn|. By scale equivariance,
X X X \| )
Tn(X1,Xa,..., Xn) = I|X*| T, (|X1|, leI""’ |Xi|)) < K|Xx*|.

Hence,
P[IT| > a] < P[|X*| > a/K]
~ / n ( n-1 ) G)™™™ (1 — G(£))™ ~15(t) dt

/K n—m*

1
-1 * -1 m
s/ n(" ,>(1—s)""1ds=<" *)G(i) :
1-G(a/K) n—m n—m K
where 1 — G(z) is the distribution function of the absolute value of the random variable
with distribution function F’, and § is its density. Since H(a) — oo,

. —logG(a/K) . H(a/K) B
> * — — * * P
Brrp2>m ahrn ") =m ahm _—H(a) =m*K™*,
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due to (A3). This proves (2.2).

By Proposition A.2, (A3) with p > 0 implies (A4). Hence, it is sufficient to prove
(2.3) under (A3) and (A4). Suppose that m > n—m* + 1. If m of X;’s lie in {-1,1],
then |[T| < K. By translation equivariance, T > d — K whenever m or more of X;’s lie in
[d—1,d+1]. If d— K > 0, scale equivariance yields for arbitrary ¢ > 0 that T > ¢(d — K)
whenever m of X;’s lie in [¢(d —1),¢(d+1)]. Writing a = ¢(d— K), u = (d—1)/(d— K),
and v = (d + 1)(d — K), we obtain the following: given any d > K, there are v > u > 1
such that T > a if at least m of X;’s lie in [ua,va]. Thus, for any a > 0 and any d > K

(A.2)  P[T|> a] > P[X(ne) > ua & X(ny < va] > [F(va) - F(ua)]™ *1.

We can suppose, without loss of generality, that the right tail is dominant (otherwise the
whole proof would be for a symmetrically reflected situation). By A.2,

—log P[|T’| > a] < —(n — m* + 1) log[F(va) — F(ua)]
H(a) - H(a) )
—(n — m* + 1) log[G(ua) — G(va)]
H(a) '

By (A4) and Propositions A.3 and A.1,

= . . H(ua) . . H(ua)
< — = — —_—

Brr < (n—-m +1)a1£1c}o Ha) (n—-m +1)a111£0 @
=m-m+1v =(n-m"+1) 4-1)*
=(n—-m w’ =(n—-m - .

The last inequality holds for arbitrary d > K chosen in advance; thus, allowing d — oo,
we obtain 2.3. O

PROOF OF THEOREM 2. Again, we can assume without loss of generality that the
right tail is dominant. By symmetry, we have (2.5); by translation equivariance, it follows
that 0 <1 —ép(m) < T whenever m <nj; —1, z; > 0 for all 4, and n — i} + 1 of z;’s lie
in [1,00). Finally, scale equivariance yields for m < n}. — 1 that 0 < ¢(1 — 67(m)) < T
whenever X(1y > 0 and X(mn41) > ¢. Hence, writing m* = 5}, a = ¢(1 — ér(m* — 1))
and u = (1 — é7(m* — 1))~1, we obtain

P[|IT|>a] > P[T >a] > P[Xq) >0 & X(+) > uaj
> GI(O)m'_lGl(ua)"‘m"”.

Hence, again by Proposition A.1,

ET,F < alln;lo ———1055%)%1:4-(“—711*4-1)[3&&)):'
:(n—m*+1)ali’ngo%(—(lzl(;z=(n—m*+1)u”=(n—m*+1). O

Next two propositions are needed for the proof of Theorem 3.
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PROPOSITION A.4. Suppose that H(z) is the (two-sided) cumulative hazard func-
tion of the distribution of a random variable X. If X has a continuous distribution
function and H(x) ~ h(zx) for x — oo, where h(z) is a nonnegative, increasing function
with derivative b (z), then Ee(1=9PUXD) < o0 for any e > 0.

PROOF. Since H(a) ~ h(a), there is U, such that
(A3) Glu) = e~ H®) < = (1-1/20)h(u)

for any u > U.. We can choose U, large enough so that there is u, > 0 such that
e(1=e)h(ue) = U, Let F(x) = 1 — G(z) be the distribution function of | X|. Now we can
write N -

(A.4) Ee(1—&)R(1XD) =/ ee(l's)h("’) dF‘(u)+/ e(1=e)h(u) dF'(u).

0 Ue

The first integrand in (A.4) is bounded by e(1=9)(4) = U, since h{z) is increasing.
Using rules for computation with Stieltjes integrals, we obtain that the second integral
is equal to

(A5) / e(l—s)h(u) d(_G(u)) — G(ue)e(l—a)h(us) — lim G(u)e(l_a)h(u)

£

+ / G )= (1 o) (u) da,

integrating by parts—note that the continuity of F entails that of F. For the last integral
in (A.5),

[ etk o du < (1-e) [T e RO W du < oo,

€

by (A.3). The proof is finished by taking care of the limit in (A.5):

lim G(u)e(l—e)h(u) < lim e(l—e)h(u)e—(1—1/2£)h(u) =0,

U—co u—00

again by (A.3). O

PROPOSITION A.5. Suppose that H(x) ~ h(z), where H(z) is the cumulative haz-
ard function of the distribution of independent, identically distributed random variables
Y1, Ya,..., Y, and h(z) satisfies the assumptions of Proposition 8 and is convexr. If
Y =137 Y, then Ee=9ImhYD <« oo for any e > 0.

Proor. By Jensen’s inequality,
Ee(l-mh(¥)) < Fo(1-9) 2T, h(IYil)

m
— EJJ =¥ — (Ee(-ahiDym < o,

=1

due to independence of the ¥;’s and Proposition A.4. O



TAIL BEHAVIOR OF LOCATION ESTIMATORS 259

Next proposition is essentially Lemma 3.1 from Jure¢kova (1979). Since that con-
tained some (for us) unnecessary assumptions, we rephrase it again.

PROPOSITION A.6. Suppose that h(a) is a non-decreasing function such that
H(a) ~ h(a). If the inequality Ee®"ITD < oo holds for some b > 0, then Brp > b.

Proor. By Markov’s inequality,

Eebh (T

P[|T|>G]SW

Hence
—log P||T| > a] > — log Ee®"ITD 4 ph(a),

and therefore

since the expectation is finite and H(a) — o0 as a — co0. O
PROOF OF THEOREM 3. Property (M) implies that

n —
<
P(T|>a) < () PI¥]>d]
where Y = % 3, Y, is the average of m independent random variables Y1, Y2,...,Ys,,
with the distribution identical to that of X;’s. Hence by Propositions A.5 and A.6,

[iog(,’,i)

H(a)

ET,FZ_ lim } +§?’F2m(1—5),

a—0d

for any € > 0.0

PROOF OF PROPOSITION 3. Let 0 < § < 1/2 be arbitrary. If z; < 0 for i =
L,2,....mg=|(n-1)/2], A<z; <(2-6)Afori=mop+1,my+2,...,n—1and
(2—26)A < 2, < (2—6)A, then T > (3—26)A/2. Writing a = (3—26)A/2, b = 2/(3—26),
u = (4—46)/(3 — 26), and v = (4 — 26)/(3 — 26), we have

P[|T| > a] > P[T > a] > F(0)™ (F(va) — F(ba))" "™ "[F(va) — F(ua)].

Without loss of generality, we can assume that the right tail is dominant. By Proposi-
tions A.1 and A.3,
H(ba) . H(ua)

+ allvngo H(a)

— log F'
Brrp < - lim o 08 (0)

AT H@ T me i

o~ H(a)

=(n—mo— 1P +uf = Ban"+u”.

_ 1 2 \* 4 —46\*°
<|= — — .
Brr< |3 (575) * (557

Hence,
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Since 6 was arbitrary, (3.1) follows. O

PROOF OF PROPOSITION 4. Let m = [(n +1)/2]. Let T; = T5(Y1,Y,...,Y,) be
an estimator defined through an equation

() )

i=1 i=n—m+1
where 9(u) = min{z/k, 1} (recall that ¢(u) = max{—1,%(u)}). We prove first that
(A.6) To(Xay, X2)s-- -1 Xn)) = Ts.

To see this, note first that ¥((X(n—m+1) — Ts)/s) > —1; if the contrary would hold, then
Y((Xu —Ts)/s) = —1foralli=1,2,...,n —m+ 1 (since ¢ is non-decreasing)—but
then A(Ty,s) < 0. Thus, Y((X(n—m+1) — Ts)/s) > —1 and consequently (again by the
monotonicity of ¥), ¥((Xu) — Ts)/s) > —1 for all i = n —m + 1,...,n. Hence, T} is
obtained through solving the same equation as T, and A.6 holds.

Now, let T, be an estimate satisfying an equation

Xn: P (—X(”s_ Ts) =0

i=n—m+l
We claim that
(A7) TS(X(I),X(Q), . ,X(n)) < TS(TS, . 7T57X(n—m+1), e ,X(n)) =T,

The inequality follows from the fact that T’ is non-decreasing in every variable, and that
T, as all M-estimators, satisfies (E): if none of the order statistics Xy X@)y -1 X(n—m)
exceeds X(,_m1), then none of them exceeds T as well—hence the monotonicity of T
can be applied. To observe the equality in (A.7), just start with X(,_pmy1y,-- -, X(ny,
compute T, and then add m data points equal to T,: their contribution to the score
function of 7, is 0, hence both estimators are obtained through solving the same equation.

Finally, since ¢(u) < u/k, the score function based on % is less or equal to that
based on u/k. Since both are non-increasing, the corresponding M-estimators satisfy an

inequality
n

o1
(A.8) T,<— > Xu

i=n—-m+1

The desired inequality then follows from (A.6), (A.7), and (A.8). O

The rest of this Appendix contains some additional facts connected with regular
variation and tails of distributions. These can be useful in assessing and discussing the
validity of various regularity conditions arising in tail-behavior investigations. We state
them without proofs, which are available from the authors.

LEMMA A.l. If f(—a) = O(f(a)) [f(a) = O(f(—a))] as a — oo, then Ga(a) =
O(Gi(a)) [G1(a) = O(G2(a)), respectively].
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LEMMA A2, (i) If f(a) [f(—a)] is regularly varying with exponent x for a — oo,
then Gi(a) [respectively, Go(a)] is regularly varying with exponent x+1. (ii) If G(a)
[G1(a), Ga(a)] is reqularly varying with ezponent s for a — oo, then H(a) [Hi(a), H2(a),
respectively| is regularly varying with exponent — .

The converse to Lemma A.2(ii) is in general not true (for the normal distribution,
for instance).

LEMMA A3. IfG(a) is regularly varying for a — oo with an exponent x < 0, then
(A4) holds.

It makes sense to say that (A4) holds for G: if limsup,_,,, G(va)/G(ua) < 1 for
any v > u > 0. We say that a tail is strongly dominant if lim, .. G(a)/G(a) exists and
is finite; here G is the one-sided tail function corresponding to a dominant tail and G
is the one-sided tail function corresponding to the other one. Strong dominance implies
dominance. Lemma 2.1 of Juretkova (1981a) postulates the strong dominance with limit
equal to 0 (compare with our Proposition A.1).

LEMMA A4. Suppose thatv > u > 0. (i) If (A4) holds (for a dominant tail), then
it holds for G. (ii) If (A4) holds for G, then (A4) holds if a dominant tail is strongly
dominant.

The last proposition shows that the regularity condition used in Theorem 2.1 of
HJKP follows from {A3).

LEMMA A5. If (A3) holds, then H(a + ¢) ~ H(a) for any c > 0.
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