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Abstract. The paper introduces a frequentist’s alternative to the recently devel-
oped hierarchical Bayes methods for small area estimation with binary data. Specif-
ically, the best predictor (BP) and empirical best predictor (EBP) of small area
specific random effect are developed in the context of a mixed logistic model and
different asymptotic properties of the proposed BP and EBP are studied. An ap-
proximation to the mean squared error (MSE) of the proposed EBP correct up to
the order o(m™') is obtained, where m denotes the number of small areas. The
asymptotic behavior of the relative savings loss (RSL) demonstrates the superiority
of the proposed EBP over the usual small area proportion.
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1. Introduction

The surveys are usually designed to produce reliable estimates of various charac-
teristics of interest for large geographic areas. However, for effective planning of health,
social and other services and for apportioning government funds, there is a growing
demand to produce similar estimates for small geographic areas and subpopulations.

Clearly, the usual design-based estimator which uses only the sample survey data
for the particular small-area of interest is unreliable due to relatively small samples
that are available from the area. In the absence of reliable small area design-based
estimator, one may alternatively use synthetic estimator (see Ghosh and Rao (1994))
which utilizes data from censuses or administrative records to obtain estimates for small
geographical areas. Although synthetic estimators have small variances compared to
direct survey estimators, they tend to be biased as they do not use the information on
the characteristic of interest directly obtainable from sample surveys.

A compromise between the direct survey and the synthetic estimation is the method
of the composite estimation (see Holt et al. (1979)) which uses sample survey data in
conjunction with different census and administrative data. The method uses either
implicit or explicit models which borrow strength from related sources. See Ghosh and
Rao (1994) for a thorough review of different composite estimation techniques.

The focus of this paper is to develop an efficient composite small area estimation
method for binary data when the sampling design is ignorable. There are some interesting
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research done in this area using hierarchical Bayes methodology (see Malec et al. (1997);
Ghosh et al. (1998); Farrell et. al. (1997)). However, the methods are generally computer
intensive and could be hard to implement routinely in a large scale operation which are
generally handled by people with moderate level of statistics background. For continuous
variables for which mixed linear models are appropriate, Prasad and Rao (1990) proposed
a frequentist’s empirical best linear unbiased prediction (EBLUP) method to estimate
small-area characteristics. The Prasad-Rao method is quite appealing to a practitioner
since it is very simple to implement for a real life problem. Lahiri and Rao (1995)
extended the Prasad-Rao method to a non-normal mixed linear model. However, the
Prasad-Rao type simple method is not available for nonlinear mixed models {e.g. mixed
logistic model).

The purpose of this paper is to develop the Prasad-Rao type frequentist’s alternative
to the already existing hierarchical Bayes methods. Let y;; denote a binary response
(i.e., 0 or 1) corresponding to the j-th observation in the i-th small-area, i = 1,...,m,
J=1,...,n;. We assume the following hierarchical model for y;;:

Model. (i) Conditional on p;j, y;;’s are independent Bernoulli random variables
with P(yZJ =1 |p'ij) =pija 1= 1,...,m,j = 1,...,72,1'.
(if) Conditional on the intercept o, logit(pi;) = log[pi;/(1 — pij)] = z};8 + ai,i =

1,...,m, j=1,...,n;, where x;; is a vector of px 1 known covariates and 8 = (Bk)1<k<p
is the vector of regression coefficients.
(iii) Marginally, as, ..., q,, are iid N(0,0?), where o2 is an unknown variance.

The total sample size N = 31" n; is generally large. However, in a typical small
area problem, n; could be either very small or moderately large (but relatively much
smaller than the total sample size N so one can justify the preference of an estimator
which is more sophisticated than the direct survey estimator). Thus, so far as the
asymptotics are concerned, it makes sense to study asymptotics under the two situations:
(i) n; is bounded, and (ii) n; tends to co. In all the cases, we shall assume that m, the
number of small areas, tends to co.

Section 2 presents the best predictor (BP) and empirical best predictor (EBP) of
the random effect ;. Section 3 discusses the behavior of the BP and EBP when o tends
to 0 or oo. In Section 4, we study the asymptotic behavior of the proposed BP and
EBP. In order to have the consistency property of the BP or EBP of «;, we must have
n; tending to oco.

An approximation to the MSE of the proposed EBP which is correct up to the order
o(m™1!) is given in Section 5. In this section, we also study the asymptotic properties of
the method of moments estimator of # = (8%, 7)’. We would like to emphasize that unlike
estimators of variance components in a mixed linear model (e.g., Searle et al. (1992)),
here the method of moments estimator of ¢ cannot be negative, and so one never has
to truncate the estimator at 0. We then propose an estimator of the MSE for which the
bias is of order o(m™1).

In Section 6, we extend the results of Section 5 to predict a mixed effect. We note
that our proposed EBP is asymptotically better than the sample proportion in terms of
relative savings loss introduced by Efron and Morris (1973).

A discussion section is added in Section 7. The technical proofs of lemmas and
theorems are deferred to Section 8.
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2. An empirical best predictor
The mixed logistic model introduced in the previous section can be written as
(2.1) logit[P(yi; = 1 | @)] = z};8 + u,

i=1,...,m,j=1,...,n; with @ = (&)1<i<m. Let © = {§ = (8'0)" : B € RP,0 > 0}
be the parameter space.
Let y = (yij)1<icmia<i<ns Yi = Wij)i<i<ne Yi- = Wi )iz and g = 3070, vij-

Then (y;, ;) is independent of y;—. Therefore, the best predictor (BP) of c; , in term
of the MSE, is given by

(2'2) E(ai | y) = E(az |yt)
_ Efexp(qﬁl(y, 008, 580)) _ N
7 B exp(6: 006 Bo) 1L
where 8y = (8400)t is the vector of true parameters; ¢;(k,u,v) = ku — 3 7%, log(1 +

exp(zf;v+u)); and £ ~ N(0,1).
An empirical best predlctor (EBP), &, is obtained by replacing the unknown vector

fo by a consistent estimator, 8, ie.,
(2.3) &i = %i(yi., 0).

3. Asymptotic behavior of the BP (EBP) when ¢ — 0 or oo

In this section, we consider the asymptotic behavior of the BP when o2, the variance
of the random effects, goes to 0 or oo, while the data is held fixed. This means that
we are interested in the behavior of E(c; | y) when the data comes from a population
described by (2.1), where the random effects have a very small or very large variance.
For notational simplicity, we write, in this section, 8 = 6.

By (2.2), it is easy to show that when o — 0, ¥;(y:.,0)/0 — E{ = 0. Therefore, as
o — 0, E(a; | y) = o(c) and hence — 0.

We now consider the behavior of the BP when ¢ — co.

If 1 < k < n; — 1, both exp(¢(k,u, 3)) and uexp(¢;(k,u,3)) € L*. Thus, by the
dominated convergence theorem, we have

_ Juwexp(6u(k,,8)) exp(-u2/20%)d
J exp(¢i(k,u, B8)) exp(—u?/202)du
 Juesp(gilk,u,8)du
feXP(¢1 k u ﬁ))du

Also, by the last expression in (2.2) for 1;, it is easy to show that

(3.1) bi(k, 6)

(3.2) 1;(0,8) = —oo  and  ¥i(n;,8) — oo.

We now consider a special case of model (2.1) for which the limit in (3.1) has a
closed form expression. Suppose that in model (2.1) one has

(3.3) Ti3 = Ty, _'] = 1, ey g,
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L.e., the covariates are at the small area (e.g., county) level. A simple case of this model
is the following:

(3.4 logit(P(y;s = 1] @) = 4+ e,

i=1,...,m,j=1,...,n For a fixed i, write 4 = z{3 and n = n;. Then di(k,u,B) =
ku — nlog(1 + exp(p + u)), which is exactly what one has under (3.4). It can be shown
that under (3.3) one has

k-1 1 n;—k—1 1
(3:5) wi(k,ewz(;} > (7)—9:2@ L<k<mi—1, m22,

=1 =1

where Z:(l)() is defined as 0. The proof of (3.5), given in Section 8, is based on the
following formulas of integrals which are not normally seen in a calculus book or table
of integrals. We derive these formulas in Section 8.

LEMMA 3.1. Forn>2andl1<k<n-1,

Sadl Lo (k-1 n—-k-1)!
/0 (1+$)ndz_ 1) , 1<k<n-1, and

oo k=D —k -1 (SR 1 "
f) oo e = (=) (,zl(l) 2 (l) |

To see what the right side of (3.5) means, suppose that both k and n; — k are large.
Then, Z::ll(l/l) ~ logk + C, Z?;;k_l(l/l) ~ log(n; — k) + C, where C is the Euler’s
constant. Therefore, as o — oo, we have

(3.6) E(a; | y) ~ logit(g:.) — =!8,

1<y <n;—1,n; > 2. In view of (3.2), (3.6) holds even if y;. = 0 or n;.

When 8 is replaced by an estimator 3, &; = v; (vi., (,Qta)t) has the same limiting
properties as 0 — 0 or oo, with 3 in the limit replaced by ,@ For example, in case of
(3.3), if both y;. and n; — y;. are large, we have, as o — oo,

(3.7) & = logit(3;.) — zi.

It might be interesting to compare (3.7) with the corresponding result for the linear case,
as ¢ — oo. Consider, for example, the linear mixed model Yij = B+ a; + €5, where ¢;;
are ii.d. errors with variance 72. Then, as o2, the variance of the a;’s, tends to oo, the
best linear unbiased predictor, or BLUP (e.g., Searle et al. (1992), §7.4), of a; goes to
¥i. — §... Note that in this case, i = §.. is the estimator of p.

4. Asymptotic behavior of EBP when m — oo

Let ¢ be a selected index, 1 < ¢ < m. In an asymptotic setting, it makes sense to
assume that 7 depends on m, i.e., i = i(m). For example, i = m.

We first consider the case when n; — 0o as m — o0o. For the most part, we show
that in this case, &; is a consistent estimator of o; with certain convergence rate. Write

(4.1) &; — o = [;(¥i., 0) — ¥i(yi., 00)] + [¥i(ws., O0) — 6] + (& — o),
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where @&; is the maximizer of ¢;(y;.,u, fo) with respect to u. The idea is to show that
the three terms on the right side of (4.1) are O,(|§ — 6o|), Op(1/ns), and Op(1//ms),
respectively, as the following three lemmas state. We assume, throughout this section,
that there is a constant 4 > 0 such that

(42) By lzi;| < A.

LEMMA 4.1. There is a constant By such that for any B > By, there is a constant
C = Cp and an integer Ng such that for any n; > Np,

logit(1 — 26) — A|Gol ) )

(4.3) P(n; | ¥i(yi.,00) — 65| > C) < L +2 (1 - tI)( o

452’!7,.,;

where 6 = eAlfol /(eAlBol 1 eB) and ®(-) is the cdf of N(0,1).

LEMMA 4.2. For any B > 2A|Bo| + log(2e41%! + 1), we have

1 1 1
= 2B
(44) P(/ni|&; — a;| >4Be*") < 2 (62ni + ﬁ)

i (1 _ % [q) (B —Uzllﬁof) v (logit(l —3;5) —Alﬁol)]) ,

where § = e2Al00l /(2AlBol 4. ¢B),

LEMMA 4.3. There exists a By > 0 such that for any 0 < 6§ < gg9 and B > By,
there are constants C, = C,(6,B), r = 1,2, and an integer N{(6, B) such that for any
4 2 N(as B)a

(4.5) P(1¢:(yi., 6) — ¥i(yi., 60)| > (C1 + Can; 1|6 — 6o))
< P(|6 - 60] > 6) +2(p+ 2) [ +2 (1 iy (103“(1 —2p) — Alﬂol))] ’

do

4p%n;
where p = exp(A(|Bo| + 6))/ (exp(A(|Bo| + 6)) + exp(B(co — 6))).
Combining these lemmas, we obtain the following.

THEOREM 4.1. Suppose g > 0. There exists a constant By > 0 such that for any
0 < § < og and B > By, there are constants c1(8, B), ca(B), and d;(6,B), i = 1,2, and
an integer N (8, B) with the following properties.

i) do(6,B) — 0, as 6 — 0 and B — oo.

ii) For any n; > N(6, B),

(46) P (|az- — oyl < c1(6,B)lf — 6| + f}?)

_ dy(6,B)

)

> 1— P(|§ ~ 60| > 6) — da(6, B).
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In other words, we have &; — a; = O,(1)|0 — 60| + Op(1//n;). If, in particular,
|6 — 6o| = Op(1/+/m), then & — a; = Op(1//m) + Op(1/ /7).

The proofs of Lemmas 4.1 and 4.3 are based on the following lemma which gives a
uniform Laplace approximation to integrals.

LEMMA 4.4. Suppose g,(-), hn(:), and m,(-) are, respectively, three-times, two-
times, and one-time continuously differentiable such that g)/(-), mn(-) > 0; and A, > 0 is
a sequence. For any K, L, €, and M > 0, there are constants depending only on these
numbers, C; = C;(K,L,e, M), i = 1,2, such that

(4.7) Ja+ bm@mawis < K,
(48) / (1++ | () ) () < Ln™3/2,
ful>An
(4.9) n > (6 !log2)3,
(4.10) _nf | min (50, () 2 €
and
(@11 sup e (g0 Il )l W )l 0] a0, ) <
imply

fhn(u) exP(_ngn(u))ﬂ'n(u)du - 3/2 Pn -
4.12 —hy, < |Cy + Cond/ _Pn_1/3 1,
(4.12) J exp(—ngn(u))m, (u)du (@] < [ 1+ Can exp( 2 " )] "
where & is the minimizer of gn(-) and pn = infiy <|a|va, ga(u), provided that the integrals
on the left side of (4.12) and @ exist.

As an example, let us point out how the idea of a Laplace approximation is used
to deal with the first term on the right side of (4.1). In order to show that this term is

0,,([5 ~ 6p]), it suffices to show that 8vy;/96 is bounded in probability. Write g;(v) =
—(1/n)¢i(ys.,ov, B). Let h = h(y;.,v,8) be a function. Define

[ hexp(—n;g;)wdv
J exp(—n;g;)wdv ’

where w(v) is the pdf of N(0,1). Let ¢;(y:.,0) = T;(v), where v represents the identity
function A(v) = v. Then ¥;(v;.,0) = 0¢;(y;.,0). It is easy to show that for 1 < k < p+1,

Op; 0g; 0g;
4.14 =n; i frz ) - CFz A
(4.14) o6, [T ) (aok) <” ETR
The equation (4.14) suggests that our goal may be hopeless: as n; — 0o, how could the

right side of (4.14) be bounded? However, the difference inside the square brackets has
a special form. According to Laplace approximation to integrals (e.g., De Bruijn (1961),

§4)!
(4.15) Ti(h) = h(%;) + O (l) )

n,

(4.13) Ti(h) =
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where ¥; is the minimizer of g; with respect to v. Using (4.15), we see the cancellation
of the leading term inside that square brackets:
1
vo(1) )]
B 4

(17,- +0 (n%)) (ggz i} +0 (51:)) - (ﬁ,-g-g—;
= (89:/00:)5,0(1) + 5:0(1) — O(1) + O(n; "),

which may well be bounded, and this is the “proof”.

The proofs of Lemmas 4.1-4.4 are given in Section 8.

The results obtained in this section are based on the assumption that m — o0
and, when considering a particular index 7, n; — co. On the other hand, it is easy to
show that if n; is bounded, &; will not be consistent (i.e., &; — a; does not go to 0 in
probability) as m — oo. In fact, even E(a; | y) is not consistent in such a case, provided
that 8y is known. Therefore, when n; is bounded, the prediction error will not go to 0
as the number of small areas increases, hence it is more important to know about the
MSE of the predictor. This is the topic of our next section.

O
00

(4.16)

4

5. The MSE of the empirical best predictor

We assume, in this section, that all the n]s are bounded. A consequence of this
assumption is that N, the total sample size, and m, the number of small areas, are of
the same order, i.e., N ~ m. We have

(5.1) MSE(&;) = E(é; — a;)?
= E(&; — E(ai | v))* + E(E(a | y) — u)?,

The second term on the right side of (5.1) has a close form expression. Namely, by
(2.2),

(5.2) E(E(c | y) — i) = 0§ — E(E(ay { i),
and s
(5.3) E(E(o; | yi))* = Z V2 (k, 00)p;(k, 80) = b;(6o),

k=0
where
(5.4) pi(k,60) = P(yi. = k)

= Z exp (Z ijfjﬁo) E exp(¢i(z.,00¢, Bo))
z€5(n,k) Jj=1

with S(n,k) = {z = (21,...,2) € {0, 1}, 2. =21 + -+ - + 2, = k}.
For the second term on the right side of (5.1), we use Taylor series expansion:

(5.5) & —E(ei |y) = vi(yi-, 0) — ¥i(¥i.,60)
= (a%-lbi(ym@o)) (6 - o)

“ 82 - R
+%(9 —6o)* (5‘95¢i(yi-a60)> (8 — 80) + 0(|8 — 6o|?).
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Suppose that

(5.6) 16— 60] = 0,(1/VN),

where N = Z:Zl n; is the total sample size. Note that if some of the n/s are not bounded,

the appropriate rate of convergence in (5.6) may not be 1/v/N but, instead, 1/y/m. It
follows that

(67)  B(6: - Blas | ) = & F ( (%@bi(yi.,oo))tw—\r(é - 00))2 +o(5):

Now suppose 6 = é,;_, an estimator based on y;., and write &;_ = z,b,»(yi.,éi_).
Then, by independence of y; and y;_, we have
Yi. = k
k:y,-‘

58 E ( (aﬁawi(yi.,%))t\/ﬁ(éi_ - 90))2
—E (E (((%w(k,ﬂo))t VN(bi- - 90)>2
5 ( St m)) o) (Gt ) |k=y,..)
- ( S, 00)) Vit00 (%pi(yz-.,eo)))

= i: ( Wi (k, 00)) Vi(6o) (a%-wi(k,eo)) pi(k,80) = ai(6o),

where ‘/,(90) = NE(éz_ - 00)(9,’.. — og)t.
Combining (5.1)-(5.3), (5.7) and (5.8), we obtain

(5.9) MSE(é&i-) = 0§ — bi(60) + (1/N)ai(60) + o(1/N).

The above derivation is based on the assumption that 6=26,_.1In practice, it might
be more convenient to use an estimator, #, which is based on the entire data, set, as it
“will not vary with the small area. A question of interest is: how much does the MSE
change? or, to what extend is the formula obtained still valid?

To answer the question, we note that

(5.10) MSE(&,’) = MSE(CAY,'_) + 2E(di - &,;)(di_ — ai) + E(d,; - ézi_)z
= MSE(di_) +7;; .

Now we assume, in addition to (5.6), that
(5.11) 1§~ 6;_| = 0,(1/VN).

To see why (5.11) is a reasonable assumption, consider the following simple example in
which one estimates the population mean, g, by the sample mean, i, = (1/m)(X; +
-+ Xpm), where X,...,X,, are i.i.d. sample from the population. Then we have, for
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example, fm — fim—1 = (1/m)(Xm — fim-1) = Op(1/m), while fi, — po = Op(1/v/m).
It follows from (5.6) and (5.11) that r; = o(1/N). This follows by using, again, Taylor
expansion and (2.2). Notice that E(&; — &;-)(&i- — a;) = E(&; — 65— )(&i- — E(a; | y))-
Therefore, we have, by (5.10) and (5.9),

(5.12) MSE(&;) = MSE(&:.) + o(1/N)
= a3 — bi(6o) + (1/N)ci(fo) + o(1/N),

where ¢;(80) is ai(6o) with V;(6;) replaced by V(80) = NE(8 — 65)(8 — 65)*.

The above results are not obtained on a rigorous basis. For example, O(1) (o(1)) in
probability does not necessarily imply O(1) (0(1)) in L!. In the following, we shall give
conditions under which the above results can be rigorously established.

We continue to make assumption (4.2), in this section. Also, recall that we assumed
at the beginning of this section that the n;s are bounded. More explicitly, let Np be an
integer such that

13 ; < .
(5 ) 11'<Ilz‘a<;’(1'1'znt - NO
Let v = (v;) be a vector and A be a matrix. Define |[v|| = max; |v;] and ||A] =

(/\max(AtA))l/ 2, where Amax denotes the largest eigenvalue. Also, recall that |v] =
;v )1/2. Let 0 < A < 1 and Mp > 0. Define Ly = Mg(logN)’\ Note that Ly
depends on A. Let 6 be an estimator. We define the truncated estimator, 8, as follows:
Bk = Bx, ~Ln, or Ly if [ﬂk] < LN, Bk < ~Ln, or B > Ly, respectively, 1 < k < p; and
6=aorlL 1\{ if ¢ < LN’:2 o>1"L 1\{ , respectively. Note that it is naturally required
that an estimator belongs to the parameter space, therefore & > 0. It is clear that such
a truncation will not affect the asymptotic behavior, e.g., consistency and asymptotic
efficiency, of the estimator.

THEOREM 5.1. Let Oy ={0€©:|8|| < Ly,0% < Ly}. Suppose
(5.14) P ¢ ©5)V P(|8 — 85| > N*~1/2) = O(N~179),

where 0 < 6§ < 1/6 and € > 0. Let @ be the truncated estimator. Then, (5.7) and hence
(5.9) hold.

THEOREM 5.2. Suppose 6 satisfies (5.14), where € > 26, and 51_ be an estimator
based on y;— such that

(5.15) P(fi- ¢ Onp) VP8 —6,_| > N~V/2P) = O(N~179),

where p > 6. Let 6 and f;_ be the corresponding truncated estimators. Then, (5.12)
holds.

In the following, we shall consider a special class of estimators for which (5.14) and
(5.15) are satisfied. These are the method of moments (MM) estimators. According to
Jiang (1998), the MM estimator of 6y for model (2.1) is the solution to the following

system of equations:

m Ny m 1y

(5.16) Zzwijkyij = Zzl‘ijkEe(yij) 1<k<p,

i=1 j=1 i=1 j=1
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m m
(5.17) Z Zyijyil = ZZEG(yijyil)-

=1 j#l i=1 j#l
We have Eo(yi;) = Eh(z};8 + 0€), Ee(yijya) = Eh(zh;8 + o&)h(z})8 + of), j # 1,
where h(z) = /(1 + €®) and £ ~ N(0,1). Let My and My (#) be the vectors whose
components are the left and right sides of (5.16) and (5.17) divided by N. Then, these

equations can be expressed by: A
(5.18) Mn(0) = My.

More generally, we define the MM estimator  as any vector 6 that minimizes the dis-
tance between the two sides of (5.18), if such a minimizer exists; otherwise, we define
0 = (0,...,0,1)t. Note that as long as such a minimizer exists, it can be chosen such
that it belongs to ©®. This is because My (-) has the property that My ((8t,~0)*) =

My ((8*0)"). N
The following lemma states that with probability tending to one 8 satisfies (5.18)
approximately.

LEMMA 5.1. For any § > 0 and integer ¢ > 1, there is a constant C which may
depend on 6 and q such that

(5.19) P(|Mn () — My| > N°-1/2) < CN~9.
The following lemma shows that with probability tending to one, @ falls within a

compact set.

LEMMA 5.2. Suppose that there exist B > 0 and € > 0 such that for large N,
5.20 inf |Mpn(6) — M, >
(520) inf |M () ~ My (60)] 2
where ©p = {0 : ||B]| < B,0 < o < B}. Then for any 0 < § < 1/2 and integer ¢ > 1,

there is a constant C which may depend on 6 and q such that

(5.21) P(6¢©p) < CN™%,

We now consider the convergence rate of 8 — 6.

LEMMA 5.3. Suppose the conditions of Lemma 5.2 are satisfled. Furthermore, sup-
pose that there exists €3 > 0 such that for large N,

|MnN(8) — Mn(60)]
1 > €.
0€©5,0#60 |@ — 6|

Then for any 0 < 6; < 6 < 1/2 and integer ¢ > 1,

(5.22)

(5.23) P(|6 — 80| > N°~1/2) = O(N~9%),

We now consider a MM estimator which is based on y;_. Such an estimator is
the solution to the equations (5.16) and (5.17) with the index ¢ replaced by i’ and the
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summation Y .-, replaced by Ei,#. Let M N,i— and My;_(0) be the vectors whose
components are the left and right sides of these equations divided by N — n;. Then the
MM estimator based on y;_, 8;_ is the solution to

(5.24) Myi-(6) = Mn_,

or more generally, a vector 8 that minimizes the distance between the two sides of (5.24).
As pointed out earlier, such a minimizer, if exists, can be chosen such that it belongs to
o.

Let My (©) (My ;_(©)) be the image of © under Mn(-) (Mn,i—(-)). For z € RP*!
and S C RPHL let d(z,S) = infyes |2 — wl.

LEMMA 5.4. Suppose that, in addition to the conditions of Lemma 5.3, (5.20) and
(5.22) are satisfied with My (-) replaced by My ;_(-). Furthermore, suppose

(5.25) lHm inf Amin ((aMg;HO))t (aMgf“))) > 0,

and there is €3 > 0 such that for large N,

(5.26) d(Mn (o), M} (©)) A d(Mn,i—(80), My ;_(8)) = e2.

Then for any 0 < 6; < 1/4,0 < p < (1 — 461)/2, and integer ¢ > 1,
(5.27) P(|6 - 8,_| > N~Y2=P) = O(N~%1),

Note. (5.26) states that, asymptotically, Mx(6o) (Mn:—(f)) is an interior point
of Mn(0) (My ;—(©)), which is often true when 6 itself is an interior point of ©, as in
the following example.

Ezample 5.1. Consider model (3.4). It is easy to see that My (8) = My ;_(6) =
(My(8), (n — 1)M2(6))t, where M,.(8) = Ehj(£) with he(z) = exp(u + ox)/(1 + exp(u +
oz)) and £ ~ N(0,1). Let M(8) = (M1(6), M2(6))*. Suppose m — oo, while n > 1 is
fixed. Then, obviously, (4.2) and (5.13) are satisfied.

It is easy to show that sup,cp(M;(6) — M2(8)) — 0, as ¢ — oo. Thus, there is
By > 0 such that

(5.28) sup sup(M;(8) — Mx(f)) < e,
o>Bs u€R

where € = min((1/3)(M1(60) — M2(60)), (1/2)(1 — M1(60)), (1/2)M;(6o)) > 0. Also, we
have supg<,<p, (1 — M1(8)) — 0 as p — oo; and supy<, < g, M;(6) — 0 as p — —oo.
Thus, there is B; > 0 such that

(5.29) sup sup (1—M1(9))} V[ sup sup M;(#)| <e.

u>B1 0L0< B2 p<—B10<0<B;
Let B = B, V B;. By (5.28) and (5.29), it is easy to see that

inf ) — >
eé_%B'M() M(6o)] > e,



228 JIMING JIANG AND P. LAHIRI

from which (5.20) easily follows.

Also, it is easy to show, e.g., by the inequality in Jiang (1998, below (3.9) therein),
that |OM/08| > 0 (JA| denotes the determinant of matrix A), provided that ¢ > 0.
Thus, (5.25) is satisfied provided oo > 0. Furthermore, it is easy to show, by Taylor
expansion, that there is 62 > 0 and €3 > 0 such that

(5.30) |M(6) — M(6)| > €30 — o], |6 — 60| <62, o>0.

On the other hand, it can be shown that M(-) is injective (Jiang (1998)). Therefore for
any D > 6,V ||, the continuous function g(8) = [M(8) — M(6)|/|0 — o], 62 < |0 — 6| <
D, 0 > 0 has a lower bound €4 > 0. Let €; = €3 Aes. We have, by combining with (5.30),

Hat l ( ) M (6 )I
M(6 0
n >
96613,£#90 { |9 - 60‘ } @

where B = (D — |6p|)/v/2. (5.22) then easily follows.
Finally, we show that

(5.31) M@®©) ={(u,v):0<u,v<l,u* <v<u}=5.

It is easy to see that M(©) C S. Let (u,v) € § and u? < v. Then, for any o > 0, there
is an unique pu = p(o) such that M;((u(s),0)") = u. The function u(.) is continuous.
By an earlier result, (o) = M1 ((u(0),0)t) — Ma((u(0),0)?) — 0 as 0 — oco. Therefore,
there is 02 > 0 such that I(02) < u — v, i.e.,, Ma((p(02),02)t) > v. Also, it is easy
to show that sup,cp(Ma2(0) — MZ(6)) — 0 as ¢ — 0. Therefore, there is o; > 0 such
that Ma((u(01),01)t) — ME((1(01), 1)) < v —u?, ie., Ma((u(01),01)t) < v. Thus, by
continuity, there is o > 0 such that My((u(0),0)) = v, ie., M((u(0),0)t) = (u,v)t.
If (u,v) € S and u® = v, let y be such that e#/(1 4+ e*) = u, and v = 0. We have
M((,0)*) = (u,v)t. Therefore, S C M(O).
It is now obvious that (5.26) is satisfied, provided that o¢ > 0.

We now consider the estimation of the MSE of the EBP. Write d;(8) = 02 — b;(4).
By (5.12), we have

(5.32) MSE(64) = d;(8o) + (1/N)ei(8o) + o(1/N).

To estimate the second term on the right side of (5.32), one may simply replace 6, by 6,
because the difference would be o(N~!). However, one cannot do so for the first term,
because of the bias E(d;(6)) — di(6p). In our case, the bias term mainly depends on the
choice of the estimator é, and it may be of the order N71, which cannot be ignored. The
following theorem gives an evaluation of the bias term when 6 is the MM estimator, and
hence proposes an appropriate estimator of the MSE.

THEOREM 5.3.  Suppose(5.20), (5.22), (5.25), and the first half of (5.26) (i.e.,
d(Mpy(60), M5 (©)) > €2) are satisfied. Let 8 be the truncated MM estimator. Then

(5.33) E(d;(8)) = di(6o) + (1/N)B;(60) + o(1/N),

where

(539 Bz-wo):-;-(E(fN)—(%di(eo)) (350(00)) E(4N>),
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(535) iy = Al ( (5 (00)) ) (g;idi(ﬁo)> ( (;%MN(eo))ﬂ) An,

gn = (‘jN,k)lgkgp;H with §n i being Fn with (62 /06%)d;(6o) replaced by (62/86%) My 1(60),
and Ay = VN(My — My(6y)). Furthermore, if we define

(5.36) MSE(&:) = di(6) + (1/N)(c:(0) ~ Bi(0)),
then E(MSE(é;) — MSE(&4;)) = o(N™1).

The proofs of the theorems and lemmas in this section are given in Section 8.
6. Functions of fixed and random effects

In many cases, the problem of interest is a function of the fixed and random effects,
say, hi = hi(Bo, ).

Ezample 6.1. (Linear function) h; = {8+ a;, where z; may not be the observed
vector of covariates.

Ezample 6.2. (Probability) Consider model (2.1) under the specification (3.3).

Let
exp(zifo + o)

1+ exp(ziBo + au)

hi = P(yi; = 1] a) =

Ezample 6.3. (Weighted probability) Suppose the covariates are categorical such
that z;; € {v1,v2,...,vk}. Let

X exp(vifBo + o)
hi =Y w 7 ,
1+ exp(vifo + i)

k=1

where wy, ..., wg are a set of weights.

The best predictor for h; is

(6.1) E(hily) = E(hily:)
_ Ehi(fBo, 90&) exp(¢i(yi., 00€, Bo)) o
= E exp(¢,-(yi., ooé, ,80)) 1/’:(1/1., 00).

The development in Section 5 extends almost parallelly to the current case. The empirical

best predictor for h; is ) _ .
(6.2) hi = ¥i(yi., 0).

We have MSE(h;) = E(h; — E(h; | )% + E(E(h; | y) — hs)? with
(6.3) BE(E(hi | y) — hi)® = ER? — E(E(h; | 1:))*

= Eh?(:@O’ 005) - 2 J?(ka 90)1),’([6, 90) = Ji(eo)a
k=0
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and, if 6= GA,;, an estimator of 6 based on y;_,

(6.4) E(h; — E(hi | y))* = (1/N)a(6o) + o(1/N),
where @;(6p) is a;(6p) with t; replaced by ¥;. Thus, with h;_ = di(yi.,éi_),
(6.5) MSE(h;-) = d;(60) + (1/N)ai(60) + o(1/N).

Also, one may replace 6;_ by 9, an estimator of @ based on all data, and may still obtain
(6.6) MSE(h;) = MSE(h;_) + o(1/N)
= di(60) + (1/N)&(6o) + o(1/N),

where &;(8o) is ¢;(60) with 1; replaced by ;. Finally, if 6 is the truncated MM estimator,
an estimator of the MSE with bias correction is given by

(6.7) MSE(h:) = d:(8) + (1/N)(&(8) - Bi(9)),
where B;(6) is B;(f) with d; replaced by d;; and we have E(I\Z—S\E(izz) — MSE(k;)) =
o(N~1).

Of course, under suitable conditions, all the above results can be established on a
rigorous basis.

Ezample 6.1. (Continued) In this case, the EBP for h; is fzi = xfﬁ + &;, where &;
is the EBP for «;.

Ezample 6.2. (Continued) It is easy to show that, in this case, the EBP for h; is

Eexp((y;. +1)6¢ — (n; + 1) log(1 + exp(atB + 6¢€)))
E exp(y:.5€ — n; log(1 + exp(x16 + 6¢)))

where the expectations are taken with respect to & ~ N(0,1). Note that the EBP is not
exp(xtB + &;)/(1 + exp(xtB + &;)), although, according to Lemma 4.4, the two will be
very close when n; is large. A naive predictor of the (conditional) probability would be
¥i- = ¥i-/n;. Although the EBP given by (6.8) is not difficult to compute (e.g., by Monte
Carlo method), it does not have a closed form. So, the question is: just how much better
is the EBP than the naive predictor? To answer this question, we consider the relative
savings loss (RSL) introduced by Efron and Morris (1973). In the current case, the RSL
is given by

(6.8)  hi=exp(ziB)

b

_ MSE(h;) ~ MSE(E(h; | y)) _ E(hi — E(h; | ))?
~ MSE(%i.) —MSE(E(h: | y))  E(@i. — E(hi | 9))?

According to (6.4), the numerator on the right side of (6.9) is of the order 1/N, while

(6.9) RSL

ni 2

(6.10) the denominator = Z (nﬁ — Oi(k, 00)) pi(k,00) > (1:(0,60))pi (0, 6o).
k=0 Nt

If n; is bounded, the right side of (6.10) has a positive lower bound. Therefore the

RSL — 0 as N — oo. In fact, the convergence rate is O(1/N). So, the complication of

EBP is worthwhile.
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7. Discussion

We have studied the asymptotic properties of the EBP and the problem of esti-
mating the MSE of the EBP when there is not sufficient information about individual
random effects. Several extensions of this work seem possible. First, the random ef-
fects do not have to be univariate. For example, one may assume that o,...,a, are
independent and distributed as N(Q, D), where the covariance matrix D may depend
on some parameters of variance components. Consistent estimators of the fixed effects
and variance components in such a model have been obtained by Jiang (1998). It is
fairly straightforward to extend most of the results of this paper to such a case. Second,
the normality assumption about the random effects is not essential. However, for the
EBP to be computable, the distribution of the random effects has to be specified up to
a vector of unknown parameters. On the other hand, the normality assumption seems
(close to be) realistic in many cases, and it brings computational convenience, especially
when the random effects are multivariate. Finally, it is possible to apply methods devel-
oped in this paper to other generalized linear mixed models such as models for counts
and survival data, which are also encountered in practice. Research is on the way to
extend the results obtained for the mixed logistic model to mixed models with general
link functions in a complex survey setting.

8. Proofs

ProoF oF LEMMA 3.1. The first equality follows immediately from the substitu-
tion u = z/(1+ z), because the integral then reduces to B(k,n—k). To prove the second
equality, one observes that, with the same transformation u = z/(1 + z),

(8.1) /Ooo(log o)zF (1 + ) "dx

1 1
= / log(u)uF~1(1 — w)"*~1du — / log(1 — w)u*~1(1 — w)"* ldu.
0 0

Next, by Fubini’s theorem and the relationship between beta and binomial distributions,
it follows that

/Ol[log(u)uk_l(l —u)"*"1/B(k,n - k)]du
1 1
- /0 / (—de/) "1 (1 — W)™+~ /B (k,n ~ k)]du
= / (—dz/x) /m[uk‘l(l —u)"*1/B(k,n — k)|du
0 0
= —/ ! P(Beta(k,n — k) < z)dx
0

k-1
_ ('IZ — 1)' It —_1 n—1-1{ * n — —u n—2 w| dr
AR A USSR T
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k- 1
Z / log(u)(n — 1)(1 — ©)" 2du.

Similarly,
1
/ flog(1 — w)uk(1 — u)™*~1/B(k, n — k))du
0

= /l[log(u)un_k*l(l —u)*"1/B(n -k, k)]du
0

n—k-—1

k 1
-1 u)(n — —u)" " ?du.
Z l +/0 log(u)(n — 1)(1 — u)" *du

=1

The result thus follows. O

PROOF OF (3.5). As pointed out below (3.4), it suffices to consider (3.4). By (3.1)
and a change of variable, it is easy to obtain the result. O

PROOF OF LEMMA 4.4. Let an(u) = gn(u) — gn(@) and b,(u) = hn(u) — ha(@).
Then
hn (u) exp(—ngn (1)) T (u)du
J exp(—ngn(u))mn(u)du
We have

(8.3) / b (1) exp( = ()7 () s = /:u-mga,,md“ /lu_m)&mlumn..‘du

+/ cvdu=hL + L+ 13,
Ju—%|>68n,|u|>An

J bn(u) exp(—nay, (v))m, (v)du
J exp(—nan(u))mp(u)du

(8.2) / = hn (@) +

where 6, =n~1/3.
It follows from (4.8) that

(8.4) [s] < LOLV [hn(@) )™/,
Suppose |u — @] > 6, and ju| < A,. Then

1

2

where u; lies between i and u. It follows that

(8.5) an(w) = zgn(u)(u - 3)%

(8.6) || < K1V |hn(@)]) exp (- 22nt/?).

Now suppose |u — @| < 6,. We have

(57) b () = 1 (8) (= @) + 5l ()~ 2,
(39) an(w) = 500(@)(u — B)? + 5ot (ug)(u — 0",

(8.9) () = mp (@) + 7, (ug) (u — @),
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where ua, ug, and uy lie between @ and w. (8.8) implies that
(810)  exp(~nan(w)) = exp (~ 5 g4(@)(n — 0)%) [1 - exp(~ty(u — ) )(u— @)Y,

where v = (n/6)g.'(u3z) and 0 < ¢t < 1. By (8.7), we have

(8.11) = h; (1) (u — @) exp(—nan (u))mn(u)du
fu—i|<é,
+% -/I-u s R (ug)(u — @)? exp(—nay, (w))m, (u)du
= Iy + ha.

It follows from (8.5) that

(8.12) [Ig] < ‘/—155{3/2M1M2n‘3/2,
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where €; = infl,_g<s, gn(u), M1 = sUpp,_g <5, |hn(u)], and My = supp,_g<s, Tn ().

Since

/lu—ﬁ|<5,, (u— ) exp (——gn(u)(u — @) ) du =0,

we have, by (8.9) and (8.10),

/ _ (u—a)exp(—nan(u))mn(u)du
lu—u]|<bn

B _grrn(ﬁ) gy (ua) exp(—ty(u — @)%)(u - @)*
Ju—i|<n
exp (- 2@ (u—©)?) du+ /, s1cs, ™ (ua) (= P exp(—nan (1)du

Thus, we have, similar to (8.12), that

M -
(8.13) |111|<\[|h' 7 (ﬂ'n(u (g (@)~ 5/2M3exp( 5 )+2 3/2M4) n~3/2,

where Mz = supy,_g|<s,, |9n (v)| and My = sup|,_g|<s,, [7Tn(u)]-
On the other hand, we have, again, by (8.5),

(8.14) /exp(—nan(u))wn(u)du > 62[ exp (—gME,(u - 1])2) du

u—u|<6b,

where €3 = inf|, _g)<s, Tn(u) and Ms = supj,_z<s,, 9n(u). Also,

c15) [ ew(-pMstu-a)du= [t [ a
[u—ii|<6n 2 lu—@|>6n

o VB 1 Vg ()]

n=1/2,
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Now suppose (4.9) and (4.10) are satisfied. Since M5 > €, > ¢, we have v2exp
(—(Ms5/4)n1/3) < 1/2. Thus, by combining (8.2)-(8.4), (8.6), and (8.11)-(8.15), we get

J P () exp(—ngn (u))mn (u)du .
feXp(_ngn(u))ﬂ'n(u)du — hn( )l

< B [32 + B3n3/2 exp (—%ﬁnl/s)] n7t,

(8.16)

where B; = \/2/_7T€2—1M;/2,
By = L1V hn(®))
5 (7720000 + 20, @100) + 1 @ @)D 2o (A2,

and Bs = K(1V |hy,(@)]). The result then follows. O

To prove Lemma 4.1, we need the following result.

LEMMA 8.1. For any B > A|By| + log(2e41Pl + 1), P(|&;| > B) < the right side
of (4.3).

ProOF OF LEMMA 8.1. First, it is easy to show that as long as y; # (0,...,0) =0
or (1,...,1) = 1, &; exists, which is the unique solution to the following equation.

2

Z exp(z}; 00 + u)
— 1+ exp(z}; 00 + u)

It follows that if y; 5 0 or 1, then
(8.18) 6| < AlBol + |logit(F:.)|-

If we define &; as —oo and oo when y; = 0 or 1, then (8.18) holds even in those two
extreme cases. It is easy to show that

(8.19) P(logit(g:.) > B — Alfo|) < P( Z(yzg E(yijlou)) > 5)

+Pla; > 10g1t(1 — 26) — A|Bol),

o 1 ¢
(8.20) P(logit(g:.) < A|Bo| — B) < P (77 > (Wi5 — Elyijlew)) < —5)
=1
+P(a; < A|Bo| — logit(1 — 26)).
The conclusion follows easily from (8.18)-(8.20). Note that logit(1 — 26) > A|Go[, and

(8.21) E (Z(yij - E(?)ijlaz) ) ZE(Var(yulaz)) <X m

Jj=1 j=1
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PROOF OF LEMMA 4.1. To simplify notation, write n = n;, and I; = —(1/n;)
(¢i(yi-»uw, Bo) + Z;;l Yi;zt;B0). Since a; ~ N(0,03), we have w(u) = (V2rog)™?
exp(—u?/203). Tt follows that

/l Lt e < (V32 + doo/VEIRIN/?,

where A, = g9+v/6logn. Also, we have

B w(w) = €5 = (V27o0) ™ exp(~(B -+ 1)*/203),

(B+1) Vsup(r(u) V |7 (u)]) < Mg = (B+ 1) V (V2rao(00 A 1))
Thus, it is easy to show that (8%1;/6u?) Vv |8%;/0u3| < 1/4 < Mp; and, by (4.2),

821.,; 1
i > 6 = - _ _
w|SB+1 BuZ = 85 = 7 exp( 2(A|Bo| + B+ 1));

62li 1
. 1 |
Wi, Gz 2 (240l + B+ An))

Note that 6 > €p for large B.

Suppose |&;| < B. Then, with € = ¢g and M = Mg, the above arguments show that
(4.10) and (4.11) (with gy, hn(u), and 7, (u) replaced by I;, u, and 7(u), respectively)
are satisfied, if B is large. Furthermore, if n is large such that (4.9) is satisfied and

3logn _1
(8.22) -n—li— < 1 exp(—2(A|Bo| + B + 0¢+/6logn)),

we have p, = infjyj<iava. (0%L:/0u?) > infl, <pva, (0%1:/0u?) > 3logn/n'/3. Thus,
by Lemma 4.4, n|¢;(y;.,8) — &] < Cy + Cs, where C; = Ci(1 + o0/ 2/m, V2 + 400/
V2r,eg, Mp), i = 1,2, are functions defined in Lemma 4.4.

Therefore, P(n|v;{(y;.,06) — &;| > C1 + C2) < P(|&;| > B), provided that B is large
and n satisfies (4.9) and (8.22). The result then follows from Lemma 8.1. O

PROOF OF LEMMA 4.2. Since &; is the maximizer of ¢;(y;., u, Bo), we have
= %l' _ 9¢i 0%¢s
ou'™  ou'™ Ou?
where o lies between o; and &. Thus, |a}| < |as] V |&;]. If |af| < B — A|Bo|, then, by
(8.23) and (4.2),

0¢;
du

ol (ai i ai),

(8.23) 0

_ i exp(zt. 6o + af)
_laz_aZIZ(l - : 2
j=1

_ o2
+ exp(z},;Bo + af))?

1 -
Z nilai —a,-|.

(8.24)

2 2
Therefore,

(8.25) P(vAi|d; — ai| > 4Be2B) < P(...,|az| < B — AlBol) + P(....,|a}| > B — AlBo|)

<P ( O B\/ﬁ:) + Pllai| > B~ Algol) + P(] > B ~ Al6o)).

g
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Now, all one has to do is to apply (8.21) and Lemma 8.1 (with B replaced by B — A|B,/)
to obtain bounds for the first and third terms on the right side of (8.25). [

PROOF OF LEMMA 4.3. Again, we write n = n; and ¢; = ¢;(¥;.,v,6) = —(1/n;)
¢:(yi., ov, B) to simplify notation. Let A;(h) = Ti(h) — h(¥;) (see (4.13)), where ¥; is the
minimizer of g;(y;.,-, ), then

dpi _ dg;

AL ~ A 0g; ' . 3¢; AL dg;
26, =n 20, 5. 8:(V) + ;4 (86k) + A (v)A; ((%k) A; (”aek)] .

As pointed out earlier, the idea of the proof is to apply Lemma 4.4. To make the
latter more convenient to use in the current case, we point out the following obvious
consequence.

(8.26)

COROLLARY 8.1. Let §, B > 0, and K5, Ls, es. 5 < (2r)"/2exp(—(B + 1)2/2),
M;s g > (21)~Y2 satisfy

(8.27) sup /(1 + |h|)mdv < Kg,
|6—80]<6
(8.28) sup n3/2/ (1 + |h])wdv < L,
|6—60{<6 [v]>An
9%
8.29 inf
(8.29) lol<B+116-60l<5 D2 = OB
ond 8%g; |63 8h| |8%h
gi gi

8.30 su max ,—,h,—‘,—-)SM .
(830 leSB+1,|I3—00156 (31)2 Ealle }30 ov? 5B
Then
(8.31) p ( sup nlA;(R)| > 05,3) <P ( sup || > B) ,

10—60|<6 [6—60|<6
where Cs g = E?=l Ci(Ks,Ls,es,8, Ms B) (see Lemma 4.4), provided that

6log2\°> 3logn ) 0%g;
8.32 — < f .
(8.32) > ( €6,B ) and nl/3 — [v|_<_BV/\1,]Ll,|9—9(]]S6 ov?

Let H = {v,(0¢:/00%),v(09;/00k),1 < k < p+1}. It is easy to show that the
following numbers are good enough, in view of Corollary 8.1, for h € H:

Ks=(1+2/m)(1+ AV 1),

Ls = (V2+4/V2m)(1+ AV 1),

es,5 = [(2m) "2 exp(—(B + 1)%/2)] A 47 (00 — 6)2 exp(—2(|6o] + 6)(A + B + 1)),
and Msp=[2+(co+6V2)(B+1)+47 (oo +6V2)2*(B+1)?(AV1),

where it is assumed that § < gy. Note that K and Ls, in fact, do not depend on 6.
Also, (8.32) is satisfied if

6log2\* 31 1
(8.33) n> ( E;)]gg ) and T?i_n < Zexp(—2(|90|-|—6)(A+B+ V6logn)).
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Suppose |§ — 6| < & such that |;| < B, and maxpen n|A;(h)| < Cs . Then it is easy
to show that
0g;

< B <k< 1.
ETA < AV B, 1<k<p+

Thus, by (8.26), we have

Op;
}6‘;’ <(AVB+B+1+Cspn " )Csp, 1<k<p+1.
%
Also, we have
oY; Op;
< s
|aek = '“O‘I“’aek
—1 5<Pi
< B+ Cspn™" + (g9 + 6) 20, |’ 1<k<p+1.
&

If we let D1(6, B) =B+ (O’o +6)(AVvB+ B+ 1)0,5’3, D,(6,B) = [1 + (0’0 + 5)05’3105,3,
then the above arguments and Corollary 8.1 imply

]

00,

P max su > D1(6,B) + Dy(6, B)yn™!
(15"5”1!0—9556 1(0:8)+ Dal0, By )

<P ( sup || > B) +Y P ( sup n|A;(h)| > C&B)

|6—680|<8 heH |6—85]<é

< 2(p+2)P( sup |T;| > B) ,

16—60|<6

provided 6§ < oy and (8.33) is satisfied.
On the other hand, similar to (8.18), we have |7;| < o~} (A|B| + | logit(#:.)]). There-
fore, by (8.19)-(8.21), there is By > 0 such that for § < o9 and B > By,

P (,e-sgﬁ)q 5| > B) < P(|logit(g:.)| > B(ao — 8) — A(|Bo] + 6))

< (40°n) ™! +2(1 ~ (o5 (logit(1 — 2p) — AlBol))),
where p = exp(A(|o| + 6))/(exp(A(|Bo| + 6)) + exp(B(o0 — 6))). O

Proor orF THEOREM 5.1. Throughout this proof we will use C to denote a con-
stant whose value may change from time to time. For any a > 0, we have a|u|—(1/4)u? <
a? for all u. Therefore, it is easy to show that

[ |ulexp (alu| — (1/2)u?) du 3 9
(8.34) T exp (—alu] — (1/2)e) du < 2\/;exp(2a ).

On the other hand, it is easy to show that under (4.2) and (5.13),

(8.35) [0i(yi., ou, B} < No(A|B| + log 2) + 2Nyo|ul.
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Therefore, by (2.2), (8.34), and (8.35), we have

(8.36) |9 (yi., 0)| < 2(3/)/24™°|o| exp(2No(A|B| + 4Noo?)).
Also, (5.14) implies that

(8.37) P(|§ — 86| > N°~Y2)y < P(|6 — 6p| > N°~1/2) L P(§ ¢ On ) < CN717¢,
Write

(8'38) E(&i - E(ai|y))2 = E(%(?Ji-, é) - 1bi(yi-,60))2]-“9‘_90|S1\/6—1/2)
+E(¢i(yi-,é) - Q/Ji(yiw00))21(19_90|>N5—1/2) = I + I>.

If [§ — 65| < N®=1/2 then, by Taylor expansion, we have

639 i d) ~ o) = (350i(0.00) ) B 60)

. 2 A
26000 (oii.0)) 0 40),

where 6, lies between 6y and 6. Since |6 — 65| < N¥~1/2 implies |8] < |6o| + 1, it is easy
to show that

< CN?-1

N 82 “
(6 60 (g :(08.0.) ) (- 00
and
< CN6_1/2.

d L
‘(%T/’i(yi-a 90)) (6 — 6o)
Thus, by (8.39), we have
9 ‘. :
(840) L =E ( (Wz-(yi.,ao)) (6~ 90)) Lgo-soigne-yzy +o(N7).

On the other hand, we have, by (8.36), the definition of 6, and (8.37),
(8.41) I < C(log N)* exp(4Ng(A + 4Np)(log N))P(|6 — 8| > N2~1/2) = o(N71).

Finally, by a similar argument as the above, we have

2
) .
(8'42) E (('55"#1’(%-700)) (9 - 00)) 1(|g_90|>N6—1/2)
< Clog N)*P(|6 — 8o > N°~1/2)
=o(N7Y).

(5.7) then follows by combining (8.38), (8.40)-(8.42). O
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PRrOOF OF THEOREM 5.2. First, we have by (5.14) and (5.15)
(843)  P(|f—6;_| > N"Y?7¢) < P(§ ¢ On,) + P(Bi— ¢ On,»)
+P(|§ - 6;_| > N~Y27P) < CN™I7e

Here, as before, we use C' to denote a constant whose value may change from time to
time. We have

(844) E(Gi — 4i-)? < E(-)15_gynns-1r2y + E( )L 4,15 n-1/2-0)
+E ()L (4 go|< o172 i—b;_|<n-1r2-0) = 1 + T2 + I3,
By (8.36) and similar argument as in the previous proof, we have
(8.45) I, < Clog N)* exp(4No(A + 4Ng)(log NY)N1=¢, i =1,2.
On the other hand, by Taylor expansion, it is easy to show that
(8.46) I3 <CN~17%,
Combining (8.44)-(8.46), we see that there is 7 > 6 such that
(8.47) E(&; — &;_)2 <CN~1727,
Also, by the proof of Theorem 5.1, we have
(8.48) E(&i- — E(aily))? < CN¥-1,
Combining (8.47) and (8.48), we have
(8.49)  [E(&i — &i-){(Gi- — ou)| = |E(&: — &) (G- — E(euly))|

< (B(& — 6:-)2)%(B(Gi- — E(aily))?)!/?
S CN'S_T_I.

The first identity in (5.12) then follows from (5.10), (8.49), and (8.47).
The second identity in (5.12) can be proved by a similar (but easier) way. O

To prove Lemma 5.1-5.4, we need the following lemma.

LEMMA 8.2. Let Yi,...,Y, be independent random variables such that E(Y;) =0
and |Y;] < C. Then
i) for any integer ¢ > 1, there is a constant B, such that

q

E|NY;| < B2

1

n

ii) for anye >0,
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PROOF OF LEMMA 8.2. i) is a special case of the Burkholder’s inequality (e.g.,
Chow and Teicher (1988, §11.2). ii) can be proved by standard argument in large devi-
ation. O

ProoOF oF LEMMA 5.1. By the definition of the MM estimator, we have

P(|Mn(6) - M| > N°~Y2) < PNy — My (6o)| > N*~1/?)
p+1

< Y P(IMnk — My x(60)] > N7Y2/\/p+1).
k=1

For any 1 < k < p, we have

m n; m
(8,50) MN,k — MN,k(ao) = % Z ('Jnvl) Z-Tijk(yij - Eyij) = %ZK:
=1 7j=1 =1

where Y1,...,Yy, are independent with E(Y;) = 0 and |Y;| < Ny A; and one has a similar
expression when k = p + 1. (5.19) then follows from i) of Lemma 8.2. O

PROOF OF LEMMA 5.2. We have, by Lemma 5.1, that for large N

P(§ ¢ ©5) < P(Mn(8) — My| > N°7/%) + P(§ ¢ ©p,|My(8) - My| < N°~1/2)
< CN~9% 4 P(|Myx — Mn(60)| > €/2).

By ii) of Lemma 8.2 and (8.50), it is easy to show that

2
N € m €
51 - > ) < -
(851) P (1M — My(00)| 2 5) < 20+ 1)exp( BT (NOA) )
< 2(p+1)e "V,
where v = €2/12(p + 1) N3 A2. The result then follows. O

PROOF OF LEMMA 5.3. Let Nj; be an integer such that e, N6~1/2 > aN&1-1/2
N > Ns. Then, by Lemma 5.2, Lemma 5.1 and its proof, we have that when N > Nj,

P(|6 - 60| > N*~/?) < P(6 ¢ ©5) + P(Mn(6) — M| > N%71/2)
+ P(|My — My(80)| > N*~1/2) < ON—9%1,

Note that |6 — 6| > N°~1/2, § € ©p, and |My(f) — My| < N&~1/2 imply that
My — Mn(60)| > N%~1/2 when N > Ns. O

PRrROOF OF LEMMA 5.4. First we note that the components of M N — M N isin

the form of
1 & 1 1 n;
N2& N ;Z,#fi' =N N ) 2 b

where &;:, 1 < #' < m are some bounded random variables. It follows that

(8.52) |My — My;-| <CN7Y,
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where and hereafter in the proof C represents a constant whose value may change from
time to time. Similarly,

(8.53) |Mpy(0:_) — My (6;-)] < CN7L,

Choose 6 such that §; < § < 1/4 and 0 < p < (1 — 46)/2. By Taylor expansion, it
is easy to show that

My (8) — My x(6:)
o - 2 (k) -
= (BM—I:;:;'(@")') (6—6i-)+ %(9 — 6o)* (%—)) (8 — bo)

1, My k(B 7
—5(li- - bo)* <_1.;£_2£_(’l) (6:— — 6o)

OMN k(0 5 &
= (+g(0)) (9—9,‘_)+RN,]¢,

1 <k < p+1, where % (6(x)) lies between 6 and 6 (6;_). It is easy to show that
all second derivatives of My(-) are uniformly bounded. Thus, |[Rys| < CN?-1 if
|6 — 86| < N®=1/2 and |§;— ~ 6o| < N®~1/2. Therefore, by (5.25), | — 6;_| > N~1/2=¢,
16 — 66| < N¢-1/2 and |6;— — 6| < N°~1/2 imply

(8.54) [Mx(8) ~ My () > 23— by (aMg;"")) (aMg;"")) 6-6.)
—(p+1)C2N*—2
2eN"17% — (p+1)C2NY2

eN~172p,

VvV v

for large N, where ¢ is some positive number. Therefore, when N is large, we have

(8.55) P(1f 6| > N7'/27#) < P(1§ — 60| > N°~/2) + P(|6i— — 6| > N°71/%)
+P(IMy (8) — My(8:-)| 2 VeN~1/277).

Since p < 1/2, and My = Mn(8), Mn,_ = My ;_(;_) when My € My(©) and

My € My ;_(8), by (8.52), (8.53), (5.26), and (8.51), there is v > 0 such that for

large N,

(8.56) P(\My(6) — Mn(8;-)] > eN~1/277)
< P(My ¢ My(8)) + P(My - ¢ Mn,i-(©))
< P(|My — My(60)] > €2)
+P(|Mp,i- — Mn,i—(60)] > €2)
< Ce™ "V,
(5.27) then follows from (8.55), (8.56), and Lemma 5.3. O

To prove Theorem 5.3, we need the following lemma whose proof is straightforward.
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LEMMA 8.3. Let &{n, nn, and (n be random variables such that |En| V Inn| <
C(log N)* for some constants C, XA > 0. Suppose there is a set An such that P(AY) =
O(N71=¢) for some € > 0, and éx = iy + (N with [(n] < BN™17% on Ay for some
constants B, § > 0. Then E(én) = Eny +o(N7177) for any 0 < vy < e A 6.

ProoF oF THEOREM 5.3. By Taylor series expansion, it is easy to show that
. 8 - A 1
5 == (gMn(®))  (Mu(®) - Mu(a) - 30 ) +r.

where Qy is Gy with Ay replaced by My (8) — My (o), and |rx| < C|6 — o2 for some
constant C. Note that My(-) and all its derivatives are uniformly bounded. By (8.57)
and, again, Taylor expansion, we have

(8.58) di(B) = di(6o) + (%di(eo))t (B%MN(GO)) B (MN(é) - M{V(eo) - %QN)

1
+—2-RN + sn,

where Ry is #nx with Ay replaced by MN(é) — Mn(6p), and |sy] < C]é — 6|2 for some
constant C. Let &y = d;i(), nn be the sum of the first three terms on the right side
of (8.58) with MN(é) replaced by MN, and {y = sy. Then £y and 5y are bounded
random variables. Let Ay = {§ € ©p,{0 — 6y] < N°~1/2 and My € Mn(©)}, where
0 < 6 < 1/6. Then, by Lemma 5.2, Lemma 5.3, and the proof of Lemma 5.4, we have,
for some v > 0 and any 0 < §; < 6 and integer g > 1,

P(A%) < P(6 ¢ ©5)+ P(10 — 60| > N°~1/%) + P(My ¢ My(©))
= O(N"®) + O(N~9) 1+ O(e™"N) = O(N~17%)

for some € > 0, if g is large. Also, if N is large, then on Ay we have 6 = 6, |0 — 0| <
N=1/2 and MN(é) = My, which, combined with (8.58), implies that £ = ny + (N
with (] < CN3-3/2 (5.33) then follows from Lemma 8.3.

By a similar argument, one can show that E(I\TS\E(CL) ~ MSE(&)) =o(N~1).O
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