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Abstract. A monitor consists of n identical sensors working independently. Each
sensor measures a variate of output or environment of a system, and is activated
if a variate is over a threshold specified in advance for each sensor. The monitor
alarms if at least k out of n sensors are activated. The performance of the monitor,
the probabilities of failure to alarm and false alarming, depends on the number k,
the threshold values and the probability distributions of the variate at normal and
abnormal states of the system. In this paper, a sufficient condition on the pair of
the distributions is given under which the same threshold values for all the sensors
are optimal. The condition motivates new orders between probability distributions.
Solving an optimization problem an explicit condition is obtained for maximizing or
minimizing a symmetric function with the constraint of another symmetric function.

Key words and phrases: Dose response, increasing hazard function ratio, indicator
variable, Lagrangian multiplier method, monotone likelihood ratio, Neyman-Pearson
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1. Introduction

1.1 Design of a monitor

Many systems fail not only to operate when required to do, but also fail to be idle
when required to be so. For example, a monitor, measuring a characteristic variate of a
system such as pressure or temperature, or an environment variate such as radioactivity
or intensity of leaked gas, may fail to detect its abnormal state or may signal false
alarms. Suppose that a monitor consists of n sensors, which are of the same type and
work independently of each other. To reduce failure probabilities of the dual modes,
failure to alarm and false alarming, the monitor alarms if at least & out of n sensors,
1 < k < n, detect the variate being over a threshold value specified for each (“k-out-of-n
monitor” ).

Another simpler example is “open-circuit” failure and “short-circuit” failure in an
electronic circuit. To decrease these failures, it is designed to close when k or more
relays close, or open when n — k + 1 or more relays open. Being open in closed mode
corresponds to failure to alarm in the abnormal state, and being closed in open mode
corresponds to false alarming in the normal state. Since a monitor watches a variate and
it has adjustable thresholds, it is more general than a circuit.

The performance of a k-out-of-n monitor depends on k, threshold values and the
probability distributions of the variates at normal and abnormal states. In specifying n
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threshold values of each sensor, it seems natural to set all values the same because of the
identical properties of the sensors. There is a hope, however, that by properly changing
the threshold values one might be able to design a better monitor. In this paper, it is
shown that a monitor with the same threshold values of every sensor is optimal under
some conditions on the two distributions of the variate.

1.2 Previous Research

Previous papers on systems with dual failure modes assume the failure probabilities
of each component are fixed and known, and investigate the optimal structure. In par-
ticular, many authors investigated a system with identical components. Phillips (1980)
showed that the k-out-of-n structure minimizes the sum of the dual failure probabilities.
Systems with non-identical components were studied by Kohda et al. (1982) and Assaf
et al. (1986). Lesanovsky (1993) surveyed the papers in this field.

Suzuki and Tachikawa (1995) studied a system of components with variable thresh-
olds. For the case n = 2, they showed a sufficient condition on the two distributions
under which the same threshold values are optimal. The present paper extends their
results and improves their condition.

Related problems can be found in Gleser (1975), and Boland and Proschan (1983).
They investigated the maximization of the k-out-of-n system reliability under a con-
straint of components reliability. Boland and Proschan (1994) dealt with, among others,
the lifetime of k-out-of-n systems of components with proportional hazard life. Boland
(1998) studied the same lifetime when the components have an increasing hazard func-
tion.

1.3 Modeling and notations

Let Y;, 1 < j £ n, denote a system characteristic or an environmental variate
measured by the j-th sensor, which has a threshold value z;, and is activated if the
event Y; > x; occurs. This event is expressed by T; = I[Y; > z;], that is, Tj is equal to
1 if it is activated, and 0 otherwise. T = (T1,...,T,) is a state of the monitor taking
a value t = (t1,...,t,) € {0,1}™. At a critical moment, if the system is safe enough,
Y; is assumed to follow an identical cumulative distribution function (cdf) F, and if
dangerous, another identical cdf G. Both F and G are known, and, from the practical
view point, we assume that G is stochastically larger than F. Further, to simplify the
discussion, we assume F and G are smooth and monotone increasing. Hence,

(1.1) P{T =t|Fz} =[] F(z;)F"%(z;), ==(z1,...,%n),

j=1

where F'(y) = 1 — F(y), is the survival distribution function (sdf) of F. P{T =t | G,z}
is expressed in the same way.

We define a set R C {0,1}" such that if the event T € R happens we make the
monitor alarm and do some action on the system, otherwise we let the system keep
running without any action. The problem is to maximize the probability of appropriate
alarm

(1.2) p(R;z;G) := Y P{T=t|G,z}
teR



OPTIMAL THRESHOLD FOR THE k-OUT-OF-n MONITOR 191
under the constraint on the probability of false alarm

(1.3) p(R;z; F):=Y P{T=t|Fa}=a, 0<a<l
teR

This optimization problem is similar to a statistical test problem,
(1.4) Hy:F vs. Hi:G, F(y)<Gy), —-oco<y<oo.

The point is that we observe T; = I[Y; > x;], not Y; directly, and the choice of z is a
part of the design. Such a design problem can arise in a destructive test, or testing a
statistical hypothesis in the dose-response model. The test (1.4) of a simple hypothesis
vs. a simple alternative can be extended to the one sided test of a single parameter
model: Y; ~ K(-;8), which is stochastically increasing in 8,

(15) HQ:GIGQ vS. H129:91, Oy < 4.

1.4 Formulation of problem

Suppose, F, G, £ and a are given. The optimal rule R can be determined by the
Neyman-Pearson fundamental lemma as will be shown in Section 4. In the special case
of “homogeneous threshold”, that is  with the same component values, the k-out-of-n
rule (1 < k < n) is optimal for some values of a.

Instead, suppose only F', G and « are given, and find simultaneously optimal z and
R C {0,1}". The problem is challenging, and a few results will be shown in Section 4.

In this paper, we restrict ourselves to the “k-out-of-n rule”,

(1.6) R(k,n) = Qt=(t1,...,ta): > t; 2k, 1<k<n
i=1

The objective is to show that a homogeneous threshold is optimal for this rule, under
some conditions on (F,G), or on K(-;8). The restriction to k-out-of-n rule is, first of all,
to reduce the search for R. Note that the choice of % is still an open problem. Second,
it is in practical use, and finally it works in some related situations as we have seen.

Section 2 shows the conditions on (F,G) under which a homogeneous threshold is
optimal for the k-out-of-n rule. It also proves, as a basic lemma, a maximal or minimal
condition in the Lagrangian multiplier method for optimizing a symmetric function with
a symmetric constraint. Section 3 lists typical families of distributions which satisfy the
conditions of the optimality. In other cases there are many situations and they are shown
by examples. The monotone likelihood ratio is shown to be irrelevant to the optimality
of the homogeneous threshold. Section 4 discusses some related problems.

2. Main results

2.1 Rules n-out-of-n and l-out-of-n

First, we study the simple case R(n,n) = {t = (1,...,1)} and R(1,n) = {t #
(0,...,0)}. For these action rules, a homogeneous threshold is globally optimal under
the following conditions Cj, and C,., respectively.
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For a pair of distributions (F, G), having the probability density functions (pdf’s)
f and g, respectively, we introduce the following conditions.

9y) /fly) . . .
2.1 Cy: =L [/ = is a non-decreasing function of y.
@3) " 5w/ F) : v
9@y) /fly) . . .
2.2 C,: == is a non-decreasing function of y.
(22) & / Fly) : v

The increasing ratio of hazard functions was introduced by Kalashnikov and Rachev
(1986) and studied by Sengupta and Deshpande (1994). The ratio of a pdf to its cdf, a
sort of dual of the hazard function, was named as “reverse hazard ratio (function)” and
explained in Shaked and Shanthikumar (1994).

If the ratios are strictly increasing, the maximum in the following theorems is strictly
maximum. The conditions C}, and C;., orders of probability distributions, will be further
discussed in Section 3.

THEOREM 1. If the condition C}, is satisfied, the homogeneous threshold T = a =

(a,...,a) such that B

F*(a) = a,
mazimizes globally p(R(n,n);x;G) under the constraint p(R(n,n);z;F) = a, for any
n=23,...andany 0 < a < 1.

Proor. Put

zj = log(l — F(z;)), o(u):=G(F (), wu:=F(z),

and
P(2) :=1log(l — G(z)) =log(l — (1 —€*)), z=F"1(1-¢).

The problem is to maximize 2;21 ¥(z;) under the constraint } 7, z; = log . Since

() = Llog(1 — (1~ %) = 9—"%@;‘)

which is equal to -&(log G(z)) /& (log F(z)), L¢(z) is non-decreasing in = and non-

increasing in z provided that the condition C}, holds. Hence, the function v(z) is concave.
For a general concave function 1, the inequality

nTUY W(z) <9(z), z=n') gz,
=1

i=1
is valid, and the equality holds if z; = --- = 2, hence the sum " 9(z;) is maximum at
z2n=-=z,=n"lloga.O

THEOREM 2. If the condition C, is satisfied, the homogeneous threshold ¢ = a =
(a,...,a) such that
1-F™a) = q,
mazimizes globally p(R(1,n);x; G) under the constraint p(R(1,n);x; F) = a, for any
n=23,...and any 0 < a < 1.
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The proof is similar to that of Theorem 1 and omitted.

Remarks. 1. In Theorem 1 (or 2), if the homogeneous threshold is globally optimal
for any n = 2,3,... and any 0 < a < 1, the condition Cj (or C,) is necessary because
the function (2) in the proof should be concave.

2. Note that Theorems 1 and 2, as well as the following Theorem 3, can be ex-
tended to the one sided test (1.5), as shown in the beginning of Section 3.

2.2 Optimization of a symmetric function
We state a lemma on the optimization of a symmetric function with a symmetric
equality constraint, which is the basis of Theorem 3 on the optimal threshold of the

k-out-of-n rule.

Let X be an open region in R", and let f : X - R and g: X — R be C? and
symmetric, that is, invariant with respect to the permutation of the variables. The
problem is to optimize g under the constraint f(z) = b, where b is a constant. Let the
Lagrangian be denoted by

(2.3) ®(z, ) := g(x) + Ab — f(x))-

Because of the symmetry of g and f, the equation

(2.4) i@(z N = gol@ =A@ =0, j=1om
3

has a solution £ =a := (a,...,a) and A = Ag := 5 2 g(a)/ 2 55/ (a), provided that a, such
that f(a) = b, is in X. The followmg lemma is a necessary and sufficient condition for
the stationary point @ to be locally maximum or minimum.

LEMMA. The object function g is locally minimum ot £ = a under the constraint
f(x) =0, if and only if the following inequality holds at (z, )) = (a, Ao).

2 2 2 2
g g (E’f *f )>0

%%— - 3:013:132 B_avl 31313272

(2.5)
If the reverse inequality holds, g is locally mazimized.

Proof is given in the Appendix A.

2.3 Rules k-out-of -n
In the general case 1 < k < n, we will show the local optimality of a homogeneous

threshold, assuming a general condition on the distributions.
For a pair of distributions (F,G) we introduce the following conditions.

(i) F and G are C2. (ii)

") )
(2.6) Clk,n) : == 1 )G *(y) / Fr=1(y)Fn=k(y) ’

l<k<n, n=34,...

is a non-decreasing function of y.
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Note that C(n,n) and C(1,n) are equivalent to Cj, and C;., respectively. Note also
that Cp, and C, imply C(k,n).

THEOREM 3. Assume the above conditions (i), the homogeneous threshold z = a =
(a,...,a) such that
p(R(k,n);a; F) = a,

mazimizes locally p(R(k,n);x; G) under the constraint p(R(k,n);z; F) = a, if and only
if C(k,n) holds.

Proof is given in the Appendix B.

2.4 Bayes solution

Returning to the design of a monitor, let Lo denote the loss due to a false alarm
(the error of the first kind) at Hy : F', and L, that due to a lack of alarm (the error of the
second kind) at H; : G. Furthermore let us assume that the safe state Hp : F happens
at a crucial time with a prior probability w,0 < w < 1, and the dangerous state Hy : G
with a prior probability 1 — w. That is, the Bayes risk, R, F, G being fixed, is

(2.7) r = r(w, Lo, L1, )
= whop(R;z; F) + (1 — w)L1 (1 — p(R; 2, G))

= —(1-w)Ly (p(R; z;,G) + ﬁ(a — p(R;z; F))) + wlpa.

Hence, minimizing r with respect to £ is equivalent to maximizing the Lagrangian
p(R;x;G) + Ma - p(R;z; F)), A=wLo/(1—-w)L.

Due to Theorem 3, the solution is £ = a = (a,...,a), where a is determined, as is
shown in the Appendix B, from

2.8) A= M@) = o plRi ) / op(R;2; )
= 9(@)C* (@)™ (@) f(a) F* (@) F™*(a).

Hence, the following proposition is justified.

PROPOSITION 1. Under the conditions (i) and (ii) of Subsection 2.3, the Bayes
risk (2.7) is locally minimized by choosing £ = a such that the right-hand side of (2.8)
is equal to wLo/(1 — w)Ly. Such a is uniquely determined if the right-hand side of (2.8)
is strictly increasing.

A sufficient condition for the uniqueness of the solution for any & is, in addition to
C(k,n), that both G(y)/F(y) and G(y)/F(y) are increasing in y, or for example that
9(y)/ f(y) is increasing (a stronger property).
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Table 1. Orders of typical families of distributions

distr. on (—ooc,00) parameter distr. on (0,00) parameter  orders

logistic location Pareto scale Ch and Cr
normal location lognormal scale Cp, and Cr
Gumbel location Fréchet scale Cy and Cy
negative Gumbel location Weibull(exponential)  scale Cy and Cr

* denotes constant ratio

3. Examples and counterexamples

3.1 Ezamples of increasing C), and C,.
In this section we discuss the one-sided test (1.5), and define

Ri(y;00,61) := (k(y; 01)/K(y;61)) /(k(y; 60)/ K (y; 60))
R.(y;00,61) = (k(y;61)/K(y;61)) / (k(y; 60)/ K (y; 60))

where K(y;6), 8 € © C R, is a cdf and k(y; ) is its pdf. For this family of distributions,
the condition Cj, (or C,) means Ry (y;60,60:1) (or R.(y;6p,01)) is non-decreasing in y for
any 8y < 6;. That is, its hazard function (or reverse hazard function) is TP, (Total
Positivity of order 2, Karlin (1968)).

For example, for the Weibull family of probability distributions with scale parameter
(abbreviated as “Weibull (scale)”), K(y;6) = exp(—(y/8)7), y > 0, § > 0, we get
Rp(y;60,61) = (60/61)" = const and R, (y; 8, 6:) is increasing in y. Hence, the power of
n-out-of-n rule is the same for any choice of (z1,...,%,) such that []_, F(z;;60) = o
A homogeneous threshold maximizes globally the power of 1-out-of-n rule for any a,
6 and #;. Further, since C(k,n), 1 < k < n, is satisfied, a homogeneous threshold
maximizes locally R(k,n) test power for 1 < k < n.

Table 1 is a list of typical parametric families which are both increasing Cj and
C,. Therefore, they are also C(k,n) increasing, 1 < k < n, n = 3,4,.... In this list the
other parameters are fixed. The symbol C;; (or C;) means Ry (y; 0o,61) (or R, (y;60,61))
is constant. Here we note that Cy and C, properties hold valid under exponential and
logarithmic transformations of random variables. The derivation of these properties, as
well as those of the following counterexamples, are discussed in detail in a companion
paper by Sibuya (1998).

All the families in Table 1 are increasing both C, and C,.. However an increasing Cj,
(or C;) family is not always increasing C,. (or Cy). For example, the Weibull distribution
with reciprocal power parameter,

(3.1) K(y;0) =exp(—3®), y>0; 6>0,

is increasing Cj, but not increasing C,.. If a random variable Y follows (3.1), 1/Y follows
the Fréchet distribution, which is increasing C, but not increasing Cj,.
For the Weibull distribution (3.1) with 8 < 6,

K(y;61) 2 K(y;60) < ys1.

Hence, the very first assumption on the test (1.4), G is stochastically larger than F, is
violated. Further, &(y; 6) is not TP,.
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3.2 Decreasing Ch,

The proof of Theorem 1 shows that if a family is “decreasing” C}, the homogeneous
threshold has the “minimum” power. An example is the Weibull (scale) with different
power parameters,

K(y;0,7) = exp(—(y/0)*"), y>0; §>0, v>0.

Since,

7 () 1/
log K(y191a71) . y1/71 ( 1/v—-1/7v1 _ 00 70) ,

K(y;00,7) gL/ 6/
if 7 > Yo,

_ _ g\ 1/ (m-m)
Ruionm) > Ko == (5%)
1

The last expression is a decreasing function of 8;; a desirable property to test (1.5). Now,

1
906" 11/

Ru(y;00,%,01,m) = 1 g1/

is decreasing in y. Hence, in n-out-of-n rule, provided that the homogeneous threshold
Z1 =--+ =Z, = a is greater than 1, and

Y n o
exp(n/8y’ ") > a <= 6y > <—10ga) ,

the homogeneous threshold minimizes the power.

3.3 The role of TPy pdf

All the families in Table 1 also have a TP; pdf, or monotone likelihood ratio, that
is, k(y;01)/k(y; o), 60 < 01, is non-decreasing in y, which implies that K (-; ) is stochas-
tically increasing in §. However, TP pdf does not imply Cy nor C,.. A counterexample
is a family of histogram distributions with the density

1/1+6+6%), 0<y<l,

k(y; 0) = /(1+60+6%, 1<y<2,

’ 62/(1+6+6%), 2<y<3,
0, otherwise; 6 > 0.

It is TP3, but neither C), nor C,. To see what happens about the family, let us restrict
ourselves to the 2-out-of-2 rule to test Ho: 6 = 6y vs. Hy: 8 > 6.

Let Py(6) denote the power for the threshold z; = z9 = a, 1 < a < 2, and P;(6)
denote that for 1 < r; < a < 22 = 2. These conditions restrict a, the level, within the
range

62 2 63 (60 + 62)
(1+00+6§> < (1460 +62)2

Now,

Py(68) = (6% + (2 —a)8)2/(1 + 6+ 6%)2
Pi(8) = (824 (2 — 11)0)6% /(1 + 0 + 62)?
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and
Po(eo) = P] (90) = .

From the last condition, we get

2—121 =260 +2—a)(2—a)/b,
and

P(6) = R(0) ‘zz e 0

(2-a))?
if # > y. Hence, a homogeneous threshold may not be optimal in the 2-out-of-2 rule
unless C}, is satisfied. Incidentally, Ry (y;89,61), 60 < 61, is constant on 2 < y < 3. The
power for the threshold zy = 23 = a, 2 < a < 3, with

63(00 + 63)
(1+ 6o +62)%
is exactly the same as the power for any thresholds 2 < z; < a < z5 < 3. Also, this

family can be used to show the case of the 1-out-of-2 rule and that C; is not satisfied.
Hence, the following proposition is obtained,

PROPOSITION 2. The monotone likelihood ratio condition is not sufficient to imply
that a homogeneous threshold is optimal for all rules k-out-of-n, 1 < k < n, and for all
o and 90 < 4.

3.4 Restricted level of test

Even if Cj does not hold, the homogeneous threshold may have the maximum power
for the restricted value of «, depending on n. This happens if Ry(y;80,61) is increasing
for larger values of y, and for smaller values of a.

An example is a bilateral exponential or Laplace distribution (location), k(y;8) =
%exp(—ly —8|). Rp(y;60,61) is decreasing if y < 6o, increasing if 6y < y < 6;, and equal
to 1 if y > 6;. Consider the n-out-of-n rule with the level, o, to test (1.5). For a < 277,
the homogeneous threshold x; = --- = x, = a which satisfies

| PR
Py(6o) = (56 ( 90)) = a,

is given by a = 6 — log 2a'/™ > 0. Hence the homogeneous threshold is optimal and the
maximum power P(6) is given by

aem(0—fo) 86<a
P(6) = 1 _o-s0))
(1*4011/"8 (6=60) } | g>a.

For o > 27", the homogeneous threshold a is smaller than 8y, and it is not optimal.
In the 2-out-of 2 rule with a > 1/4, numerical results show that the thresholds z; < a <

o = fg are better.
Incidentally, the pdf of the bilateral exponential family is TPy, and this is another

example that a TPy pdf does not imply Cj, nor C,. increasing.
From the above discussion, we get

PROPOSITION 3. For the restricted values of a, a homogeneous threshold may have
the mazimum power for the n-out-of-n rule without the condition of increasing Cr. The
restriction of a depends on n.
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4. Some related problems

4.1 Optimization of the rule R given x
In this subsection we discuss briefly the optimization of R given (F,G), & and z.
The optimal R is, by the Neyman-Pearson fundamental lemma,

(4.1) R={t=(t1,...,tn)" H(G(%) ?Ei’j)) >c b c{0,1}"

The number c¢ is determined by «. The following discussions will give an insight on the
structure of R.
Without loss of generality, we can order (zi,...,%,) such as

_ G(z;) [F(z;)
G(z;) / F(z;)

Recall that we have assumed

Fly) _ Gly) _ Glz;) [Flz) |
Fly) = G(y) G(z;) / F(zz) ~
Hence, t; = 1 for the smaller j means the larger product.

Let ¢t and 8 be elements in {0,1}™. We define that the former is “directly larger”
than the latter, denoted by t » s, if and only if

F(y)>G(y) & Fly) <Gy) &

t; = Si,Vi(i #7,5+ ].), and ti=8j41=1, tjy1= 8; = 0, or
t,=s,Vi<n, and ¢,=1, s,=0.

This definition introduces a lattice in {0, 1}"™, which depends on (F, G) only through
(r1,-..,7n). The order t > 8 is extended to the lattice. This means

(4.2) ﬁ it > ﬁ T
7j=1 =1

R(k,n) is an upper set in this lattice, i.e., for any 8 € R(k,n), t € R(k,n) if t > s.
The least elements of R(k,n) is t, = (0,...,0,1,...,1) with the last k components 1,
and the greatest elements outside of R(k,n) is 8o = (1,...,1,0,...,0) with the first k—1
components 1. R(k,n) is more powerful than any upper sets, which does not include
R(k,n), if and only if ty > 8, or

n

k-1
(4.3) H T > H Tj.

j=n—k+1

If the threshold is homogeneous (4.3) is satisfied for any k. Assaf et al. (1986) discussed
the optimality of the k-out-of-n rules including the condition (4.3) along a similar line.
To compare the rules, however, we have to change =z to keep the test level the same.
Hence the discussion of this subsection cannot be applied.
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4.2 Comparison among k-out-of-n rules

In this subsection we discuss the choice of k of the k-out-of-n monitor. First, to
compare rules k-out-of-3, k = 1,2, 3, with homogeneous thresholds, the powers for the
families of distributions in Table 1 are numerically examined. It turns out that there
are two types of families summarized as follows. It looks difficult to develop a general
theory.

A. normal (location)-lognormal (scale), logistic (location)-Pareto (scale).

The powers cannot be compared among k = 1,2,3. The order changes by both «a
and 6.

B1. negative Gumbel (location)-Weibull, exponential (scale).

The powers are in the order k = 1,2, 3; k = 3 is uniformly most powerful.

B2. Gumbel (location)-Fréchet(scale).

The powers are in the order k = 3,2,1; k = 1 is uniformly most powerful.

The pairs are exponential and logarithmic transformations between random variables,
and Cy and C, properties as well as power relations are the same. Bl and B2 are a
negation relationship, which will be discussed in the following part of this subsection in
relation with symmetric tests.

In a special symmetric condition on (F,G) and on z, the performance of the n-out-
of-n rule is the same as 1-out-of-n rule. We use the d.f. K, which is introduced in the
test problem (1.5), and put F(y) = K(y — 6p) and G(y) = K(y — 61), 6o < 61. Let the
optimal threshold of the n-out-of-n rule be z = (ay,...,a,) and that of the 1-out-of-n
rule be £ = (ay,...,a1).

PROPOSITION 4. Assume that (i) K(~y) =1-K(y),—o0 < y < o0, (ii) The levels
of both rules are the same: F™(a,) =1— F"(a1) =: «, (iii) The parameters are specified
so that G™(a,) = 1 — a, which is satisfied if 8p+61 = ay +a,. Then 1-G"(a1) =1-«q,
that is, p(R(n,n);a,1;G) = p(R(1,n);a11;G).

The proof is simple and omitted. An analogous proposition holds, if a d.f. K is
such that K(0) = 0,K(1/z) =1 — K(z), for F(y) = K(y/6y) and G(y) = K(y/61),0 <
6o < 6. The proposition is also extended to the equal performance of R(k,n} and
R(n—k+1,n).

4.3 Optimal reliability in different time points

The result of the present paper can be applied for maximizing a reliability of a
k-out-of-n system at a time subject to the reliability at a different time point as follows.
Suppose a k-out-of-n system is composed of components of which lifetime, Y;, follows
cdf K(y;/6;), 7 =1,...,n. For two different time points, 7o < 71, the reliabilities of j-th
component are given by

(44) pj(TO) = P{Y, > To} = K(Tg/gj) = R(E_-,/ga) where Ej =Tp* 6a/9j, and
(4.5) pj(n):=P{Y;>7n}=K(1/8;) = K(§;/0) where 6, =80, 1o/T1 <¥,.

Hence, the problem of maximizing the system reliability at 7, subject to the re-
liability at 79, corresponds to an optimization problem of (£1,...,£,) in the statistical
testing;

Hyo:60, vs. Hi:6, (()b < Ga)

which is solved in the present paper. This model was discussed by Boland and Proschan
(1994).
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Appendix

A. Proof of Lemma in Subsection 2.2

Because of the symmetry of f, the gradient of f at a is % fla) = 5—2—1 f(a)1. Hence
the tangent hyperplane of the surface b— f(z) =0 at ais T = {v : v*1 = 0} in the local
coordinate system with the origin at a.

Let ¥ be the Hessian matrix of the Lagrangean function ®(z, ) at {(a, \g). ¢ is
locally minimum at a, under the constraint f(z) = b, if and only if

v >0, wWweT.

The Hessian matrix ¥ has the identical diagonal elements and the identical off-
diagonal elements, and hence has the form
_ 8*%(a, )\O)I+ 9*®(a, Ao)
- Br? 81102

v (J_I)7

where [ is the identity matrix and J = 11? is the square matrix whose elements are all
one. The quadratic differential form of ®(z, \) on T is, therefore,

5%® 5%®
t— [O°2 0% 2
vy (81:% 8:1:189:2) Il

since Ju = 0. The coefficient of ||v||2 determines maximality or minimality.
See, e.g., Craven (1981), Theorems 3.5 and 3.6, or Fleming (1976), Section 4.8, for
the argument in the proof.

B. Proof of Theorem 3 in Subsection 2.3
Recall that

p(; F) = p(R(k,n);z; F) =Y Y []F¥(@)F' % (z:).
i=k S gmji=1

We apply Lemma in Subsection 2.2 to maximize p(z, G) under the constraint p(z, F) = .
Firstly differentiate only the term with ) ¢; = j to obtain

3 |z T st 1-t;

e F(z) Y +F(@) ), HF (@) F " (z4)

Y ti=j-1 Yoti=j ) =2

i —_
=flz) |- D, + > |IIF*@)F* ().
doti=j—1 Y ti=j ) =2

Further differentiation with respect to z; results in the same form with f(z;) replaced
by f/(z1). Further differentiation with respect to 3 results in

32

Fogm | F@VE@) 37 +(F@)F(z2) + Fa1)F(z))

S ti=j-2
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n

S +F@)F@) Y | [] B @) P ()
S ti=j-1 S t=j) =3

n

= f(z1)f(z2) Z -2 Z + Z HFti(zi)Fl‘ti(xi).
Sti=j—2 Y ti=j-1 Y =5 ) =8

Now, put £ = a and sum over j = k,...,n to obtain (the argument a being omitted)

17
D1 = a—zlp(a, F)

B (1))

=k
=—f (Z : i) FrE-1pn—k
Dy = aa—:;p(a; F)=—f (:: ;) Fh-1pn—k
and .
I L e

i=k
+("57) P
2 n—2\ zp_o n—k _ n=2\ zk_1 pn—k-1
(G () o)

The same expressions are obtained for p(a;G). Applying Lemma, we obtain a
sufficient condition

G5 (68 603)
5 (D608

g g g ’ f f
(n“1)3+(k—1)5—(n—k)a>(TL—].)T-'-(IC—].)?—;—(TL—k)F.

or

This condition is equivalent to

a. 9" '(y) ")
dy 8 (ék—1<y)an-k(y) Fk-l(y)Fn-k(y)) >0

which is the condition C(k,n).
Boland and Proschan (1983) computed D;s in a different way. His computation
shows why the summation in D15 reduces to the term j = k.
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