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Abstract. Integral functional of the spectral density of stationary process is an
important index in time series analysis. In this paper we consider the problem of se-
quential point and fixed-width confidence interval estimation of an integral functional
of the spectral density for Gaussian stationary process. The proposed sequential point
estimator is based on the integral functional replaced by the periodogram in place
of the spectral density. Then it is shown to be asymptotically risk efficient as the
cost per observation tends to zero. Next we provide a sequential interval estimator,
which is asymptotically efficient as the width of the interval tends to zero. Finally
some numerical studies will be given.
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1. Introduction

There have been a large number of articles and significant developments on both se-
quential point and interval estimation for i.i.d. random variables e.g., Robbins (1959) and
Chow and Robbins (1965). Under the influence of these developments in the i.i.d. case,
the literature on sequential estimation in time series emerged in the last decade. Sriram
(1987) developed the sequential point and interval estimation for the mean of a station-
ary autoregressive model of order 1 (AR(1)) with unknown autoregressive coefficient.
Then he showed the proposed sequential point and interval estimators are asymptoti-
cally efficient. Fakhre-Zakeri and Lee (1992) extends the results by Sriram (1987) to
the case when the process concerned is a linear process. Further, Fakhre-Zakeri and Lee
(1993) discussed the case of multivariate linear process. As for the other parameters
(except for mean), Sriram (1988) considered the problem of sequential point estimation
of the autoregressive coefficient of a stationary AR(1) model, and showed the asymptotic
efficiency of the proposed sequential procedure. Lee (1994) generalized Sriram’s (1988)
results to the case of the autoregressive coefficients of AR(p) model.

In this paper we argue the sequential procedures for an integral functional of spectral
density, which represents many important indices in time series analysis. Let F(\) be the
spectral density matrix of an m-dimensional Gaussian stationary process. We consider
the problem of sequential point and interval estimation for an integral functional of the
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spectral density matrix of the form

I tr{%()\)f()\)}d)\
6 =

S tr{apy( ) A)rdA

where 1,bj(/\)’s are given m x m-matrix-valued functions. The proposed sequential point
estimator of 8 is based on

S tr{ay (A) (A)}dA

SR tr{ag( ) (A)}dA

where I, ()\) is the periodogram matrix of n-consecutive observations from the process
concerned. Then we show that it is asymptotically risk efficient as the cost per ob-
servation tends to zero. Also a sequential interval estimator is given, and is shown to
be asymptotically efficient as the width of the interval tends to zero. Some numerical
studies will be given in Section 4. They agree with the theoretical results.

2. Sequential procedures for multivariate Gaussian processes

Let {X;t = 0,+1,...} be an m-dimensional Gaussian stationary process with mean
E(X) = 0, spectral density matrix f()), and covariance function I'(l) = E(X:X},,).
The covariance matrices satisfy

o0

(2.1) pORUI NOIRS

l=-0o0

where ||T'(1)|| is the square root of maximum eigenvalue of ['(1)T'(l)’. Consider an integral
functional of f()) of the form

JItr{w () F)}dA
(2.2) 0= :
JE (@ (M) F(N) A
where 9;()), j = 1,...,¢ be m x m matrix valued continuous functions on [—m, 7] such
that ;(X) = ¢;(A)*. To estimate 6 we use
- tr{¢l(A>In(A)}dA
(2.3) 6, =

I tr{¢ In(N)}dA

where I, () is the periodogram matrix defined by

(2.4) I,(\ )— {ZXte }{ZXie”’\} .
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Denote by fas(A), I&®(A) and Tgp(l) the (a,b)-th element of f(X), In(A) and T(1),

respectively. R
Suppose that one wishes to estimate @ by 6,, given n consecutive observations,

subject to the loss function
(2.5) Ln=(0,—0)Q(0,—6)+cn

where Q is a given q X ¢ positive definite matrix and ¢ > 0 is the cost per observation.
It is known that

(2.6) nE@,—6)(6,—0) -V as n— o

where the (7,7) element of V' is

@7) - / " e (i ) F )5 () F() A

(see, for example, Hosoya and Taniguchi (1982)). The associated risk is

(2.8) R,=FEL,=n"1trQV 4+ cn+o(n').

If V is known, (2.8) is approximately minimized by the best fixed sample size
(2.9) no = [trQV /c*/?

with corresponding risk

(2.10) R,, ~ 2cny.

However, when V is unknown, as is typically the case, ny cannot be used and there is
no fixed sample size procedure that will achieve the risk (2.10).
Motivated by (2.9), we shall consider the following stopping rule,

(2.11) N =inf{n > mg:n > ¢ V?[(trQV )2 + n7"]},

where my is a Predetermined and fixed initial sample size, h > 0 is an arbitrary positive
constant, and V', is an appropriate consistent estimator of V. To develop the asymptotic
theory we need the following assumption.

AssUMPTION 1. (i) There exists p € (0, 1) such that the covariance function of X
satisfies

(2.12) Tas(§) = 0", a,b=1,...,m.

(ii) The weight function 1;()) is expressed as

o0

(2.13) BN =5 O mRe ™,

k=—o0

where 7, (k)’s are known m x m matrices and the (a,b) elements satisfy

(2.14) n§a’b)(k) =0(B"*), ab=1,...,m forsome B¢ (0,1).
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Let {hn} = [(logn)'*¢], £ € (0,1), where [z] is the greatest integer less than or
equal to z. Then

(2.15) vnoh» -0 and  hy,/(n®) =0 forall 6> 0.

We can check /mp"» — 0 by setting p = e7¢, (¢ > 0), and writing /np*~ =
0

nl/2e—cllogn)(logn)® — p1/2{p—c}(logn)® — p1/2-c(logn)®  From Assumption 1, it is easily

seen that

(2.16) Vi, = 47r/7r tr{4p; (N F (V)P (A) F(A)}dA

-7

= 4 /7r (51;)4&{ i Dk )n; (k2)T (ks)n; (ka)

k1,k2,k3,kq=—00

Xe—i(k1+k2+k3+k4)/\ }d/\

f
o+
=

{ f: F(kl)ni(kQ)r(k3)7]j(—k1 — ko — k3)}

k1,k2,k3=—00

Then it is natural to estimate V;; by

h
. 1 n R .
(217) Vay=g55tr > Dalk)mi(ko)Tn(ks)n;(—ki — ko — ks)
k1,k2,ka=—hn
where
. 1 n—l
(2.18) L) ==~ ; XX

The proposed sequential estimator of 8 is On and its risk is
(2.19) Ry =trQE(On — 6)(8x — 0)' + cEN.

It will be proved in Section 5 that this sequential procedure is “asymptotically risk
efficient” in Robbins’ (1959) sense, i.e., Ry/Rp, — 1 as ¢ — 0. The general nature
of a sequential estimation procedure is to consider an optimum or a reasonable fixed-
sample-size for known variance structure, and then to make appropriate modification to
motivate a sequential procedure. Exact properties of such a sequential procedure are
often difficult to study, though asymptotic properties as ¢ — 0 can be established by
using sophisticated statistical tools.

Confidence region
Consider the problem of finding a confidence set for 8 with prescribed size 2d and
coverage probability 1 — a, 0 < a < 1. First note that,

(2.20) Vn(0,, — 0) —N(O,V) as n— oo,
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where the (i,)-th entry of V is as in (2.7). Based on (2.20), if the covariance matrix V'
is known, the following ellipsoid is an asymptotic (1 — a) confidence set for 6,

(2.21) {6 € R?:n(6n - 6)V (6, - 6) < xi_o(0)},

where x?_,(q) is the upper 1 — o point of a chi-square distribution with ¢ ‘degrees of
freedom. However, when V is unknown, there is no fixed sample size procedure to
construct confidence set of fixed size with guaranteed coverage probability.

Let Amax (V) and /\max(Vn) denote the largest eigenvalue of V' and V ,,, respectively.
To construct a fixed accuracy confidence set with prescribed coverage probability we
adopt the sequential procedure (T, Rr) in which the stopping rule T' is defined by

(2.22) T = inf{n > mo : Mmax (V) +27") < d*n/x3_. ()}
and the terminal decision rule is
(2.23) Rr={6 € R?: (0 — 6)' (07 — 6) < d*}.

We state the main results in Section 3, and give the proofs in Section 5.
3. Asymptotic results for multivariate Gaussian processes

We can provide the following theorems which describe asymptotic performances of
the sequential procedures with stopping rules N and T defined in (2.11) and (2.22),
respectively.

THEOREM 1. Suppose that Assumption 1 holds. Then as ¢ — 0,

(3.1) N/ng—1 a.s,
(3.2) E|\N/ng -1} —>0
and

(3.3) Ryn/Rp, — 1.

Theorem 1 implies that the sequential point estimator is asymptotically risk efficient
as ¢ — 0. The following theorem shows the asymptotic normality of Ox.

THEOREM 2. Under Assumption 1,
(3.4) VN(On —0)7N(0, V), as c—0.

The following theorem states that the fixed accuracy confidence set procedure is
asymptotically efficient with prescribed coverage probability.

THEOREM 3. Suppose that Assumption 2 holds. Then,

(3.5) éirr%)T/ko =1 a.s,
(3.6) éiII(l)P (€ Rr)>1—a,
and

(3.7) (%inr(l) E(T/ky) = 1,

where ko = [Amax(V) - Xi-a(@)d7?] + 1.
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Table 1. Sequential point estimation for § = I'(0).

r'(0) = 1.961
c no N N/no On
1 48 42 0.875 1.755

0.1 150 135 0.900 1.769
0.01 474 415 0876 1.807
0.005 671 650 0.969 1.958
0.003 866 864 0.998 2.024

Table 2. Sequential point estimation for § = I'(1).

(1) =1.373
c no N N/ng éN
1 46 40 0.870 1.086

0.1 146 131 0.897 1.231
0.01 460 390 0.848 1.221
0.005 650 517 0.795 1.141
0.003 839 817 0974 1.359

4. Numerical studies

In this section we give some numerical results to illustrate the sequential procedures
described in the previous sections. Example 1 deals with a scalar process, and Example 2
treats a multivariate process. For the scalar case, we consider the following autoregressive
process (AR(1))

(41) Xt = 0.7Xt_1 + &4

where £; ~ i.i.d. N(0,1). The spectral density is given by f(A) = (2r) 1|1 —0.7e 7|2,
We generate X1, ..., X000 from (4.1), (i.e., n = 1000), and choose h, = 18.

Ezample 1. (Sequential estimation for the autocovariance function) The autoco-
variance function T'(I) of {X;} can be expressed as ["_(A)f(A)dX with ¥(X) = e¥*.
The autocovariances at lag 0 and 1 of (4.1) are 1.961 and 1.373, respectively. Table 1
summarizes the simulation results of the sequential point estimation for § = I'(0), and
Table 2 shows those of I'(1). It is clear from these tables that the stopping rule N
approaches the best fixed-sample-size ng as the cost per observation tends to zero.

We also investigated the problem of finding a 90 % confidence interval for I'(0) and
I'(1) with prescribed width 2d. Tables 3 and 4 summarize the results of estimating I'(0)
and T'(1) with various width d = 0.8, 0.6, 0.4,0.3 and 0.25. It is seen that T'/ko tends
to 1 as width d approaches zero.

As an illustration of the case of multivariate process, we consider the following vector
autoregressive process (VAR(1))

X1t = 07Xy 41 + €1

(4.2)
X0 = 0.3X17t._1 + 0.6X27t_1 + €94
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Table 3. 90% confidence interval of sequential estimation for § = I'(0).

r'(0) = 1.961
d ke T T/koe [0r—d,br+d]
08 95 74 0779  [1.019, 2.619]
0.6 169 135 0.799  [1.169, 2.369]
0.4 380 240 0.632  [1.240, 2.040]
0.3 676 490 0725  [1.527, 2.127]
0.25 975 942 0.966  [1.738, 2.238]

Table 4. 90% confidence interval of sequential estimation for # = I"(1).

(1) = 1.373
d ke T T/koe [0r—d,br+d]
08 90 70 0.778  [0.422, 2.022]
0.6 159 128 0.805  [0.640, 1.840]
04 357 193 0541  [0.616, 1.416]
0.3 635 439 0.691  [0.892, 1.492]
0.25 914 880 0963  [1.133, 1.633]

Table 5. Sequential point estimation for vec{I'(0)}.

0 = vec{I'(0)} = (1.961,1.572,1.572,1.941)’
c ng N N/ng On
1 112 105 0.938 (2.037,1.587, 1.587, 1.745)
0.1 353 372 1.054 (2.105,1.729, 1.729, 2.068)’
0.05 499 531 1.064 (2.089,1.718,1.450, 2.051)’
0.01 1116 1064 0.953 (1.927,1.499, 1.499, 1.814)’
0.005 1578 1558 0.987  (1.928,1.508,1.508,1.862)"

where €; = (14, €2¢)' is a sequence of i.i.d. N(0,X) random variables with

> 1 0.5 '
0.5 0.5
We generate 2000 observations from (4.2) and choose A, = 10.

Exzample 2. (Sequential estimation for the autocovariance functions) Since § =
vec{T'(I)} is expressed as an integral functional of the spectral density matrix f(A),
we study the sequential point and interval estimation for vec{I'(0)} and vec{I'(1)},
numerically. The results obtained are summarized in Tables 5-8, and they agree with
the theoretical results for the asymptotic efficiency of Theorems 1 and 3 in Section 3.

As an application of the results in Section 2, we can consider the following problem
of misspecified prediction. Suppose { X} is a p-vector autoregressive process of order 1
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Table 6. 90% confidence interval of sequential estimation for vec{I’(0)}.

0 = vec{T'(0)} = (1.961,1.572, 1.572,1.941)'

d ko T  T/ko or

11 648 593 0015 (1.907,1.512,1.512,1.783)
1.0 784 731 0932 (1.925,1.543,1.543,1.804)
0.9 967 987 1.021 (1.956,1.557,1.557,1.870)
0.8 1224 1277 1.043 (1.963,1.551,1.551, 1.855)
0.7 1599 1572 0983 (1.920,1.521,1.521,1.849)"

Table 7. Sequential point estimation for vec{I'(1)}.

0 = vec{I'(1)} = (1.373,1.100,1.531,1.636)’
c ng N N/ng On
1 106 98 0.925 (1.597,1.189,1.611,1.526)’
0.1 334 326 0976 (1.519,1.154,1.661,1.679)
0.05 472 502 1.064 (1.600,1.249,1.750,1.785)
0.01 1055 947 0.898  (1.339,1.022,1.430,1.459)
0.005 1493 1419 0.950 (1.360,1.037,1.459,1.537)

Table 8. 90% confidence interval of sequential estimation for vec{I'(1)}.

0 = vec{T(0)} = (1.373,1.100, 1.531, 1.636)’

d ko T  T/ko or

1.1 583 537 0921 (1.270,1.029,1.405, 1.504)
1.0 706 619 0.877 (1.351,1.065,1.436,1.479)’
09 871 773 0.887 (1.360,1.089,1.489,1.530)'
08 1102 1076 0.976 (1.345,1.089,1.481,1.566)
0.7 1438 1445 1.005 (1.324,1.072,1.454,1.558)

(VAR(1)). Then the best linear predictor of X; based on X;_1, X;_o,..., is given by
(4.3) rro)x; .

Although X is actually VAR(1), we consider the case when the fitted model is incorrectly
specified by the following VMA (1) process

(44) Xt =€y + Asi_l

where A is a p X p-matrix, and &; ~ 1.i.d. N(0,I), (I; the p X p-identity matrix). For
the model (4.4), it is easily seen that

ro)=I+AA", T(1)=A4
then the misspecified prediction error for the predictor (4.3) is

(45) trE{X:- AJ+AAN ' X1 H{X:— AT +AA) "' X1}
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= tr [/ {(T— AT+ AA) e} {T— AT+ AA) e} F(A)dA| .

Ifweset (\) = {I — AT + AA")"1e*} {I - A(I + AA)! ei*}”, then we can discuss
the sequential estimation procedure for (4.5).

5. Proofs

In this section we will give the proofs of Theorems 1-3. The proofs of theorems are
based on the following lemmas. Write @ = (61, ...,0,)" and 6, = (fn1,...,0n,4)"-

LEMMA 1. For any integer v > 2, we have

(5.1) E(fn; -0;)" =0®""), j=1,...,q

PrOOF. From the inequality (a + b)P < 2P~!(aP + bP) we have

(5.2) E(6n; —0,)% = E(0,; — Eby; + Eb, ; — 6;)*"
< 22 YE (6, — Ebn ;) + E(Eb,; — 6;)*}
= 2" L+ L] (say).

Note the following identity

(5.3) E(XiXz---Xor)= », ocum{Xj;j1i € v} x - x cum{Xj,;jp € vp}
v={v1,...,up}

where the summation is over all partitions (v1,vs,...,vp) of {1,2,...,2r} (see (8.11) of

Brillinger (1969)). Using this identity, we have

(54) E(fn;— E6n;)* = cum (B, ; — B, ;} x -+ x cumV?) {6y ; — Ebn,;},

where the summation is over (ji, ..., jp) satisfying j; +- - -+j, = 2r. Using the argument
of the proof for Theorem 7.6.1 of Brillinger (1981) and Lemma A.3.3 of Hosoya and

Taniguchi (1982) we have

(5.5) Ef,; =06, +0(n™)

and ) A ) )

(5.6) um{fn; = Ebnj, ., 0n = Ebnj} = O(n7*).
From (5.5) it follows that

(5.7) Ly = O(n—2r)‘

In view of (5.6) we can see that the main order term in (5.4) is
cum® (8, ;) ...cum® (6, ;). Since

(5.8) cum® (B, ;) = var(fn,;) = n~'Vj; +o(1) = O(n™1),
we observe

Ly = E(6n; — Ebn ;)™ = O(n™"),
which implies, together with (5.2) and (5.7), the desired result. O
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LEMMA 2. For any integer r > 2, we have

(5.9) E max |V — Vij|* = O(n™" - hST).

1<4,j<q

PrOOF. As in Lemma 1, we have
(5.10)  E[Vnu = Vis[" = ElVnij — EViis + EVaij — Vi
< 27 Y EVnij = EVij*" + E|EVni; — Vis "}
=27V My + M), (say).
Using the identity (5.3), we have

(5.11) ElVnij— EVassl® = Y. cumY{V,, 55 — EViiz} x -
Jit-+ip=2r

xcum(j”){f/n,ij - Ef/'n,ij}.
From (2.17) and (5.5) it is seen that

hn

(5.12) EVn,ij = 5’/1? tr { Z F(kl)’l’]i(kg)r(kg)’l’]j(—kl — ko — kg)}

k1,k2,ks=—hn
+0(n"'hy).
Noting (2.16), (5.12), Assumption 1 and h,, = [(logn)]*** we can see that
EVnij = Vij + O(n™'h3),
which implies _
(5.13) My = O(n~ 2T h%T).
Next we turn to evaluate the J-th order joint cumulant of Vn,ij - FE f/«n,ij

(5.14) cumYNV, ;5 — EViijy ..., Vais — EViij}

‘() T YT YT-Y ¥ %

[ [Sho KD [Sha KPSk 6|k (68 | < (B <R

151

X Z Cum{fa(l)b(l) (kgl))fcu)du) (k‘él)), ceey fa(J)b(J) (k&J))fc(J)d(J) (kéj))}

(1), (1) b("), (7)
xS (kYT (k57)

dM oM 1 1 1 d”>,a“> J J J
@ k) KD — ) ) <k k),

where >_" is the summation for a(l),b(l),c(l),d(l),...,a(J),b(J),c(J),d(J) =1,..

Now

(5.15) Clml{f‘a(l)b(l) (kgl))f‘cu)d(l)(kgl)), - ,fa(J)b(J) (k{J))fC(J)d(J) (kéj))}
=cum[Y {1}y {3W}, . Y 1N YV{3D}]  (say)
= Zcum{Y{il} it €vi) x - xeum{Y{ip} 1 ip € vp}

- q.
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where the summation extends over all indecomposable partition (v1,...,vp) of the table

(11, 3(1))

(1), 3
(see Brillinger (1981)). From the Theorem 5.1 of Brillinger (1969), we have
cum{Top(kM), ..., Fap ()} = O(n=7+1)

and
2T

cov{fiays, (k*"), Tty (")} = —

[ T e (O) o (— NN
+ /7r eNEDHRTY L ) fyras (—A)d)\}
+ o(n“l)j7r
Then it is not difficult to show that the main order of (5.15) is that of
B{Tqnyeen (57) }E{T youaryon (K52)) Yeum{ T yonpan (k) T gy, o (k)

U
Xoree X Cum{ra<‘J—1)b(1J—1)(k§ J_l))a Fa(l’_, ) 1)(k( . 1))}’

which is of order O(n=7*1). Hence cum)) {Vy,1i,..., Vii;} = O(n=7+1. h37). Therefore
main order term in M is cum@®{V}, ;;} x - - - x cum®{V,, ;;}. Then, from (5.11) we have

EWVnij— V| =0t -h8)" = O(n~" - BS").

Using this relation,

m

__2T‘<Z 7 .. _V..|2r

Elg}f;sg Vais — Vi < ij_lEIVnﬂJ Visl
-

m
=3 O(n"-hS")
i,j=1
= O(n-r : h?zr)a

which completes the proof. OO

LEMMA 3. For any integer r > 2, we have

(5.16) [ trQV o — trQV |2, = O(n~Y/2 . h3)

and R

(5'17) ”/\max(vn) - )\max(v)”% = O(n_1/2 . hi)
In particular, for any € > 0,

(5.18) PtrQV, —trQV|>e) =0(n~"/2. h3r)
and

(5.19) P(|Mmax (V) = Amax(V)| > €) = O(n~7/2 . b37).



SEQUENTIAL ESTIMATION FOR A FUNCTIONAL OF THE SPECTRAL DENSITY 153

PROOF. We can prove (5.16) and (5.18) in the same way as in Lemma 2. To prove
(5.17) we use the following result (see Anderson (1984), p. 354): For symmetric matrices
A and B, Apax(A + B) < /\max(A) + Amax(B). From the above inequality we obtain
/\max(Vn) - /\ma.x(V) < /\max(V V) a’nd /\max(V V ) < ')‘max(v )— maX(V)
Then, note that

Mmax(Vn = V)| = [aq}zaicl @' (Vi — V)al

< O{ max IV,HJ Vijl}

1<4,7<¢q

and, similarly

| - /\max(V_ Vn)l < O{ max IVn ij ‘/ZJI} .

1<,

In view of Lemma 2 we get (5.17). (5.19) follows from the Markov inequality and (5.17). 0

Let
(5.20) ny = [c"V20HR)] py =[ng(1—¢)] and ng = [no(l+€)], for 0<e <1.

Henceforth, all unidentified limits are taken as ¢ — 0, and (> 2) is an arbitrary integer
given in Lemma 2.

LEMMA 4. For every ( € (0,7/2—1) and e € (0,1)

(5.21) P[N < ny] = O(c(T/2=¢-1)/20+h)y

and

(5.22) 3" PIN > 0] = O(cl7/2-¢-D/2),
n>ns

PrOOF. In the definition of stopping rule N in (2.11), we can see that n >
c’l/Qn“h, which implies n > c~120+h) = n1, hence N > n;. Observe that

PIN < ng] < P[(trQV,)"/? < nc'/?, for some ny < n < ny

< P[(tr(;)f/'n)l/2 <(1- s)nocl/Q, for some n € [nq,ny)]

< PtrQV, <trQV (1 —¢)?, for some n € [ny,n9))

< P[|trQV, —trQV| > &(2 —£)tr QV, for some n € [n1, n2)]
< Z O(hir . ’I'L_T/Z),

n=ny
where the last inequality follows from Lemma 3. Using (2.15) we obtain
PIN <o) = O(n;"/***),  v¢e(0,r/2-1),
which, together with (5.20) implies (5.21). Next we prove (5.22). From (2.11) it follows
that, for n > ns,
PN > n] < P[(trQV )2 > c'/?n — ng
< Pl(trQV )2 — (tr QV)Y2 > /2 (ng — ng) — nz").

"]
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Choose ¢ small enough so that
e(tr QV)Y/2 — {/?/[(tr QV)V2(1 + &)]}* > e(tr QV)/2 2.
Then

PltrQV )Y — (trQV)Y/2 > e(tr QV)/2)2)

(5.23) P[N >n] <
< P[|trQV, —trQV]| > e*tr QV /4].
In the same way as (5.21) we conclude (5.22). O

Let A= [ng < N <ng], B=[N < ny]and D = [N > n3]. We denote by Ir and F
the indicator and the complement of a set F', respectively.

PROOF OF THEOREM 1. From (5.18) and the Borel-Cantelli lemma we can see

(5.24) trQV, - trQV  as. as n— oo.

Therefore, for fixed ¢ we have N < 0o a.s. (recall (2.11)). While, since N > n;, if ¢ — 0,
then N — oo. Hence, from this and (5.24)

(5.25) trQVN —»trQV  as. as ¢c— 0.

But

(5.26) V2t QU2 < N

and )

(5.27) N <cV2trQVN_y)2 + (N = 1)7M + ny.

Therefore, from (5.24), (5.25), (5.26) and ng ~ c¢~'/2(tr QV')1/2
N/ng—1 as. as c— 0.
We next prove the L;-convergence (3.2). Write
N/ng—1= (N/ng)Ip + (N/ng — 1)Is + (N/no)Ip — Ipup-
Then
E|N/ng — 1| < (2 —€)PIN < ng] + € +ng* Z P[N > n] + P[N > ng].

n>nsg

Since ¢ is arbitrary, the required result follows from Lemma 4.
Now, it only remains to deal with the asymptotic risk efficiency. Since

Ry _ trQE(®y — 6)(On — 6)' + cEN

d o 2
e T an c=trQV/ng,

it is sufficient to prove that

trQE(On — 0)(On — )
Cng

— 1.

(5.28)
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Recalling (2.6) and ¢ ~ trQV /n3, we observe that tr QE (8, — 6) (6, — 8)'/cng — 1.
Next we evaluate M = {M;;} = E{(8n, — 6)(6n, — 6)' (IA — 1)}/eny. By Schwarz
inequality, it is seen that M;;’s are of order O[{E(I4 — 1)2}'/2]. Since I4 — 1 a.s., by
the dominated convergence theorem we can see M — 0, hence

tr QE(B,, — 6) (8, — 8)' Ia/cng — 1.

Therefore, to prove (5.28) we show that

(5.29) trQE(Bn — 6)(Bn — 6)'15/cng — 0
and R R R X
(5.30) tr QE(ONn — 8,,) (0N — 8,,) I4/cng — 0.

We prove (5.29). Using Schwarz inequality, Lemma 1 and Lemma 4 yields for each i and
J

(5.31) |E(éN,i - gi)(éN,j - 0;)Is|
<E max |6~ 0)(0n; ~6;)|l5
) X 1/2
{E mas (B — 0.)2(0ns —W} PE
nisSnsn2

e 1/2
S { > E(fni—0:)*(n; — 91)2} {P(B)}/?

n=ni

1/2
S{ZE”Q ni = 0:) B (6, 3)4} {P(B)}"/?

n=nj

<o(n} nl/2. ny1)O(r/2-¢-W/A+R)).

From the definition of n; and ns, (5.31) becomes O(c(r/2=¢=R)/4(1+h)) - Since we can
choose r sufficiently large, therefore

E(éN’i - Bi)(éN,j - ej)IB/CTLO — 0, as c¢— 0.
Also we have

(5.32) |E(@n,i — 6:)(6n; — 0:)Ipl < Y E{(On: — 6:)(On,; — 0;)Ip, |}

n>ns

where D,, = {N = n}, n > nz. By Schwarz inequality and Lemma 1, the right hand
side of (5.32) is dominated by

(533) > EY*((w, —6:)Ip,)*E*((bn,; — 0;)Ip,)>

n>ns
< Y EY40n; - 0)*P(N = n)V*EY4(6,, ; — 0;)*P(N = n)'/*
n>ng
<0 n3_1) Z P(N 1/2

n>ns
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Recalling (5.22) we can see that 3,5, P(N =n)!/2 = o(1). Hence,
E(éN,i—Hi)(éN,j—Hj)ID/cno—>0, as ¢—0,

which together with (5.32) proves (5.29). As for (5.30), we have for each 7 and j

(5.34) |E(9Nz - eno, )(eNJ eno,j)IAl
n3
= ‘E [Z (Bn,i = bno i) (O, — Ong J)IAn]
n=mny
< Z |E{(9N,i_ noﬂ)(eNJ noJ)IA H

nz<n<nj

where A, = {N = n}, no <n < ng. In order to evaluate E(éN,i - éno,i)(éN,j - éno,j),
we need the following preparation. Let

h(n)( ) ].lf OSS‘STL/TLg
0 otherwise.

Define the tapered periodogram by
(5.35) I3 = (2rH{ ()} . (N, (),

where
ns '
d.(0) = D R (t/ng) Xy €™
t=1
and s
H{™(0) = Y~ AW (t/ns)?
t=1
For n = ng,...,ns, we can write én,i as

B = / " (NI ()},

where T (n:)()\) is the periodogram matrix whose (a,b)-th entry is as in (5.35). A slight
modification of Theorem 7.7.1 of Brillinger (1981) and (2.1) of Dahlhaus (1988) leads to
ng COV(én,i, éno,i)
fh(")( )2h('ﬂ0)( t)2dt
- T RS 0)2at [ RO ()2t

[am [ el O, TN + 00

Using above relation, we can show that

E(én,i - éno,i)z = E[{én,i - 01 - (éno,i - 61)}2]

O(l——1—>:ex0(—l—>.
n  ng ng
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Noting (5.4) it is seen that

(5.36) B — 0, ) = xO( 1)

”o

As in (5.34), by Schwarz inequality and (5.36) we evaluate (5.35) as

Z |E(On,i — 0o i) ON.5 = Ono )]

n=ns

n3
<> BV — o i) Lan)’EY (O 5 = g ) La,)?

n=ns

n3.
<Y EYV4Bni ~ 60y i) P(N = ) VAEY4(8, 5 — by 5)* P(N = n)"/*

n=ng

SexO(i).
Y]

Since € is arbitrary,
(5.37) trQE(BN — 00,) (BN — 61,)' Ta/cno — 0,
which completes the proof. O

ProOF OF THEOREM 2. Write
VN - 8) = V/N/nov/ng(Bx — 81o) + V/N/noy/no (8, - 6).
By (5.29), (5.30) and since cn2 = tr QV
(5.38) n0E(On,; — 0nyi)* — 0,
which implies
(5.39) V010, = b il 0.
Thus the proof follows from (2.11), (3.1) and the Slutsky theorem. O

PrOOF OF THEOREM 3. The proofs of (3.5) and (3.7) are very much similar to
the proofs of (3.1) and (3.2), respectively. Thus we prove (3.6) only. We have

P(6 € Rr)
= P{(8r — 8) (81 — 8) < d*}
= P{a'(8r — 8)(6r — 8)'a < d” for all a such that a’a = 1}

O B — ) 2
=P{Ta(0T 8)(6r )a( d’T foralla:a’azl}

/\max(V) - /\max(V)
Ta' (61 — 6)(6r — 8)a d*T ,
> < : =
_P{ Va S o) foralla:a'a=1
Ta' (87 — 6)(6r — 6)'a d2T
=P <
{j}jﬁ’l aVa = Amax(V)

= P{T(8r — 6)'V (01 — 6) < (d°T/Amax(V))}.
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By (3.5) and d*T [Amax (V) — x2_,(q), it follows from Anscombe’s Theorem that as
d— 0VT(67 — 0) -, N(0,V). Hence limy_o P(§ € Ry) > 1 — a. Thus the proof is
completed. O
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