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Abstract. The proportional odds (PO) model with its property of convergent haz-
ard functions is of considerable value in modeling survival data with non-proportional
hazards. This paper explores the structure, implications, and properties of the PO
model. Results proved include connections with geometric minima and maxima,
ageing characteristics, and bounds on mean and variance of survival times.

Key words and phrases: Ageing characteristics, geometric distribution, random min-
ima and maxima, residual life, stochastic orders, survival models.

1. Introduction

The analysis of survival data is mainly concerned with evaluating the risk or haz-
ard of death at any time after an individual patients’ entry into a clinical trial or other
medical study. Typically, supplementary information; such as demographic, physiolog-
ical, or lifestyle characteristics; is recorded for each individual. A key problem then is
to explore how and to what extent the explanatory variables (observed in the form of
supplementary information) affect the risk or hazard of death. Such knowledge is useful
in devising treatment regimes and evaluating the prognosis for current or future patients
with particular values of these explanatory variables. The most popular model for ex-
ploring the relationship between the survival experience of a patient and explanatory
variables is Cox's proportional hazards (PH) model

' P
Ai(t) = do(t)exp | D BiZ;:

i=1

where \;(t) is the hazard function for the i-th individual, A¢(t) is the baseline hazard
function, Z;; is the value of the j-th explanatory variable on the i-th individual, and
Bi,...,0p are the regression coefficients. As is well-known, the partial likelihood ap-
proach to estimating the S-coefficients does not require knowledge of the actual form of
the baseline hazard function. Note, however, that in the PH model, A;(t)/Ao(t) is con-
stant in £, thus ruling out situations in which the hazard ratio converges to 1 as t — oo.
In practical applications, it is not uncommon for the hazard functions obtained for two
or more groups to converge with time. The assumption of a constant hazard ratio is
clearly unreasonable when initial effects, such as differences in the stage of disease or in
treatment, disappear with time. Similarly, the demonstration of the effectiveness of a
cure, when the mortality of the disease group approaches that of a disease-free control
group, requires that the hazard ratio converge to 1.
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One approach to allow for converging hazard functions is to include time-dependent
explanatory variables in the Cox model. An alternative approach is to try the propor-
tional odds (PO) model

14
@i(t) = (Do(t) exp Zﬂiji

=1

where 0;(t) are the odds of the i-th individual surviving beyond time t and @y(t) the
corresponding baseline odds. The PO model, introduced by Bennett (1983), guarantees
that the hazard ratio A;(t)/Ao(t) converges to 1. Bennett (1983) also describes how the
PO model can be fitted using maximum likelihood estimation, and gives an example of
its use in the analysis of a lung cancer trial. Collett (1994) has fitted the PO model
to the data on the survival times of women with breast tumors that were negatively or
positively stained. Dinse and Lagakos (1983) and Rossini and Tsiatis (1996) have used
the PO model for analyzing interval censored data. The application of the PO model
for the analysis of reliability data has been described by Crowder et al. (1991)

The objective of this paper is to explore the structure, implications and properties
of the PO model. Section 2 gives a preliminary discussion of odds and proportional
odds. The objective of Section 3 is two fold—firstly, it gives a key representation of the
PO model in terms of geometric maxima and minima and, secondly, it establishes that
in presence of proportional odds certain ageing characteristics of the control group are
necessarily inherited by the treatment group. Finally, the results of Section 4 provide
bounds on mean and variance of the survival time for treatment groups in terms of the
corresponding quantities for the control group.

Throughout this paper, we need the well-known notions of increasing failure rate
(IFR), decreasing failure rate (DFR), increasing failure rate average (IFRA),decreasing
failure rate average (DFRA), new better than used (NBU), new worse than used (NWU),
new better than used in expectation (NBUE) and new worse than used in expectation
(NWUE) which are extensively used for modeling positive or negative ageing in reliability
and survival analysis. See Barlow and Proschan (1975) for the motivations, definitions
and extensive study of these notions.

2. The odds function and proportional odds

Throughout this paper, X will denote a survival time random variable with con-
tinuous distribution function F(t) = P(X < t) and survivor function F(t) = P(X >
t) = 1 — F(t). If, and when, needed, f(t) = F’(t) will denote probability density func-
tion (pdf) of X and A(t) = f(t)/F(t) the corresponding hazard function. The odds on
surviving beyond time ¢t are given by the “odds function”

P(X>t) F(t)
P(X<t) F(t)

0t) =

Clearly, B(t) can be rewritten as A(t)/A(t) where A(t) = 4 In F(t) is the so called
reversed hazard rate of X at the point t. (See Shaked and Shanthikumar (1994) for
details about reversed hazard rates.) Thus, for infinitely small At > 0,

L PE-At<X<t|X<H)

m(t)_P(t<X§t+At[X>t)'
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The odds function is a decreasing function of t. Two less obvious properties are
given below.

PropPOSITION 1. (a) If X is DFR (i.e. if A(t) is decreasing) then O(t) is convez.
(b) If X is NBU (i.e. if F(t+3s) < F(t)F(s);t,s > 0) then §(t+3s) < 0(t)8(s); t,s >

PrROOF. (a) Since @(t) = F(t)/F(t) is non-negative and decreasing, A(t) = A(£)0(¢)
is decreasing whenever X is DFR. It follows that

0"(t) = O{AE) + A} — BO{N () + N (1)}
> 0.

(b) We can write

1096 =1/ | s 7w T Fw) Y

But,

sﬁ—(t—)llﬁ(—s)—l
gm—l, when X is NBU

which gives 8(¢)0(s) > 0(t + s). O

We now define
_PX>z+t|X>1)
01t = px<zr i1 x>0
F‘t(l)')
Fy(z)

as the conditional odds on survival to x + t given survival to t. Here, Fi(z) = P(X —
t>z| X >t) = F(z+t)/F(t) is the survivor function of the “residual life” and
Fy(z) = 1 — Fy(z). Although this paper is not concerned with conditional odds, it is
natural to compare conditional and unconditional odds. In this connection, we have the
following proposition whose simple proof is omitted.

PROPOSITION 2. (a)

0(z|t)—0(m+t)>L
d(z +t) ~ o)

(b) If X is NBU(NWU) then O(z | t) < (>)0(x).
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To introduce the proportional odds (PO) model, let Y be another survival time
random variable with continuous distribution function G(t), survivor function G(t) , and
hazard function Ay (¢). Henceforth, we will denote the odds function @(t) = F(t)/F(t)
by 0x(t) and @y (t) = G(t)/G(t) will be the odds function for Y. We will say that the
survival time random variables X and Y satisfy the proportional odds (PO) model with
proportionality constant o if

(2.1) By (t) = abx (t).

For interpretation purposes, one thinks of X as the survival time of a member of the
control group and Y as that for a member of the treatment group. Following Bennett
(1983), we take o = €" where n = 1 Z1+---+ 3, Z, and Zy, ..., Z, are the values of the
explanatory variables. This paper is not concerned with issues of statistical inference
and, therefore, we will suppress this aspect of the PO model.

The odds function is a one-to-one increasing function of the survivor function. It
follows from (2.1) that if @ > (<)1, then G(t) > (<)F(t). The following proposition
provides more information about the reduction in risk, excess risk, and the relative risk.

PROPOSITION 3. Suppose Dy (t) = abx (t) for allt > 0.

(a) If0 < a <1 then 0 < G(t) — F(t) £ (1 — a)/4a, and G(t)/F(t) is decreasing
in t.

(b) Ifa > 1 then 0 < F(t) — G(t) < 232, and G(t)/F(t) is increasing in t.

PRrOOF. In terms of survival functions, the PO model is the statement

- aF(t)
0= T30
where @ = 1 — a, so that B
F(t)-G(t) = %

(a) If 0 < a < 1 then G(t) < F'(t) and the excess in risk of dying by time ¢ is

G(t) - F(t) = F(t) - G(t) = (&/)G()F (1)
(@/a)F(t)F(?)
o

IA

<

Moreover,
G(t) _ F(t) - G(t) 1= aF(t)
F(t) F(t) 1—aF(t)

is decreasing in ¢t whenever 0 < a < 1.
(b) If a > 1, the proof of the first part follows by writing §x (t) = 10y (t).
Further,

_C_?_Q_fl _(a=1)F(t) 41

Ft) ~ 1-aF(t)

is increasing in ¢ whenever a > 1.0
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To close this section, we note that (see Collett (1994)) if the PO model (2.1) holds

then W) 1 _ G
M) T 1+ (a-1F@F) F(t)

Also, _
() _ F)
Ax(t) G
Thus, if @ > (<)1 , the above hazard ratio function is an increasing (decreasing)
function with value 1/a at t = @ and converging to 1 at ¢t = co. It is this property of
convergent hazard functions which makes the PO model particularly attractive. Fur-
thermore, the PO model, when written in the form

(2.2) Go.(2) = aF(z)/(1 — aF(z)), ©<a<oo,

provides a method of introducing a new parameter a to expand any given family of
distributions for added flexibility. This, in fact, is the stated motivation for Marshall
and Olkin (1997) who discuss some aspects of the family (2.2) but without its PO

implications.
3. Structure of the proportional odds mode! and hereditary ageing characteristics

Our first objective in this section is to show that the structure of the PO model is es-
sentially that of a competing (complementary) risk with a geometrically distributed num-
ber of unknown competing (complementary) causes. The observed survival time when
there are n competing (complementary) causes is of the type Xy., = minfX;,..., X,}
(Xnn = max {Xi,...,Xn}).

Throughout the rest of this paper, X;, X»,... will be a sequence of independent
and identically distributed (i.i.d.) random variables with common continuous survivor
function F and Y;,Ys,... will be an independent sequence of i.i.d. random variables
having common continuous survivor function G. Moreover, for any 8¢(0,1), Ny will
denote a random variable, independent of the sequences {X,} and {Y.}, such that
P(Ng=n)= (@n_l 0,n=1,2,... where # = 1—6. Then, Ny has probability generating

function (pgf)
Ou

=Fu")=——, 0<u<l
Yo(v) (u ) 1—68u =U=
For later use, we note also that 1 — g (1 — ¢e(u)) = u.
The following structural/representation theorem is useful in understanding the PO
model as well as in deriving new results. The notation =¢ will mean equality in distri-

bution.

THEOREM 4. Suppose that Oy (t) = oBx (t).
(a) If0< <1 then

YgXI:Na, XgYNa:Na‘
(b) Ifa>1 and B =1/a then

Y g XNg:NBa X g Yl:Ng'
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PrOOF. (a) If 0 < @ <1, the PO assumption gives

oFl) __ (b))

P(Y > t) t):TF(t)_

Il
|
—~

{FO}" (@«

o

1

8 i

=Y P(X1n, >t|Na=n)P(Ny=n)
n=1

= P(Xl:Na > t) .
Thus, Y=9X,.n_. Also,

PX<t)=1-F(t)=1-{1-v%a (1 -9 (F(t)))}
=1-{1-9a(1-G(t))}
= Ya(G(t)) = P(Yn,:N. < 1),

so that X =dYNa; Na.
(b) If o > 1 then the proof follows from part (a) by writing @x (t) = B0y (), where
B=1/a.0

The above theorem is particularly satisfying because it establishes the connection
between the PO model and geometric minima and maxima. The latter have received
increasing attention in the literature. See Shaked and Wong (1997) and the references
therein. It may also be of interest here to note that Marshall and Olkin (1997) showed
that the expanded parametric family of the form (2.2) is geometric-extreme stable. We
now show that certain stochastic orderings are preserved under proportional odds. In
what follows, F~! will mean the function

Flu)y=sup{z:F(z)<u}, 0<u<l,

THEOREM 5. Suppose that Oy (t) = aldx (t) and Qy-(t) = ax«(t) where the pro-
portionality constant o is the same and X*, Y* have survival functions F*,G*, respec-
tively.

(a) If X <. X* (i.e., if F*~1F(z) is convex in x on the support of F) then Y <. Y*.

(b) If X <. X* (i.e., if F*"1F(z)/x is increasing in x > 0) then Y <, Y'*.

(¢) If X <sy X* (i.e., if F*"'F has the superadditivity property F*~'F(z + y) >
F*=1F(z) + F*~1F(y), z,y > 0) then Y <gy Y*.

(d) If X <4isp X* (i.e., if F*"1F(z) — z increases in ) then Y <gisp Y'*.

ProOF. It will be sufficient to show that G*~1G = F*~1F. If 0 < o < 1 then the
PO assumptions give

G(t) =va (F(1)), G"(t) =va (F*(1)
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so that
G*1G(t) = G (1 - G(t)
- @) 6w
= (F*) 7 42 baF (1)
= (F*) ' F@t) = F*1F(1).
When a > 1, the result follows from the relations
G(t) =¢p(F(t), G"(t) = (F*(2))
where 8 =1/a. O

The following theorem shows that certain positive ageing characteristics of X must
be inherited by Y if @y (t) = alx(t) with @ > 1. We first note that a nonnegative
random variable X is IFR [[FRA,NBU]J if, and only if, X <. [<.,<sy| X*, where X* is
any random variable having the exponential distribution P(X* > t) = exp(—ut),t > 0,
for some p > 0.

THEOREM 6. Suppose By (t) = alx(t) where a > 1. If X is IFR [IFRA,NBU]
then Y is IFR [IFRA,NBU].

ProoF. Let X* and Y* be random variables with respective survivor functions
F*t)y=e7t, t>0,
G*(t) = t>0.

=)

et —
It can be easily seen that if @ > 1 then Y* is IFR and hence IFRA and NBU. Furthermore,
Oy~ (t) = abx-(t).
Suppose now that @y (t) = alx(t) where & > 1 and X is IFR [[FRA,NBU]. Then,
X is IFR[IFRA,NBU] & X <. [<.,<su]X*
- Y <. [£,,<sy]Y*, by Theorem 5.

But, Y* being IFR [IFRA,NBU] implies that Y* <. [<,, <gy]X* which, when coupled
with Y <, [<., <su]Y™*, gives Y <. [<4, <gy|X*. That is, Y is IFR [IFRA,NBU]. O

The following theorem demonstrates that if 0 < a < 1, then certain negative ageing
characteristics of X must be inherited by Y.

THEOREM 7. Suppose Dy (t) = abx (t) where 0 < a < 1.
(a) Let f(t), g(t) denote pdfs of X and Y, respectively. If log f(t) is conver then

log g(t) is convez.
(b) If X is DFR[DFRA,NWU)] then'Y is DFR[DFRA,NWU].

ProoOF. (a) It follows from the PO assumption that

af(t)

0= T are)
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so that ) 2 4 i)
d _ t
When log f(t) is convex, X is DFR and, hence f(t) = A(t)F(t) is decreasing. Con-
sequently, for & =1—a > 0, f(t)/ {1 — aF(t)} is decreasing and
d? d

2
— logg(t) > — log f(t) > 0.
dt dt

That is, log g(t) is convex.

(b) (i) To see that if X is DFR then Y is DFR, it is sufficient to note that the PO
assumption gives
Av(t) 1
Ax(t)  1—aF(t)’
which is decreasing when & =1—-a > G.
(ii) Suppose now that X is DFRA, ie., F(ct) < {F($)}°,0<c< 1.
Now, as seen in Theorem 4, G(ct) = 1, (F(ct)). Since the pgf ¥, (x) is increasing,

G(et) < #al(F(D)°)
~ E{F(@)™
- E(U°)

where U = {F(t)}=. But, {E(U°)}/¢ is an increasing function of ¢ > 0 because the
random variable U is non-negative. Hence, E(U¢) < {E(U)}* whenever 0 < ¢ < 1.
Consequently, for 0 < e < 1,

Glet) < {BU)}° < {B((F (1))}
= {G)}".

Thus, Y is DFRA. ~ L
(ili) Suppose now that X is NWU, i.e., F(s+t) > F(s)F(t),s,t > 0 Let us write

ho(Na) = {F(z)}"".
Then,

G(s+1t) = Yo (F(s+1))
> Ya(F(5)F (1))
= E[{F(s)F(t)}""]
= E[hs(Na)ht(Na)]
2 E[hS(Na)JEt[ht(Na)t]
= E[{F(s)}"]BI{F(t)}""]
= G(s)G(t)

where the last inequality holds because the random variables hs(N,) and h;(N,) are
monotone in the same direction. This proves that Y is also NWU. O
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4. Bounds on mean and variance in the proportional odds model

The objective of this section is to obtain bounds on E(Y) and Var(Y') in terms
of E(X) and Var(X) , respectively, when X and Y have proportional odds. We shall
continue to use the notations of the previous sections. Our bounds on E(Y') will be in
the setting of harmonic new better (worst) than used in expectation (HNBUE,HNWUE)
distribution for X. We say that a survival random variable X with finite mean y =
E(X) = [ F(z)dz is a HNBUE(HNWUE) random variable if

[ " Fla)dz < (2)uexp(=t/u), 2 0.

For more information about HNBUE(HNWUE) random variables, see Basu and Kirmani
(1986) and the references therein.

THEOREM 8. Suppose Oy (t) = alx(t) where E(X) = p.
(a) If0<a< 1 and X is HNBUE(HNWUE) then

alno
B 2 () (- 222 ) u
&
(b) If a > 1 and X is HNBUE(HNWUE) then

B() < () (- 222 u

«

PROOF. (a) Under the PO model with 0 < a < 1,Y=9X,.5, so that E(Y) =
E(Xi.n,). Now, let Wi, W,,... be iid. random variables with common exponential
distribution of mean yu (the same mean as that of X}. Wher X is HNBUE(HNWUE)

t t
/ F(z)dz > (5)/ e~/ Pdx
0 0
so that, by Theorem 7.3 of Barlow and Proschan (1975),

t t
/ (F2))"do > (<) / /iy
0 0
and hence, foralln =1,2,...,
E(X1) =/ {F@) dz 2 (L.
0
Consequently,

B(Y) = B(Xuv) 2 (E (5-)

_ _alna
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where we have used the easily verified fact that, for a geometric random variable N, E (1/N,) =

_alna

a(b) Whena > 1,Y=%Xy,.n, where 8 = 1/a. Further, when X is HNBUE(HNWUE)

/ F(z)dz < (Z)/ e/ kg,
¢ ¢
so that, by Theorem 7.4 of Barlow and Proschan (1975),
/ {1— F*@)}de < (>) / {1— (1 — e/},
¢ ¢
Hence, for n =1,2,...
E(Xom) = / {1 - F(2)}dz
0 o0
<@ [ a-a-eyyde
0
"1
i=1
It follows that |

B(Y) = E (Xny:n,)
Ng

< (2)uE (Z 1)

It may be noted here that, for any a > 0,
alna

min{e, 1} < — < max{a,1}.

Further, Theorem 8 is of wide applicability because the HNBUE(HNWUE) class
contains all IFR(DFR), IFRA(DFRA), NBU(NWU), and NBUE(NWUE) distributions.
For example, let X and Y have survival functions

F(t) =exp{—-(At)’}, t>0, >0
and



PROPORTIONAL ODDS MODEL 213

Git) = aexp{—(At)?}

= >
= Gexp(—(0)FT t>0, .ﬂ>0, a>0

respectively, Then Theorem 8 applies because Qy (t) = afx(t) and X is HNBUE
(HNWUE) if 8 > (<)1.

Our next result provides boundson P(Y —t >z |Y > t) in terms of P(X —t > z |
X > t) when X and Y have proportional odds.

PROPOSITION 9. Let Fy(z) = P(X -t >z | X > t) = E(Fg%, z > 0 and

@m0=HY—nmﬂY>Q=%%?J>&IWﬂﬁ:aMﬁMMn

min {a, 1} Fi(z) < Gi(z) < max{a, 1}Fi(z).

PRrROOF. It is easy to verify that

1-aF() < max{a,1}.

in{a,1} € —————"—
min{a, 1} < 1—-aF(z+t) ~

The result then follows on noting that, under the PO assumption,

=, | 1—aF(t) _
Gi(z) = {m} Fy(z). O

The above result immediately provides bounds on the mean residual life (mrl) func-
tion of Y in terms of the mrl function of X. Writing

uﬂﬂ=ﬂX—ﬂX>ﬂ:Amew,

and
wm:EW—HY>ﬂ=/ Gy(x)dz,
0
we have the following result.

COROLLARY 10. IfDy(t) = abx(t) and E(X) < oo then

min {a, 1} px (t) < py(t) < max{a, 1} px(t).

Finally, we obtain bounds on variance of Y in terms of that of X when the odds are
proportional and X is IMRL (that is, the mrl function px (¢) is increasing). However, we
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Table 1. E(Flg-) for selected values of 8.
8

S. N. U. A. KIRMANI AND RAMESH C. GUPTA

4 E(ﬁ’g)
0.05 0.0758228
0.10 0.144413
0.20 0.268699
0.50 0.582241
0.80 0.844015
0.90 0.92356
0.95 0.962147

1 m2/6 = 1.64493

first note that if Ny has the geometric distribution P (Ny =n) = (é)n—1 8, n

then
1) _ 6X(9)"
B (Tv‘) =l
0 . -
= 5.[/22 (9)
where

0
. 2" In(1 —¢
Lis(z) = Z 2= /—-L?———)dt
n=1 2

is the so called Dilogarithm function (see Wolfram (1996)). Lio(1 — Z) is sometimes also
known as Spence’s integral. The Dilogarithm function can be easily plotted and tabled
with the help of Mathematica, see Wolfram (1996). For selected values of 8, Table 1
gives values of £ (ng) obtained with the help of Mathematica.

We now prove

THEOREM 11. Suppose Py (t) = abx(t) and X is IMRL with E (X?) < o0.
(a) If0 < a <1 then

1 alna
3
a° Var(X) < Var(Y) < Var(X)E <F§) < (— 3

) Var(X).

(b) If a > 1 then
Var(X) < Var(Y) < o Var(X).

ProoF. The key formula in our proof is a result of Pyke (1965) according to which
Var(X) = E [pk(X)] .
(a) When 0 < o < 1,Y=%X;.5, and, by Corollary 10,

apx(t) < py(t) < px(t).
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Further, as shown in part (b) of Lemma 1 of Kirmani (1996), if X is IMRL then

pxn (B < A/n)px(t), n=1,23,....

Here, X;., = min{Xi,..., X, } and X},..., X, are i.i.d. as X. We also note that X7.,
is stochastically smaller than X and hence, when X is IMRL

E (4k (X1n)) < E (4% (X)) -
Putting together the various facts given above, we get

Var(Y) = E(ui(Y))
= E(pk, 5, (X1:.))

1
<E (-N—gﬂ?x (Xl:NQ))

E (ﬁlgu?x(X))

IA

Also, for 0 < a < 1 and increasing px (t):

Var(Y) = E (u3(Y))
> o’E (p.'j’( (Y)), by Corollary 10

(150 + [ aux@u P > t)dt]
L 1]

Il
R

\%
Q
o

[' o0
% (0) + / 2ux (t)px (t)aP(X > t)dt] , by Proposition 9
| 0

> o 42 (0) + / ” dux (O () P(X > t)dt]
= o’E [pk (X))
= o Var(X).

(b) The proof of Var(Y') < o® Var(X) is similar to the one given above. To prove
that Var(Y) < Var(X) for a > 1, note that

Var(Y) = E (43 (Y))
> E(uk(Y)), Dbecause py(t) > ux(t) by Corollary 10
> E(p% (X)), because ux(t) is increasing and ¥ >4 X
= Var(X),
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where Y >, X means that P(Y >t} > P(X > t) for all t, see Shaked and Shanthikumar
(1994). O

To see the usefulness of the above theorem, let X and Y be as in the paragraph
following the proof of Theorem 8. For 0 < 8 < 1, X is IMRL. The variance of ¥ must
be calculated numerically and there is no table available in the literature for obtaining
its values for any choices of 0 < 3 <1 and a > 0.
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