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Abstract. Wavelet methods are used to estimate density and (auto-) regression
functions that are possibly discontinuous. For stationary time series that satisfy
appropriate mixing conditions, we derive mean integrated squared errors (MISEs) of
wavelet-based estimators. In contrast to the case for kernel methods, the MISEs of
wavelet-based estimators are not affected by the presence of discontinuities in the
curves. Applications of this approach to problems of identification of nonlinear time
series models are discussed.
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1. Introduction

Many time series encountered in practice do not exhibit characteristics of linear
Gaussian processes. Attempts to analyze such series as the sunspots, lynx and blowfly
data have led to many important approaches for nonlinear models. See, for example,
Priestley (1988), Tong (1990), Auestad and Tjgstheim (1990) and Tjgstheim (1994).
The last two papers also discussed various issues for model identification related to the
procedures investigated by Truong and Stone (1992, 1994), Tran (1993) and Truong
(1994). It has been noted that these approaches are confined to the estimation of the
regression function having bounded, continuous derivatives. For the data such as the
electromagnectic exposure of a power line worker illustrated in Fig. 1, these methods
leave something else to be desired.

To elaborate this, let the exposure data be modeled by

Yy =0(t:i)+ 2z, i=0,1,...,n

with 6(-) being the mean function, ¢t; = (i — 1)/n (by rescaling the time axis accord-
ingly), n the sample size, and {z;} a sequence of mean zero random variables. The data
suggested that the mean function is nonlinear, perhaps piecewise constant with jumps.
In the context of independent observations, a number of authors including Donoho and
Johnstone (1994a, 1994b, 1998), Donoho et al. (1995), and Hall and Patil 1995a, 19955,
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Fig. 1. The electral magnectic exposure of a lineman. (We would like to thank Dr. G. Mihlan,
The University of North Carolina at Chapel Hill, for providing the dataset.)

1996a have demonstrated explicitly the extraordinary local adaptability of wavelet es-
timators in handling discontinuities such as those appeared in Fig. 1. Moreover, they
observed that nonlinear wavelet estimators possess an important robustness property
against oversmoothing—a property that is not shared by kernel estimators described,
for example, in Auestad and Tjgstheim (1990).

For correlated noise, Johnstone and Silverman (1997), Johnstone (1999) and Wang
(1996) have examined the asymptotic properties of the wavelet-based estimators of the
mean function associated with the above model. Neumann and von Sachs (1997) consid-
ered the estimation of evolutionary spectra for local stationary time series using tensor
products of wavelets. A common technique employed in these papers to derive the
asymptotic properties is based on the Gaussian white noise model. Li and Xie (1999)
addressed the problem of identifying the thresholds and time delay of threshold autore-
gressive models (TAR) introduced by Tong (1983).

The wavelet-based approaches to time series are largely focused on regular non-
random designs, in some cases both sample size and smoothing parameter are dyadic.
The main objective of the present paper is to generailize the properties of wavelet-based
estimators of the regression functions involving time series. To handle these problems, we
remove the above restrictions by generalizing the investigation of Hall and Patil (1996a)
to time series. Also, in contrast to the aforementioned papers where the asymptotic
properties are derived based on the Gaussian white noise model, we consider a different
approach by following the framework of Hall and Patil (1995b). Specifically, given a sta-
tionary time series, we investigate the mean integrated squared error (MISE) properties
of nonlinear, thresholded, wavelet-type estimators applied to both density and regression
functions that are possibly discontinuous. For the wavelet-based density estimator, we
derive an analogue of the classical MISE formula familiar in the context of linear, kernel-
type estimators, where MISE admits an expansion with distinct variance and squared
bias components. In kernel estimation, this MISE expansion is achieved by assuming
the density function f has r continuous derivatives, and the expansion generally fails if
such a smoothness condition is absent. By way of contrast, we show that an analogue
of the expansion holds in the case of nonlinear wavelet estimators when the underlying
density is only piecewise continuous.



WAVELET METHODS WITH TIME SERIES DATA 161

More precisely, under reasonable mixing conditions on the dependence structure and
a suitably defined smoothness parameter r > 0, it is shown that the mean integrated
squared error of the nonlinear wavelet estimator is given by n~27/(27+1) even if smooth-
ness conditions are imposed only in a piecewise sense. To prove this result, we first
apply the MISE property mentioned above to establish a uniform consistency result for
the wavelet density estimator. This makes wavelet-based density estimation (involving
piecewise continuity) an initial step for estimation of a possibly discontinuous regression
function.

The rest of the paper is organized as follows. Section 2 gives a concise description
of the wavelets and the associated estimates. Section 3 describes the asymptotic prop-
erties of wavelet-based density and regression estimators, including the mean integrated
squared error formulae for wavelet estimators. An example is given in Section 4. The
last two sections contain proofs of the main results.

2. Wavelet based estimates

In Subsection 2.1, we describe stationary sequences of random variables that sat-
isfy the a-mixing condition, which is followed by a discussion on the basic theory of
wavelet methods in Subsection 2.2. Subsection 2.3 is devoted to the estimation of the
marginal density function using wavelet methods, this is necessary for estimating the
regression function involving bivariate time series. The regression problem is discussed
in Subsection 2.4.

2.1 Stationary time series and strong mizing
Let (X;,Y;), i =0,%£1,%£2,..., denote a stationary sequence of random vectors. To

motivate our later development we can consider the Markov model:
Tig1 =,u(2:i)+zi, i=0,%£1,...

where p(-) is a piecewise-smooth function and z; is a sequence of independent zero-
mean random variables. In particular, if u(-) is piecewise linear, it is called the thresh-
old autoregressive model; see Tong (1990). In this case, (X;, Vi) = (zi—1,2;) for i =
0,+1,42,.... Alternatively, we can think of (X;,Y;) as in the usual regression setting
for time series.

Let F; and F7 denote the o-fields generated respectively by (X;,Y;), —oo < i < j,
and (X;,Y;), 7 <i < co. Given a positive integer u, set

a(u) = sup{|P(ANB) — P(A)P(B)|: A€ F; and B € F/*t* }

The stationary sequence is said to be a-mixing or strongly mixing if a(u) — 0 as u — 0.

Among various mixing conditions used in the literature, a-mixing is reasonably
weak, and has many practical applications. Sufficient conditions for linear processes
to be a-mixing are studied by Gorodetskii (1977) and Withers (1981). Auestad and
Tjgstheim (1990) provide an illuminating discussion of the role of c-mixing for model
identification in nonlinear time series analysis.

2.2 Wauvelets
Wavelet methods was introduced to statistics by Donoho (1995). See also Donoho

and Johnstone (1994a, 1994b, 1998), Donoho et al. (1995), Kerkyacharian and Picard



162 YOUNG K. TRUONG AND PRAKASH N. PATIL

-02 00 02 04 06 08 1.0 1.2
10 05 00 05 10 15

0 2 4 6 -2 [} 2 4
Father wavelet Mother wavelet

Fig. 2. A pair of father and mother wavelets.

(1992, 1993a, 1993b, 1993c), and Hardle et al. (1998). These authors have demonstrated
the virtues of wavelet methods from the viewpoint of adaptive smoothing, typically in the
context of the achievability of very good convergence rates uniformly over exceptionally
large function classes. In this section, a concise mathematical description of the wavelets
will be given.

Let ¢, the “father wavelet”, be a solution of the dilation equation,

d(z) = cep(2z—1),
14

where, for some integer 7 > 1, the constants c, satisfy 3 2" c2 < 00, 3 ¢, =2 and

(2.1) Y (-1 fFeg=0, 0<k<r-1L
¢

We normalize ¢ so that [ ¢ = 1. Assume too that translates of ¢ are orthonormal, i.e.

(2.2) / $(2)(z — O)dz = p, 00 < £ < o0,
where 6;; is the Kronecker delta. Define the “mother wavelet” by

P(z) = Y (~1)cer16(2z +£).

¢

It follows from (2.1) that
/xkl/)(x)dwzo, 0<k<r-1

We suppose that
(2.3) ¢ and v are bounded and compactly supported.

The vast majority of the wavelets used in practice satisfy these conditions; see Daubechies
((1992), Chapter 6). Figure 2 presents such a pair of mother and father wavelets. Con-
ditions (2.1) and (2.2) ensure that for all integers kK > 0 and —oo0 < £, {2 < 00,

/w(x — 0)p(2*z — £y) dz = Soxbpe,  and /¢>(x — 0)p(2Fz ~ b)dz = 0,
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and that [ 474 (y)dy = 0 for 0 < j <r—1. See Strang (1989). Therefore, the functions

de(z) = p2p(pz — €),  Yre(z) = py Wiz — 0),

for arbitrary p > 0, —c0 < £ < 00, k > 0 and px = p2%, are orthonormal: [ ¢¢, de, =
Stresr [ ki, Whots = Okikabtrer; [ besPke, = 0. Furthermore, an arbitrary square-
integrable function f may be expanded in a generalized Fourier series, of the form

(2.4) F@) =3 bfge(@) + YD bl k()
14 k [4

where b/ = J fée and b,fg‘Z = [ frke- The generalized Fourier series (2.4) converges in
L2

2.3 Wawvelet-based density estimators

We need an estimate of the density function in order to address the problem of esti-
mating the regression function involving random predictors, which is more complicated
than estimating the mean function (of time) of a univariate stationary time series, as
considered by Truong and Patil (1996). (In that paper, we used wavelet-based method
to estimate the highly oscillating continuous mean function.)

Let f denote the probability density function of Xy. Then by =n-1 Yo de(Xi)
and by = n! Yoi1 Yre(X;) are unbiased estimators of _b{ and b,{e, respectively. A
nonlinear wavelet estimator of f has the form

q—1
(2.5) F@)=> bede(@)+ Y Y brel (1brel > 8)tpwe(2),
¢

k=0 ¢

where p, § > 0 and ¢ > 1 are tuning parameters. The quantity p~' is the wavelet

analogue of the bandwidth, h, for a kernel density estimator. The parameters § and
g control the ‘threshold’ and level of truncation respectively. The first series in (2.5)
represents an unbiased estimator of the first portion of the first series in (2.4), and con-
verges absolutely under condition (2.3). However, the second series would not converge
if it were not truncated in the manner suggested here. The more terms are included in
the series, the less is the bias but the greater is the variance. The parameters 6 and ¢
adjust this trade-off between bias and variance, however, such trade-off does not occur
to first-order. For detailed discussion we refer the reader to Hall and Patil (1996b).

2.4 Wawvelet-based regression estimators

Let {(X;,Y;) :4=0,%1,£2,...} denote a stationary bivariate time series. Consider
the problem of estimating the regression function pu(z) = E(Yp | Xo = z). Write h(y, )
for the joint density function of (Y5, Xo), and f(z) for the marginal density function of
Xo. Set g(z) = [yh(y,z)dy. Then p(z) = g(z)/f(x). If g is square-integrable then its
wavelet expansion is given by

g(z) = bige(z) + Y D bl ke(x),
4

k=0 ¢
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where b = [ gp¢ and bY, = [ gike. The corresponding wavelet estimator is given by

(@) =Y bee(z) + Z_: D byl (Jbrel > 6) Yre(2),
¢

k=0 ¢

where by = n 13" | Yide(X;) and by = 713", Yighre(X;). Here 6 is a threshold as
discussed before. A wavelet estimator of u(z) is given by fi(z) = §(z)/f(z), where f(z)
is the wavelet estimator of f(z) described in Subsection 2.4.

3. Main results

For asymptotic results based on smooth functions, it is assumed that the marginal
density function f is r times differentiable. This condition will be weakened to the
piecewise-smooth case in the current paper. That is, we consider to estimate density
and regression functions exhibiting a finite number of discontinuities. We start with the
piecewise smoothness condition on the marginal density function.

CONDITION 3.1. The density f is monotone on (—oo,—u) and (u,00) for suffi-
ciently large u. Moreover, f() exists in a piecewise sense. That is, there exist points
g = —00 <z < - < 2y < 00 = zNy1 such that the first r derivatives of f exist
and are bounded and continuous on (z;, z;4+1) for 0 < i < N, with left- and right-hand
limits. In particular, f itself may be only piecewise continuous.

Let U be a nonempty open subset (of R) containing the origin. The following
conditions are used to obtain a rate of convergence for the variance of wavelet estimators.

ConDITION 3.2. For j > 1, the conditional distribution of X, given Xo = z, has
a density f;(- | z); and there is a positive constant M, such that f;(2’ | ) < M, for all
z,z’ € Rand j > 1.

ConDITION 3.3. For some 0 < p < 1, a(u) = O(p*) as u — oo.

Careful examination of our proof will reveal that Condition 3.3 is somewhat stronger
than actually needed. However, we choose the above form to simplify the presentation.
Many interesting time series can be shown to have a geometric a-mixing rate, see Auestad
and Tjgstheim (1990) and Tjgstheim (1994). Note that for density estimation, the mixing
condition can be defined in terms of the sequence X; alone.

CoNDITION 3.4. The functions g(-) and p(-) have piecewise bounded r-th deriva-
tive.

The following condition ensures that the variance of the estimator converges to zero
at a desirable rate.

CONDITION 3.5. The density function f of Xy is bounded away from zero and
infinity on U; that is, there is a positive constant M; such that M < f(z) < M, for
zeU.
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For the clarity of presentation, in this paper we consider only bounded stationary
time series. Alternatively, this condition can be weakened by using the moment generat-
ing function or a sufficiently stringent moment condition depending on the smoothness
parameter 7.

CONDITION 3.6. Yj is bounded.

Define £ = (rI)~! [y"y(y)dy = (r) "1 (—=3) ! 3(~1)757¢;. Let Q denote a fixed
compact subset of U having nonempty interior.

THEOREM 3.1. Suppose (2.1), (2.2) and Conditions 3.1-6 hold. Also, suppose € is
a sufficiently small positive constant and that p = p(n) — oo and g = q(n) — o0 in such
a manner that p,6%> = O(n~¢) and pZ+' 62 — oo, and 6§ > C(n~! log n)!/2 for some
C > 0.
(i) If p> 672/ then

5 [(7- 17~ {nmtp e aia-2m [ 50"} <o)

(i) If p= O(6~%Cr+1)), then

§ir/@r+1) = o{/E(f - f)2} :
(iil) If p > 62/ 2+ then

~ — —2r —2r\— 7‘2 - —ZT
E‘/Q(Q—Q)Q—{of,n L4 p 2 R?(1-27") 1/Qg” }‘=0(n p+p™),

where o2 = 3")_ var(Y1¢e(X1)).
(iv) If p=O(6~¥ 1) and if g > 0 over a small interval in Q, then

64r/(2r+1) — O{/ E(g— 9)2}
Q
(v) Suppose (2.1), (2.2) hold and that r > 1. Then

/ (A - 1)? = Op(n'p+ 7).
Q

Moreover, if p is chosen of size n*/ @™+ with (r+1)/(2r + 1) < € < 2r/(2r + 1),
then

= 7 = Oyt~ D),

A proof of this result is given in Section 5.

Remark 1. (i) Note that by choosing p ~ const.n'/(>"*1) it can be shown that
the mean integrated squared error satisfies

[EBG =P~ n =2 [ 107 ~ const. =zl
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which is the usual optimal rate of convergence for estimating an r—times differen-
tiable density function f. See also Remarks 2.1 and 2.2 of Hall and Patil (19955)
for an illuminating discussion of the robustness of the wavelet density estimator
against oversmoothing. Note that, if p ~ const.n!/(27+1) then ¢ is chosen so that
0<e<2r/(2r+1).

(ii) For a compactly supported density function f, results for wavelet based density
estimates may be refined as follows. Suppose that supp f = [c,d], a compact
interval. Also, f() restricted to [c, d] is bounded away from zero in neighbourhoods
of points of discontinuity, and has only a finite number of zeros, in neighbourhoods
of which f("+1) exists and is bounded away from zero; and that p?+1 62 — £ where
0 <f< o00. Then

/E(f . f)2 ~ C(£)64T/(2T+1),

£-2r/(2r+1) .2 f]c(r)2 [22—2%[{(,#&))2 < g2(2r+1)k}} if £>0
k
(1- 2—27‘)—1|,§|2/(2”'+1) f |f(r)|2/(2r+1) if £=0.

(iii) It follows from the proof of this theorem that Y 7_, var(Y1¢e(X1)) = O(p). Hence

E/ @ —g)2 -0 (n—1p+p—2r,€2(1 _ 2-—21‘)—1/ g(r)2> '
Q Q

(iv) The presence of discontinuities can have an adverse effect on the performance
and asymptotic properties of kernel estimators; see Remark 2.6 of Hall and Patil
(1995b). Specifically, in view of the above result, the rate of convergence of kernel
estimators is inferior to that in the wavelet approach.

(v) From Subsection 2.2, we note that the father wavelet has a behavior similar to
the density function, thus it has the same effect as the kernel function in model-
ing the low frequency component. On the other hand, the mother wavelet has r
vanishing moments and is suitable for handling the high frequency components.
Consequently, through Taylor expansion, one can easily see that the wavelet coef-
ficients from the mother side will be very small for smooth functions, while they
can be large for functions with jumps. This explains heuristically why wavelets
are useful for detecting the singularity of a given function. The location of the
singularity can also be precisely located using the the translation and dilation.

4. An example and some concluding remarks

To illustrate the usefulness of the wavelet based method described in the previous
sections, we use the linemen time series for constructing the regression function. In the
absence of the covariate series, the regression problem becomes the one for estimating
the mean function of the series. Here the data is viewed as the superposition of the mean
and the stationary noise series (Fig. 1). After applying the (discrete) wavelet transform,
the coefficients b, and by, are presented in Fig. 3. Here the wavelet expansion is carried
out using 6 levels.
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Fig. 3. The coefficients in the discrete wavelet transformation of the linemen time series.

D4
Ds AP AR AN
D6 A n

I b NI N

0 500 1000 1500 2000

Fig. 4. Decompostion of the data into seven wavelet functions.

Figure 4 shows the multiresolution decompostion of the linemen data into seven
wavelet function. Each function is the product of the coefficients and the corresponding
scaled-translated wavelets at each level. The estimated mean function is given at the
bottom of the figure. The sum of all the seven wavelet functions yields the so called
multiresolution approximations of the data. This is illustrated in Fig. 5.

In this paper, we present some asymptotic results for estimating a possibly discon-
tinued function from stationary time series. Under appropriate conditions, it has shown
that the optimal rates of convergence of the estimates of the density and the regression
functions can be achieved in a manner similar to the usual case in handling random
samples. The feasibility in computing these estimates has been demonstrated through
the example given above. Software packages that include wavelet analysis are: XploRe
(Hérdle et al. (1995)), SPLUS and MATLAB. There is however more works to be done
in the regression problems involving bivariate time series. In particular, it will be impor-
tant to address the problem in setting the threshold level. Another equally important
problem is to use wavelet method to identify the number of thresholds in TAR models.
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Fig. 5. A wavelet shrinkage analysis of the linemen data.

5. Proof of Theorem 3.1

A sketch of the proof will be given in this section. More details can be found in the
Appendix. To simplify the presentation, we may assume, without loss of generality, that
¢ and 1 are compactly supported on [0, 1] in this section. Moreover, @ = [0, 1].

Proofs of (i) and (ii) will be omitted since they are special cases of the proof of (iii).
We first prove the smooth version of (iii), the piecewise smooth version will be given
later. Symbols Cy, Cs, Cs,. .. denocte positive constants.

Set by = fg¢e and bxe = fg?,bkg. Then

9(z) = bede(@) + Y D> beere(a).
¢ PR

Since ¢ and v are compactly supported on [0, 1], it follows from the orthogonality of the
wavelet basis functions that

(5.1) [@-97=s1+5+5045s
Q
where
p—-1 R q— -
S = Z (be — be)?, Z Z V%ol (Jbrel < 6),
£=0 k=0 £=0
q—1 pr—1 R ) oo Pr—1
5'3 = Z Z (bkg — bkg)2I(|bkg| > 5), 54 = Z Z biz
k=0 £=0 =q =0

It can be shown that
(52) E|S; — E(S1)| = E|S, —o2n"!| = o(n"'p).

(5.3) E|S; — k(1 —27%)~1 p_2T/ g™’ = o(p™®), n—o0.
Q
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(5.4) E(S3) = o(n~2r/(2r+1)),
(5.5) Sy = O(pq”Qr) = o{min (p_Qr, 64T/(2T+1))}, pgr+162 —o00 and ¢ — oo.

We conclude from (5.1)-(5.5) that

/ (9— 9)2 - {O'gn_l + 52(1 - 2—2r)—1p_gr/ g(r)z}
y Q

p2r+162 — 0.

E =o(n'p+p7)

1

This completes the proof of Theorem 3.1 (iii).
If p?7+1 62 is bounded then, by the same sequence of results, we obtain

/ E(ﬁ _g)Q > n—1p+ o) 54r/(2r+1) + o(n—Qr/(2r+1) + 641‘/(21‘-{—1)).
Q
When p?"*! 62 is bounded,

p = O ¥r+D) = O{(n/log m)!/*r+1},

so that n=1p = o(n~2/(2r+1)) and

/ E(g _ g)2 > Cl 54r/(2r+1) 4 o(n—2r/(2r+1) 4 64r/(2'r+1))'
Q
It follows that

pip?TH162<C2

inf / E(§—g)* > Cas*/Crh) 5 > 0.
Q

This completes the proof of Theorem 3.1 (iv).
To prove (v), we need the following uniform consistency result for wavelet density
estimators. (Its proof is given in Subsection A.5)

(5.6) sup 1f(@) = f(x)] = 0, ().
Now write
(h—p) = {f@-phy=G-nHff-1).

By Condition 3.5 and (5.6), the squared integral of the latter term equals o, (n=27/(r+1))
under optimal choice of the smoothing parameters in f and §. Therefore,

(5.7) /Q (B~ 1) = {1+0p(1)} /Q £ - nh).

Set ¢¢ = fufq&g and égp = fufzpkg. In this notation,

ey

p— g—1pr—1 g—1pi—1

(58) g—pf=) (be—e)pe+D Y {brel(|brel > 6) — ere}re+ D > enetbre-

£=0 k=0 ¢=0 k=0 ¢=0
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It follows from (5.7) and (5.8) that

p—1

/{»2 (B~ ) = {1+ 0p()} | 3 (be — &) f(£/p)2
=0

q—1px—1
+ N {brel ({brel > 6) — e} £(£/pr)

k=0 =0

—1pr—1

+ DN G /o)
k=

0 £=0

Let 02(X) denote the conditional variance of Y given X. If f is a wavelet density
estimator with p ~ n!/(2r+1) then

Z(be —&)?f(t/p) 2 = n“p/Q o%f+ 3 (Eby— Eée)”£(£/p) ™2 + op(n~2r/ D)),
£

Similarly,
g—1pk—1 —1pe—1
{breI(Ibre| > 8) — exe}* f(£/pr) ™2 + Z D Fef (/o)
k=0 £=0 k=0 £=0
q—1pe—1

I
; I

x

Z {EbkeI(lbrel > 8) — Eéxe}* £(£/pr)~2
1pi

a-
Z Eckg F(8/pi) ™2 4 0, (n27/(r+1)),

Hence, fQ (p—p)? = Op(n‘2’"/(2r+1)).

To complete the proof, we need to argue that the above results also hold for the
piecewise smooth case. We sketch the argument for the case of density estimate. By the
orthogonality properties of ¢ and ¥, [(f — f)? = I,(Z, Z,...), where Z denotes the set
of all integers and

g—1
Iq(ﬁ, Loy, .. ) = Z (i)g — bg)2 + Z Z (i)ke - bkg)Q I(|i)kg| > 5)

el k=0£eLly
+ZZb |bkg!<5 +Zzbke
k=0£eLy k=qlely

Let X denote the finite set of points where f*) has a discontinuity for some 0 < s < 7.
If supp % C (—v,v) then, unless

LeKy={j:j€ (prz—v,prz+v) for somez € X},

both bye and by, are constructed entirely from an integral over or an average of data
values from an interval where f(") exists and is bounded. Likewise, if supp¢p C (—v,v)
then, unless

Le K={j:je (pz—v,pz+v) for some z € X},
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be and b, are also constructed solely from such regions. We may write J( f —f)? =
I(K,Ky,..) + Iq(lz, IEI,...), where K) denotes the complement of Ki in Z. The
argument used so far may be employed to prove that I, (IE,IEI, ...) has precisely the
asymptotic properties claimed for [( f — f)2. Furthermore, noting that both K and
Kx have no more than (2v + 1)(#X) elements, for each k, and that ¢ = O(logn) and
p7! = o(n=?/(2r+1)) we may show that E{I,(K,K1,...)} = o(n"'p+ p~>") in the con-
text of part (i) of Theorem 3.1, or = o(6*"/(?r*+1)} in the context of part (ii). Combining
these results we obtain Theorem 3.1 for the piecewise smooth case. (The condition
pt = o(n=2"/(2r+1)) is used to establish negligibility of the series D kg 2ot bZ,; note
that at discontinuities, b7, is of size pgl.) This completes the proof of Theorem 3.1.
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Appendix

This section contains more detailed arguments given in the previous section. The

justifications of (5.2)—(5.5) are given in Subsections A.1 to A.4, respectively. Subsec-

tion A.5 presents a proof of the uniform consistency for wavelet based density estimator,

which is needed in showing the rates of convergence of the regression estimate. The last
section gives the proof of the variance term (A.2).

A.1 Proof of (5.2)
Set uy(z) = E(Y?? | X1 = z). By Conditions 3.5 and 3.6, and the boundedness of

|91,
be=p /2 /g{p‘l(:c +0}p(x)de =02, £=0,1,...,p;

E{N1de(X1)} = /{¢($)}2uz{p‘1(w +O}f{pHz + ) }dz = O(2),
£=0,1,...,p.

Let f; denote the density function of (Xi,X34;) and set hi(zy,z2) = fi(z1,22) —
f(z1)f(z2). Then, by Conditions 3.1 and 3.2,

lcov{Yide(X1), Yr+ide(X14:)}| =O(p7?), £=0,1,...,p.
On the other hand, by Corollary A.1 of Hall and Heyde ((1980), p. 277),
lcov{Y1¢¢(X1), Y1+i0e(X14:) } = O(pa(i)).
From E[Y;¢¢(X;)] = be and Condition 3.3, for M,, — oo such that M,, = o(p),
n—1

nE(be — be)® = var(Yige(X1)) +2) (1 —n"") cov{Yige(X1), Yipihe(X14:) }

i=1

var(Y1¢,(X1)) + C Z + Z max {p~*, pa(i)}.

i<M, i>M,
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Recall that o7 = Y7} var(Y1¢¢(X1)). Then
P
(A1) Z E(by — by)? = oin~ +o(np).
=0
From E{Y1¢¢(X;)}? = O(1), £=0,1,...,p, we have

o} =Y var(Yige(X1)) = O(p).

=0
Furthermore (a proof will be given shortly),

P
(A.2) var {Z(f)g - be)Q} = o(n"2p?),
=0
which together with (A.1) imply that
(A.3) E|S1 — E(S1)| =E|S1 —oin™t = o(n" ' p).

A2 Proof of (5.3)
Let € > 0, and define

g—1pe—1 g—1pe—1

Sor =3 3 BRel{lbrel < (1+2)8},  S;a=>_ > bFI{|bre| < (1-€) 6},
k=0 ¢=0 k=0 £=0
g—1

Saa =) > brel(Jbre] < 16),
k=0 tc7
g—1pr—1 . g—1 X

Ay = Z Z brel(Ibre — bel > €6), Az = Z Zblgcef(lbke — bre| > |brel),
k=0 £=0 k=0 teTJ

for any set J of integers £ € {0,1,...,p;x — 1}. It follows from
I(Ii)kel < (5) < I{'bkgl < (1 + 6) (5} + I(|i)ke - kaI > 65)

and
I{|bgel < (1 —€) 8} < I(lbre| < 8) + I(|bre — bre| > €6)

that

(A4) Sap — Ay <53 < S21 + Ay
Since I (|brel < 1 6) < I(|bkel < 8) + I(|bre — bre| > |brel),
(A.5) Sz — Az < Ss.

It follows from the Taylor expansion

/ 9y (v + 0)¥(y)dy

=/w(y>[r

; @) (y/px)"” 9 (¢/pr)
=0

v

1
+{(r- 1)}‘1(y/pk)r/0 1 —t)" g {(£ + ty) /pi}t | dy
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that, for Cy sufficiently large,
(A.6) bee = ko U (g 4 £r0),

where gre = ¢( (¢/p;) and
sup  |€ke| — 0.

0<£<pr—1
0<k<g—1
We shall assume that
(A.7) Pt e? ¢,

where 0 < ¢ < 0o. (The case where such convergence is only along a subsequence may
be treated similarly.) Suppose first that ¢ < co. Let Cy, C3 > 0 be such that the set J’
of integers £ € {0,1,...,px — 1} with |gxe| > 2|k|71C3, has at least 2C3p; elements for
all £ > 0 and all sufficiently large n. Then a certain subset J of J' consists entirely of
integers £ such that |bgs| > Cop, —(r+(1/ 2)), and has between C3p; and 2C3p; elements
for all £ > 0 and all large n. We shall use this 7 in the definition of S>3 and As. Note
too that for some Cy > 0 and all k and £, [bge| < 1C3/?p "H/D)| Thys,

q—-1

Soz > Z Z 022 p;(2T+1)I(C4p;(2T+1) < 62)

k=0j€J
q—1

> Cgcszp;%]—{pk > (04/52)1/(2r+1)}.
k=0

It follows from our assumption p = O(§2/(2r+1)) that

(A-8) Sp3 > C5 847/ @r+1),

Furthermore, by Bernstein’s inequality (see Truong (1994)) and (A.6),
qg—1

(A.9) E(A2) <23 57 Byexp(—Cenbg,) = O(n~27/r+1)),
k=0jeJ

Combining (A.5), (A.8) and (A.9), and noting that by our assumption, § > C(n™!
log 7)Y/, we deduce that for sufficiently large n,

(A.10) E(Sy) > Sz — E(Ag) > Cob*r/Cr+1),
Suppose next that in (A.7), { = co. Then, using (A.6),

sup bue| < Cropy, TP < ChopmHID <5,

whence it follows that for all sufficiently large n,

-1
Sg1 =Sz = Z Z e O (gre + re)?

k=0 £=0

h}2(1 . 2—27‘)—1 p—Qr/ g(r)2 + O(p—-Qr).
Q

i
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Therefore,
(A.ll) 821 = 522 ~ Rz(l - 2_2T)_1 p—2r/ g(r)Q.

Q

By Bernstein’s inequality (see Truong (1994)) and for all sufficiently large n,

~1pr—1 1pe—1
(A12) E(A,) < 22 Z b2, exp(—Cponé?) = 0<Z Z bke) = 0(S21),

k=0 £=0 k=0 £=0

the second-last identity following since né? — oco. By (A.4), (A.11) and (A.12),

So — I’\',Q(l . 2—27’)—1p—2r/ g(r)2
Q

(A.13) E =o(p™¥), n—o oo

A.3  Proof of (5.4)
Let «, 8 denote positive numbers satisfying o+ 8 = 1, and set

q—1pr—1
Sa1 =3 Y E{(bre — bre)*} I(|bre| > a6),
k=0 ¢=0
q—1pe—1 )
Ssa = > E{(bre — bre)* I(|bre — brel > 85)}.
k=0 ¢=0
Since I(|bre| > &) < I(|bre| > @8) + I(|bre — bre| > B6) then
(A.14) E(S3) < Sa31 + Sap.

We shall bound S3; and Ssg, in turn. By argument similar to that leading to (A.1), we
have .
E(bke — bee)® = O(n7Y),

and by (A.6) with nl/2§ — oo,

g—1
(A.15) Sa1 =0n™)>  pel{pk < (C2/8)*/Pr+1)} = o(n=2r/Cr1),

k=0

Let a, b denote positive numbers satisfying a™! + b~! = 1. By Lemma 9 of Truong

and Stone (1992),
2a

Elbge — bre|*® = n~2E < n7?piB2*(np;')* = n"*B2.

> AYithee(X:) — bre}
i
By Bernstein’s inequality (see Truong (1994)), for n sufficiently large,
P(|bre — bre] > BS) < 2exp { — C11ns?}
uniformly in 0 < k < ¢ — 1 and ¢. Hence, by Hélder’s inequality,

q-1 pr—1
(A.16) Saz = O [Z n~'B2 Z exp{—C’llﬂzb_ln(SQ}} )

k=0 £=0
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Now select 6§ > C(n™! logn)!/? with C chosen such that CCj1b7142 = v = 2r/(2r +1).
Therefore by (A.16), and since p,6% = o(1) and n'/2§ — oo, we have

g—1
(A.17) Sap = O{Zn‘ln_'ypk} = o(n~2r/(2r+1)),

k=0
Combining (A.14), (A.15) and (A.17) we deduce that
(A.18) E(S3) = o(n=2/(r+1)),

A4 Proof of (5.5)
This follows from p2"*162 — oo and ¢ — oo as n — oo, and

(A-19) S = i Z— T (gre + €re)? < 267 ZP ar) Z ke

i=q £=0 k=q £=0

A5  Proof of (5.6)
Since ¢(-) and v¥(-) are compactly supported,

suplf—f|531+32+33+54,
Q

where
p—1 ) q— - A
= Zlbe — bel [|$elloo, Z Z |bielI(1Brel < 8) | [19kel oo,
=0 k=0 £=0
—~1pr—1 oo pr—1
= Z D Ibke — brelI (1Brel > ) l1kelloos 4 =2 > Ibel [ ¥kelloo-
k=0 ¢=0 k=q =0

Note that [|¢e(-)[lec = O(®'/?) and |[Yre()oo = O(pllc/z). By Hélder’s inequality and
(A.2),

p—1 1/2
(A.20) s1<p {Z (be — be)2} =p{0p(n'P)}""* = 0,(1).
£=0

Similarly, it follows from p,6? = O(n™¢) with (r +1)/(2r + 1) < e < 2r/(2r +1), (A.13)
and (A.17) that

—ap 1/2
(A.21) 52 < 04/2p, {Op(p™™)} 7% = 0,(1),
(A.22) sa < q%p {0,(072)}% = 0,(1).
According to the argument leading to (A.19), and Hélder’s inequality,
(A.23) 54 = o(1).

The desired result follows from (A.20)-(A.23). This completes the proof of (5.6).
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A6 Proof of (A.2)
Put Zy; = p'/?Y;¢(pX; —£) — be. Then

(A.24) n?> (b — be)® = Z Z ZE+D 3D Ze, Zeis
¢

11702 [4
Now,
‘1E{ZZ (Z3, - EZZ) }
= {Z (Z821 - EZgl)}
[
+2 2(1—1/" {Z(Za EZEl)}{Z(Ze 14— EZ; 1+1)H,
i ¢ ¢
and

3 ; 7} < pZe: Y2p(pX1 - £)° + Xe: b; < p(sup ¢*)(suppe + 2) + /Q g
It follows that
ZE H > (23 - EZ,?I)}{ > (ZE1yi- Ezgl+,.)H ’ = O{p2 Za(i)}.
Thereforle, Z l ’
(A.25) var (n—2 » Zg,.) = 0(n~3p?) = o(n"2p%).
T 7

Next, we consider an upper bound for

2
B8 570 7) = ST X5 s )
¢ 4o

i1540 14 inFiz  i21#ize

This can be obtained by considering several cases of the indices.

Case 1. Suppose the indices satisfy i17 = 997 = 47 and 412 = 490 = ip. It follows
from supp¢ C (—v,v) and the mixing property that

(A26) Z Z Z Z E(Z€1i1 Z&iz Zfz’h Zhiz) = O(nzp)

& & drFia

Case 2. Suppose the indices satisfy 417 = i9; and 437 < @12 < ip2. According to
Corollary A.1 of Hall and Heyde (1980, p. 277) and Condition 3.6,

(A.27) Z Z Z Z ZE(leiu Z€1i12 Zfziu Z€2i22)

i11<i12<i22 €1 {2

< O(1) Z Z Z Z Z max{p~!,4p’a(iz)} = O(n’p?).

1 €2 i11<ie<iog
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Case 3. Suppose the indices satisfy 111 < iy9 < 427 < i22. Again, by Corollary A.1
of Hall and Heyde (1980, p. 277) and Condition 3.6,

Y3 E(Zui, Zuiy) <O1) DY max {p~',paliz)} = O(n),

11 <12 i1 1o

E(Zlhiu Zflim Ze2i21 Z€2i22) < E(Zfﬂ'u Zeliu)E(Zbim Zl—’2i22) + O(l)pZQ(iQI)
and, since E(Zg,i,,) =0,
E(Z&in Ze1i12 Z€2i21 Zfzin) < 0(1)p2a(i12).

Using an argument similar to that in Lemma 9 of Truong and Stone (1992), we have

(A~28) Z Z Z Z Z ZE(ZZNZH Z€1i12 Z32i21 Z€2i22) = o(n2p2).

i11<812<921<i22 &1 42

The desired result follows from (A.24)-(A.28).
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