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Abstract. New and advanced methods for nonlinear time series analysis are in
general not available in standard software packages. Their implementation requires
substantial time, computing power as well as programming skills. In time series
analysis such a scenario is given by a recently suggested nonparametric lag selection
procedure for univariate nonlinear autoregressive models which is based on the Cor-
rected Asymptotic Final Prediction Error. In this paper we suggest a worldwide Web
based specific client/server architecture that provides empirical researchers with fast
access to new methods and powerful computing environments without knowing the
statistical computing language and the server location. This architecture is imple-
mented using the XploRe Quantlet technology and illustrated for nonparametric lag
selection. Access to the Quantlet computing service can be obtained via standard
WWW browsers or a Java client. The XploRe Quantlet service can be helpful in con-
structing research books and interactive teaching environments as the electronic ver-
sion of this paper, available from http://ise.wiwi.hu-berlin.de/~rolf/webquant.pdf,
demonstrates.
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1. Introduction

New methods in time series analysis involve often computationally intensive numer-
ical operations and entail often highly complex mathematical arguments. Bootstrapping
time series (e.g. Franke et al. (1998)) involves quite a bit of computing resources, for ex-
ample. Nonparametric procedures such as wavelets (e.g. Hérdle et al. (1998), Dahlhaus
et al. (1999)) assume a certain degree of mathematical skills before they can be used for
practical implementation. Both the computational and mathematical complexity slows
down the process of real world applications for new time series methods. In this paper we
propose an architecture that helps in the proliferation of new time series methods. More
precisely, we suggest a design for computing that combines Java applets with the advan-
tages of statistical programming languages. This is particularly useful for nonlinear time
series analysis. These methods and the advances in computing technology have made it
possible to avoid too restrictive assumptions for model construction. Consider, for ex-
ample, the problem of modeling a univariate time series. For the last two decades it has
been common for analyzing time series data to use the well developed toolbox of linear
autoregressive moving-average (ARMA) and integrated autoregressive moving-average

*The authors acknowledge support by the Deutsche Forschungsgemeinschaft via Sonderforschungs-
bereich 373 “Quantifikation und Simulation 6konomischer Prozesse” at Humboldt-Universitat zu Berlin.

179



180 WOLFGANG HARDLE ET AL.

(ARIMA) models, see e.g. Brockwell and Davis (1991). This model class, however, can
only be adequate if one is exclusively interested in linear dependencies through time.

However, in many applications modeling asymmetric effects or regime-dependent
dynamics is of central importance. Then linear models are an inadequate choice and one
considers, for example in finance, conditional heteroskedastic nonlinear autoregressive
processes instead. A general nonparametric time series model for an univariate stochastic
process {Y;}1_, is given by

(11) }/t = f(Yt—'i17Yt—i27 sy Yt—’im) + U()/t—’il’ )/t—‘iw ey )/t—‘im )gt

where {{; } denotes an i.i.d. noise with zero mean and unit variance and the form of f(-),
the conditional mean function, and o(-), the conditional standard deviation, as well as
the number of lags m and the lags itself 4,,...,%,, are unknown.

Quite often, theory in the field of application does not indicate a reasonable choice of
these functions and parameters and one has to apply statistical model selection methods
which only recently have become available for general function classes (Vieu (1994),
Yao and Tong (1994), Auestad and Tjgstheim (1990), Tjostheim and Auestad (1994),
Tschernig and Yang (2000)).

All of these procedures are rather complex and computer intensive especially for
large data sets. Both factors substantially hinder the proliferation and application of
these techniques. In the best case, the developer of a new method of this kind pro-
vides public access to the algorithm via his own home page or a method archive which
is accessible via FTP, e.g. http://lib.stat.cmu.edu/S/, for programs written in S-Plus.
However, in order to execute the algorithm, the user needs access to the software system
that can execute or compile the program (e.g. S-Plus, GAUSS, FORTRAN). Moreover,
their implementation may not always be an easy task nor may these programs always
be well checked and documented.

These difficulties can be circumvented by a more Web based approach in which case
a new method is implemented in Java. While this allows potential users to access an
algorithm from almost any platform, this method suffers from three drawbacks. First,
due to its generality, Java implemented programs may be slower than those written in
more platform dependent languages. Thus, the user’s computing facilities may be occu-
pied more than necessary. Second, a developer of a method faces double programming
since he has to write the code both in a proprietary software language and in Java.
Third, if Java programs are accessed via any browser one does not have access to the
resources of the local machine. For example, one cannot load data files from the local
hard disk. Nakano (1998) provided only a partial solution to the latter problems since
it still excludes the advantages of Java applets.

Here we suggest a new approach that combines the advantages of Java applets
with the advantages of statistical programming languages in a distributed computing
framework. Our ideas are illustrated with advanced statistical model selection methods
for time series data.

In Section 2 we present a nonparametric identification method for nonlinear time
series models. Section 3 presents our new Web based computing architecture. Section 4
provides an application of these ideas using the algorithm of Section 2.

2. Nonparametric identification of nonlinear time series models

Fitting a nonlinear time series model like (1.1) requires two steps:
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(i) Lag selection: one has to choose the relevant lags i, .. ., i, including their number
m for the autoregression function f(-) and the conditional standard deviation o(-).

(ii) Function estimation: estimate f(-) and, if desired, o(-) for the chosen lag vector.
Here we present a nonparametric lag and estimation procedure by Tschernig and
Yang (2000), hereafter abbreviated as TY. For their asymptotic analysis they assume
among other things that the stochastic process {Y;}._, is stationary and -mixing. We
first describe Step (ii) of nonparametrically estimating f(-). Denote the vector that
contains all selected lags by X; = (Y,g_il,Yt_iQ,...,Yt_im)T. The idea is to estimate
a first order Taylor approximation of the unknown function f(-) around a given point
. Since including observations X; that are too far away from z would introduce a
large bias, one weights the observations. Using the least squares principle the estimated
function value f (z,h) is provided by the estimated constant & of a local polynomial

estimate around z

T
{é0,¢&} = arg {min} Z {Yi = co — (X¢ —2)Te}? K (X, — )
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where K denotes the weighting function which is commonly called a kernel function and
Kn(X; —x) = h" [, K {(X:; — z;)/h} is a product kernel. f(z,h) = & is known
as a local linear function estimator. Similarly one can estimate the conditional standard
deviation o(-), see Hirdle and Tsybakov (1997) for details. The parameter h is called
bandwidth parameter and controls the statistical bias-variance tradeoff. Its estimation
will be explained below.

We now turn to the problem of selecting the relevant lags (Step (i)). For this step it is
necessary to a priori specify a set of possible lag vectors by choosing the maximal lag M.
Denote the full lag vector containing all lags up to M by X; ps = (Yi—1,Ys—2,...,Yi—m)T.
The lag selection task is now to eliminate from the full lag vector X, »s all lags that are
redundant. Note that the candidate lag vector X; is a subvector of X ar.

For comparing the quality of competing lag specifications, one needs an appropriate
measure of fit, as for example the Final Prediction Error (FPE)

FPE(h,iy,...,im) = E[(Y; — (X, h))*w(X¢ n)]
where the process {}V’t} is independent of the process {Y;} but has the same stochastic

properties and w(-) is an appropriate weight function. Let |K ||} = [ K(u)?du and
0% = [ K(u)u?du. TY (Theorem 2.1) derive the Asymptotic Final Prediction Error

_ 1K (3™ oxh*
(2.1) AFPE(h)—A+(T_im)hmB+ —cC

where the first, the second, and the third term on the right hand side denote the final
prediction error for the true function, the expected variance and squared bias of the
estimator, respectively.

The final prediction error for the true function A can be estimated by the sample
average

T
AR) = (T —im)™ D {ye— F X, W)Y w(Xen)

t=tm+1
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based on the local linear estimator f (X:, h). The asymptotic properties of the lag selec-
tion method rely on the fact that the argument of w(-) is the full lag vector X; as.

By balancing the variance-bias tradeoff one obtains the asymptotically optimal
bandwidth h,y,: which can be estimated by plug-in techniques (Yang and Tschernig
(1999)). This requires to estimate the unknown constants B and C. A nonparametric
estimate of B is obtained from

B(hg) = (T —im)™" > {Yi— f(Xe,hp)}w(Xem)/(Xe, hg)

t=im+1

where fi(-) is a Gaussian kernel estimator of the density u(-) and where hg is based on
Silverman’s (1986) rule-of-thumb bandwidth. Similar arguments apply to the estimation
of C.

Inserting the plug-in bandwidth izopt and proper bias correction of fl(h) leads to the
following estimator of (2.1)

(2.2) AFPE = A(hopt) + 2K (0)™(T ~ i)~ h; 7 B(hs).

The second term in (2.2) is a penalty term that punishes overfitting or choosing super-
fluous lags. It decreases with sample size as oy is of order -1/ (m+4)

In order to select the adequate lag vector, one computes (2.2) for all possible lag
combinations with m < M and chooses the lag vector with the smallest AFPE. TY
(Theorem 3.2) showed that this procedure is weakly consistent, i.e. the probability of
choosing the correct lag vector if it is included in the set of lags considered approaches
one with increasing sample size. This consistency result is based on the fact that the
rate of the penalty term in (2.2) depends on the number of lags m. Thus, if one includes
superfluous lags in addition to all correct ones, the rate of the penalty term becomes
slower which implies that too large models are ruled out asymptotically.

Furthermore, T'Y show that asymptotically it is more likely to overfit than to under-
fit (miss some correct lags). In order to reduce overfitting and therefore increase correct
fitting, they suggest to correct the AFPE and estimate the Corrected Asymptotic FPE

(2:3) CAFPE = AFPE{1 + m(T — i,,)~%/(m+9},

The correction does not affect consistency while additional lags are punished more heavily
in finite samples. One chooses the lag vector with the smallest CAFPE.

3. Web Quantlets

To facilitate access to and usage of new statistical methods such as for example
CAFPE, we propose a Web based client /server architecture. This architecture combines
advantages of Web based statistical computing which is becoming increasingly popular
with the well known advantages of distributed computing and central data storage.
Central data storage concepts are implemented in a variety of database servers.

Web based statistical computing has been fueled by collections of Java applets de-
signed for usage in HTML pages. Examples are the VESTAC project at KU Leuven
(Darius, P., Ottoy, J.-P., Solomin, A., Thas, O., Raeymaekers, B. and Michiels, S., A col-
lection of applets for visualizing statistical concepts, KU Leuven, http://www Kuleuven.
ac.be/ucs/java/) or some applets at http:// statlab.uni-heidelberg.de/projects/random/
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Heidelberg. Mostly, these applets provide more or less interactive programs for particu-
lar tasks. While methods exclusively encoded in Java can be easily used on almost every
computer platform, they must be written in Java leading frequently to doubled program-
ming effort for a method provider. Moreover, for computationally intensive statistical
procedures Java applets occupy substantial computational resources on the client side as
programs written in Java are slower compared to platform-dependent code and all the
computations are conducted on the client’s machine.

One way to avoid the numerical disadvantages of applets is to shift the computation
to a powerful server machine while leaving the graphical user interface on the client. This
separation of computing and presentation is implemented by a client/server architecture.
An example for a Web based computing environment, where the graphical user interface
(GUI) is available via the WWW at http://www.math.montana.edu/Rweb/, is the Rweb
project. Rweb provides the user with a CGI (Common Gateway Interface) based Web
interface to the statistical analysis package R. This interface consists of an editor to enter
R code for sophisticated users and a list of predefined functions and data sets which can
be selected without the need of programming for the inexperienced users. The results
are represented as static HTML pages containing text and images. Thus, one has access
to remote computational resources, however, at the cost of limited graphical interaction.
Furthermore this approach does not allow to directly access results on the server since the
session is closed after sending the HTML code to the client. To avoid these drawbacks
we replace the CGI based interface by a Java applet.

Our approach then shares with Java applets their easy access to methods but shifts
the computational burden to a server by incorporating distributed computing. It pro-
vides access to (statistical) methods which are implemented on a server and data via the
Internet. The methods which are called Quantlets can be accessed by standard HTML
browsers (Netscape Navigator 4.5, MS Internet Explorer 4.0). The GUI is implemented
in Java, thus ready to run on every Java enabled platform, such as Java enabled Web
browsers, as well as on most popular operating systems.

In opposite to a HTML/CGI user interface Java gives the opportunity of interactive
statistical analysis. The statistical plug-ins are implemented on the server side in C++ or
a matrix oriented programming language, providing fast computation on the Web. From
the user’s point of view the Quantlet server behaves like a collection of Java classes but,
due to server side computation, it is able to handle complex statistical problems. If a
matrix oriented programming language is used, adding new Quantlets is easy.

3.1 Providing methods via the Web

One of the most important advantages of the proposed architecture is the easy
and standardized way for publication of new methods. It contains three parts: i) an
environment for the method provider, ii) access to computational resources to apply the
new methods to data for the method user and iii) a user interface ensuring a comfortable
usage of the developed methods. One therefore has relationships between the method
provider, the Quantlet Server (QS) and the Quantlet Client (QC).

This architecture equips the method provider with a tool to develop and test his
methods as well as to apply them to his own data. This tool enables him to use a familiar
statistical programming language as well as the opportunity to use native code (DLL for
Windows QS, so for Unix QS) written in any programming language. In principle the
methods can be developed in any computing environment which is connectable to a QC.

In addition, our proposed architecture offers the possibility for the method developer
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Fig. 1. The client/server (QC/QS) architecture.

to provide Web based access to his new methods where the design of the QC should allow
to control the options of method users. This can be achieved if the QC is configurable to
flexibly restrict access to the methods, e.g. by allowing the user only to change parameters
and execute the method or by permitting him to edit the Quantlet and to execute its
modification. In the first case the QC could behave like a Java applet designed for a
particular task, while in the second case it can serve as a simple computing environment
like a Web based interface to an existing software.

Another way for a method provider is to write his own client. This is useful for
developers who want to provide a specialized environment for particular customers, e.g.
an environment for analyzing financial data.

3.2 Technical background

To obtain the features introduced in the last subsection the proposed system consists
of three parts. Besides the QS and the QC we suggest to add a middleware (QM) which
resides on the server host and manages the QS-QC communication. The structure of
this architecture is shown in Figure 1.

The main task of the QM is to handle data coming from the QS, transforming the
data in a QC readable form and transmitting the data to the QC and vice versa. To have
one middleware for multiple different QS’s we have to ensure that the QM is available
for a number of different platforms. Thus we implement it in Java. In addition Java
contains packages for the TCP/IP communication and a class loader for dynamically
loading classes at run time.

The data are transmitted from the QM to the QS via a TCP/IP socket. For this
transmission we suggest a specific protocol. This protocol is based only on TCP/IP but
not on any of its extensions or other derived protocols. This provides a system inde-
pendent way of data transmission via the Internet. Both, the QM and the standardized
protocol open the way to connect different clients with different servers by adding map-
pers to the QM. These mappers are Java classes which map the server specific output
to the client readable protocol, i.e. they open the opportunity to connect the QC to a
variety of different servers. This allows the use of every batch program as a server by
transmitting data via its standard I/O streams. The class loader of Java provides the
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possibility to dynamically load these filters at runtime. To make the data transaction
secure we suggest the use of the Java security package included in the Java Development
Kit (JDK). Since the QM resides on the server host, all required operations for secure
transactions can be done by the QM and do not have to be implemented on the mapper
or the server. Besides the communication management the QM administrates system
resources.

3.3 The XploRe Quantlet Server

The proposed QC/QS architecture has been implemented in XploRe (Hérdle et
al. (1999)). The QC, QS, QM and communication protocol introduced above are now
given by i) an XploRe Quantlet Server (XQS) providing statistical computing power,
ii) a Java based XploRe Quantlet Client (XQC) providing a user friendly graphical
interface to interact with the XQS, iii) the middleware program MD*Serv and iv) the
communication protocol called MD*Crypt.

As described, the XQS provides a statistical programming language (XploRe) and
a variety of numerical Quantlets for statistical analysis. New Quantlets can be written
either exclusively in the XploRe language or also as a combination of native code written
in a programming language of one’s choice via dynamic link libraries (DLL, so) and
XploRe. The XQS writes the results of the computations into its standard Output
stream. This stream is encoded in MD*Crypt, making the implementation of a mapper
unnecessary. Via MD*Serv the client is able to decode MD*Crypt and to display the
results in a readable form on the respective user platform. MD*Crypt is implemented
in separate Java packages ready to be easily used in different clients written in Java. To
open the possibility of native MS Windows clients or plug-ins to existing MS Windows
software this package is also available as MS Windows DLL. At the moment we have one
server and two clients which are available from http://www.xplore-stat.de. Besides the
Java client there exists the ReX (XploRe, Excel) client based on Visual Basic for use of
Quantlets in Excel. The ReX client uses the MS Windows DLL for communication.

4. llustration

In this section we illustrate the suggested Web Quantlet architecture for the non-
parametric model selection procedure which was presented in Section 2. First, we il-
lustrate the statistical lag selection method via the Web. In this case, our architecture
allows users or readers of the online version of this paper to replicate the results and
modify chosen parameters of the executable Quantlets by clicking on the Quantlet sym-
bol ©@. In case of nonexecutable Quantlets the WWW based helpsystem is activated.
Using the XploRe Quantlet Qgenexpar we generated 50 observations of an exponential
autoregressive process of order 2

Y; = 0.3Y;_1 + 0.6Y;_p + (1.9Y;_; — 1.1Y; o) exp(—0.1 * Y2 ) + &, & ~ N(0,1)

which are shown in Figure 2.

For this time series CAFPE (2.3) is computed for all combinations of lags up to
M = 4 as well as white noise and then the lag vector with the smallest CAFPE is chosen.
All this can be done by the Quantlet Qcafpe. It is implemented in XploRe and calls
further XploRe Quantlets as well as dynamic link libraries written in C++. The size of
the complete XploRe code is about 118k. Both Quantlets are called from the executable
example program Qcafpeexample. This example program can be viewed, modified and
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Fig. 3. Screen shot of running the example via the Web.

executed from any Java capable Web browser such that a reader of the electronic version
of this paper can obtain a similar output to Figures 3 and 4. For the generated series,
the method correctly selects lags 1 and 2 with CAFPFE = 1.4121. Figure 4 also displays
the best lag vector given the number of lags, i.e. for m = 3 lags 1,2,3 are selected with
CAFPE = 2.1042.

Once the lags are selected, one may estimate the regression function on a grid of the
data by calling Qplotloclin from the executable example program @ plotloclinexample.
This produces a 3-dimensional surface plot as shown in Figure 5 which can be rotated
by the user. Here the rotation is done by the Java applet and computed on the client. If
more than two lags are chosen, one can plot 3-dimensional surface plots if one conditions
on the m — 2 least important lags.

If a reader is also interested in trying the CAFPE Quantlet with his own data, he
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Fig. 5. Surface of the estimated two-dimensional regression function

can download the XploRe client. This allows the user to access XploRe Quantlets as if
they were installed on his local machine. Whatever approach is used, the client’s machine
is not occupied by the potentially computationally demanding Quantlets. Moreover, the
server side computing provides the user with a powerful computing environment even
if the client is somewhat outdated. The example with 5000 observations, for example,
takes 10.5 hours on a Pentium 200 Mhz in contrast to 2.5 hours on the Sun Ultra 2 sparc
server.
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