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Abstract. This paper discusses the problem of estimation for two classes of nonlin-
ear models, namely random coefficient autoregressive (RCA) and autoregressive con-
ditional heteroskedasticity (ARCH) models. For the RCA model, first assuming that
the nuisance parameters are known we construct an estimator for parameters of in-
terest based on Godambe’s asymptotically optimal estimating function. Then, using
the conditional least squares (CLS) estimator given by Tjgstheim (1986, Stochastic
Process. Appl., 21, 251-273) and classical moment estimators for the nuisance param-
eters, we propose an estimated version of this estimator. These results are extended
to the case of vector parameter. Next, we turn to discuss the problem of estimating
the ARCH model with unknown parameter vector. We construct an estimator for
parameters of interest based on Godambe’s optimal estimator allowing that a part of
the estimator depends on unknown parameters. Then, substituting the CLS estima-
tors for the unknown parameters, the estimated version is proposed. Comparisons
between the CLS and estimated optimal estimator of the RCA model and between
the CLS and estimated version of the ARCH model are given via simulation studies.

Key words and phrases: Nonlinear time series models, random coefficient autore-
gressive models, autoregressive conditional heteroskedasticity models, conditional
least squares estimator, estimating function, classical moment estimator, asymptotic
optimality.

1. Introduction

In the last two decades, wide classes of nonlinear time series models have been
studied, for example, Engle (1982), Nicholls and Quinn (1982), Tjgstheim (1986), Tong
(1990), Pétscher and Prucha (1997), and Hafner (1998). One of these classes which has
received a considerable amount of attention is that of random coefficient models. These
are important in the engineering and econometrics literature since many data sets in
fields such as hydrology, metrology and biology exhibit occasional sharp spikes, which
cannot be sufficiently explained by classical linear time series models. Such features
arise when the coefficients of the model considered have random characteristics. This
situation led to a consideration of random coefficient autoregressive (RCA) models. For
these models, Nicholls and Quinn (1982) developed a rigorous statistical theory which
covers the case of vector-valued autoregressive models when the random coefficients and
error process are Gaussian and mutually independent. Feigin and Tweedie (1985) studied
the stationarity, ergodicity and finiteness of moments for these models.

Another important class of nonlinear time series models, introduced by Engle (1982)
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is the class of autoregressive conditional heteroskedasticity (ARCH) models for condi-
tional variances which proved to be extremely useful in analyzing economic time series.
Since their introduction, ARCH type models have become perhaps the most popular and
extensively studied financial econometric models. The literature on the subject is so vast
that we will restrict ourselves to directing the reader to fairly comprehensive reviews by
Bollerslev et al. (1992) and Shephard (1996). A detailed treatment of ARCH models at
a textbook level is also given by Gouriéroux (1997).

In the estimation of nonlinear time series models, Tjgstheim (1986) proposed a con-
ditional least squares (CLS) estimator, and elucidated its asymptotics. Recently, Hwang
and Basawa (1998) discussed the estimation problems based on such and weighted least
squares estimators for RCA models in cases of known and unknown nuisance parameters
and, established their asymptotics in which the random coefficients are permitted to be
correlated with the error process. They also studied their asymptotic behaviour through
simulation. As another method, Godambe (1960, 1985) developed the theory of estimat-
ing function for stochastic models, and introduced the concept of asymptotically optimal
estimating function (see also Heyde (1997)). In econometrics, generalized method of mo-
ments (GMM) estimation developed by Hansen (1982), is widely used in the theory and
applications (see also Newey and McFadden (1994) and Wooldridge (1994)). The GMM
estimation and Godambe’s estimating function method are essentially the same. But
these two methods have been developed independently.

In this paper, we consider the problem of estimation for RCA and ARCH models.
For the RCA model, first we construct Godambe’s optimal estimator for the parameter
of interest assuming that the nuisance parameters are known. Then, using the CLS
estimator and classical moment estimators for the nuisance parameters we propose the
estimated version of Godambe’s optimal estimator. Such results are extended to a vector
case. Next, we turn to discuss the problem of estimating the ARCH model with unknown
parameter vector. We construct an estimator based on Godambe’s optimal estimator.
Then, an estimated version of this estimator is proposed via the CLS estimator. These
new estimators are expressed in closed forms. We study the asymptotic behaviour of the
estimators. Also, we compare, via simulation, the mean square error of the estimators
in various situations.

2. Conditional least squares estimation

In this section, we present Tjgstheim’s (1986) results which were obtained by refor-
mulating and extending the arguments of Klimko and Nelson (1978) to nonlinear time
series.

Let {X;;t = 0,%1,...} be a stochastic process taking values in RP and defined
on a probability space (2, F, P). Here, {X.} is possibly a strictly stationary ergodic
nonlinear time series. In addition, suppose that E{||X||?} < oo so that {X;} is second

order stationary, where || - || denotes the Euclidean norm. We assume that observations
(X1,...,Xn) are available. The probability distribution of (X,..., X ) is specified by
unknown parameter 8° = (6%,...,60) € © C R% Then consider a general real-valued

penalty function Q,(0) = Qn(X1,...,Xr;0) depending on the observations and on a
parameter vector 8 € ©.

We specify the penalty function. Let F;(m) be the o-field generated by { X s;t—m <
s < t}, where m is an appropriate integer. If { X ;} is a nonlinear autoregressive model of
order k, we can take m = k. Let X;_1(0) = E¢{X; | F:—1(m)} be an optimal one-step
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least squares predictor of X; based on X;_1,..., X¢—m.
Consider the penalty function

Qn(0) = Z (Xt~ Xoe-1(0) Y { X - X-1(0)}

The CLS estimator 85C%) of 6° is defined by oich) = arg mingeo @n(0).
Then, under some regularity conditions of Cramer type, Tjgstheim ((1986), 254
256) showed that

B(CL) o500 and /(0D — 6%)—IN(0,UTRUY), as n — oo,

where
0 <1 oy 0 % 0
U=F %Xm_l(e )-8—0—Xt|t_1(0 ) ) and
Q < - , 0
R= E{%xt,t_l(e"){xt — X1 (0 H X — X opp-1(6°) %Xt,t_l(eo)}.

The CLS estimation can be applied to a wide class of nonlinear time series. However,
%CL) in general is not asymptotically efficient. Thus, we next discuss an asymptotically

efficient estimator proposed by Godambe (1985).

3. Estimating function approach

Godambe (1985) developed the theory of estimating function for stochastic models,
and introduced the concept of asymptotically optimal estimating function. The estimat-
ing function approach in the context of parametric models provides a logical frame for
estimation of parameter(s) of interest in the presence of nuisance parameter(s).

Let X(™ = (X1,...,X,)" be a collection of random variables forming a stochastic
process. Let F be a class of probability distributions F' on R"™ and 6 = 8(F'), F' € F be
a real parameter. We assume that the probability distribution of X (n) belongs to F. A
real function g of X (") and 6, satisfying certain regularity conditions, is called a regular
unbiased estimating function if

(3.1) Ep[g(X™;0(F))] =0, FcF.

Among all regular unbiased estimating functions g, g* is said to be optimum if

el (X0 /B[ Zox 00| |

is minimized for all F € F at g = g*. Here, the partial derivative is evaluated at
@ = 6(F). Henceforth, we denote by F, the o-field generated by {Xs;s < t}.
Let £ be the class of estimating functions g of the form

n
(3~2) 9= that—l
t=1
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where h; is a function of X3,..., X; and @ satisfying
(33) EF[ht I}-t—l] :0, (t: 1,...,71)
and a;_q is a function of X;,..., X1 and @, fort=1,...,n

An example of h; is,
(3.4) h = Xi — Ep[X: | Fi-l,

which is the residual between X; and its best predictor Ep[X; | F;—1] based on Xq,...,
Xi 1.
Note that (3.3) implies that for all F € F, Ep(hths) =0, t # s.

3.1 Estimating functions for a vector 6
In this subsection we extend the above arguments to the case of vector estimating

functions.

Suppose that {X} is an r-dimensional stochastic process whose distribution de-
pends on a parameter 8 = (61,...,6,)’ € © C RP and denote by F; the o-field generated
by {Xs;s <t}

Let G be the class of estimating vector functions G(8) of the form

G(0) = Z ai—1hy
t=1

where hy = X; — E[X | F;—1] is an r-dimensional vector version of (3.4) and a;—, is a
p x r matrix depending on X1,..., X1 and 6,1 <t < n.
Let 8¢ be an estimator of 8 using the vector form of the estimating function (3.1),

ie., G(ég) =
By the mean-value theorem, we have

G(6c) - G(6) = (,%G(O*)(ég - 0)

where |8 — 8%|| < ||@c — 6]|. If Bg—P6, then 6*—P@, hence,

(3.5) Vilbe - 8) ~ [1 9 G(m}_ J=G(6),

ignoring lower order terms. Here, the first factor on the right side of (3.5) is assumed
to be non-singular for all 8 € ©. A good estimating function should have the difference
(8¢ — 6) small. Notice that the asymptotic variance of /n(8g — 8) is given by

o [eipetn] 0[]

where the middle factor of (3.6) is assumed to be positive definite for all 8 € ©.
An estimating function G*(8) is said to be optimal in G if the quantity

(3.7) E{ [E%G(G)}_ G(O)G’(O)([E 9 G(B)} _1)}
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is minimized at G(0) = G*(0) in the sense of matrix order. We assume that h; and
a;_q are differentiable w.r.t. 8 for 1 < ¢t < n. The following theorem is an extension of
the result of Godambe (1985) to the case of vector. Since the proof is similar, we omit
the details.

THEOREM 3.1. In the class G of estimating functions G(0), the function G*(0)
minimizing (3.7) is given by G*(0) = >_i_, at_,h; where a;_, = [(E(0h:/80) | Fi—1)']
[(E(hihy) | Fe1)7h)-

4. Random coefficient autoregressive models

In this section, we discuss an estimation procedure for an important class of non-
linear time series models. A time series {X,} is said to follow a random coefficient
autoregressive (RCA) model of order k, if X, satisfies

k
(4.1) Xy =) (0 +bi(t) Xemi + e
=1

For this model the following conditions are imposed.

AssumpTION 1. (i) 6;,i=1,...,k, are parameters to be estimated,;
(ii) {e;} is a sequence of i.i.d. (0,02) random variables with 0 < 02 < oo;
(iii) {b; = (b1(t),-...,bx(t))'} is a sequence of i.i.d. random vectors with zero mean and
covariance matrix E(b;b;) = p;
(iv) {b:} and {e:} are possibly correlated i.e., Cov(bs,&;) = pop, o5 = (Oby,---,0b,)

and p is a constant with |p| < o,;
(v) 8= (61,...,6;) and Ty satisfy \(80' + %) < 1 where A(A) denotes the maximum
eigenvalue of A in modulus.
The condition (v) is a sufficient condition for {X;} to be stationary and ergodic (see

Feigin and Tweedie, (1985)).

4.1 Scalor case
In this subsection, we describe an estimation procedure for the scalar RCA models.

Given an observed stretch X,...,X,, we shall estimate the parameter 8 of interest
using Theorem 3.1 and assuming that the parameters (p,02,%;) are known. The true
value of @ is denoted by 6°. Define X;_y = (X;_1,..., X;—x)" and rewrite (4.1) as

Xt = X£_10+'wt, 'LUtZX;_lbt + €¢.

Since {X,} is generated by {¢;} and {b;}, we observe F; C o{(bs,et), (bt—1,€¢-1),...}.
Noting that b, and ¢; are independent of {(b;-1,e¢-1),(bi—2,6t—2),...,} and
Xi_1 € Fi_1, it is seen that

(4.2) Elw, | F1] = 0,

hence, from (3.4) we can set h; = X; — X;_;0. Differentiating h; with respect to 8 and
taking its expectation yield E[(Oh:/86) | Fi-1] = —X_1. Further,

Eh | Fio1) = 02 4+2Z:+ X, 1 ZpXi-1, Zi=popXioi.
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Let C,, Cy and C3 be matrices such that the product C;C2Cj3 is well defined.
Applying the formula

(4.3) vec(C1C5C3) = (Cy® Cy)vecCy = (C3 ® C1)D'vechCs,

where ® denotes tensor product and D is a constant matrix of zeros and ones (for the
definition of D, vec(-) and vech(-); see e.g., Nicholls and Quinn (1982), 11-13), we obtain

X;—lszt—l = (Xé_l ® X:f—l) vec 3p = {VeC(Xt——IX;_l)}ID;c vech X}
= {vec(X -1 X;_,)} DiR
and
E[h2 | Fooy] = 02 +2Z; + {vec(X,1 X} )} D,R= ¥,

where Dy, is a constant (k(k + 1)/2) x k% matrix corresponding to D in (4.3), and
R = vech X}, (see e.g., Nicholls and Quinn (1982)).

Hence, from Theorem 3.1, the asymptotically optimal estimator (OE) (in Godambe’s
sense) for 8 is given by

n -1 n
wo a3 xt_lx;_l/wt) (> xt_lxt/wt).

t=k-+1 t=k+1

Remark 1. Note that if (b, &;) are jointly normal, and (p, 02, £}) are assumed to
be known, 8{°F) is the maximum likelihood estimator of 8.

In the first-order RCA model X; = (0 + b;) X;—1 + &, it is easy to see that the OE
of 4 is given by

(45) 0(0E) = Z(lt IXt/Z at 1Xt 1

where a}_; = —X;_1/{02 + 2p' X4—1 + 0£ X2 |} with p’ = poy.
Remark 2. If p' = 0, the (OE)* of # becomes

n n

4(OE)*

USSR Z aZilXt/Z a;Z1 X1
t=2 t=2

where a}*; = —X;_1/(0? + 02 X7 ) and this estimator is formally identical to (2.4) of
Thavaneswaran and Abraham (1988).

Next, we establish the asymptotics of (4.4) by employing the ergodic theorem and
Rillingsley’s thearem ((1961), 788-792) for martingales.

THEOREM 4.1. Suppose that the process {X:} given by (4.1) satisfies Assumption 1
and E(X}) < 0o. If E{X;-1X_1/¥;} is a positive definite matriz with bounded ele-
ments, then:

(i) there exzists a sequence of estimators {[95?’3) } such that éSLOE)—ﬂ-S'HO.
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(ii) VA8 — 6°)—IN (0, [B{X -1 X, ;/¥:}]).

PROOF. From (4.4), we have
(0B _ g°

:{(’I’L—-k‘)_l i Xt*IXIt_l/\I/t}— (’I’L—k)_l i Xt—lwt/\pt-

t=k+1 t=k+41

Since {X;}, {b:} and {e:} are strictly stationary and ergodic, so are { X; 1 X;_;/¥;} and
{X¢_1w:/¥;}. Furthermore, E{X;_1X;_;/¥.;} is finite, and from (4.2) E{X;_jw;/
¥,;} = 0. The second moments of {b;} and {e;} are assumed to exist, and thus by the
ergodic theorem

(n— k)_l Z Xt—lXlt—l/‘I’t——’a's'E(Xt—IXQ—l/‘I’t), and
t=k+1

n
(n—k)~! Z Xiqwi/U—*" E{X; 1w/ ¥} = 0,
t=k+1

which imply 9,(1013) —a5.90,

Next, the joint asymptotic normality of the estimators {9 } may be verified by
using the Cramer-Wold device and Billingsley’s theorem (1961) for martingales. For any
given ¢ = (¢y,...,cx) # 0, it is easily seen that the distribution of

(OE)

n

(n—k)"2 3" (€ X1/ T)wy
t=k+1

converges to the normal distribution with mean zero and variance
E{(c' X 1w/¥:)?} = CE{X;: 1 X},_,/¥}c as n— oo.
Hence, by Slutsky’s theorem, \/ﬁ(Q%OE) — 0% —IN(0, [E{ X1 X._,/¥}™D). O

Remark 3. The assumption that E{X; 1X;_,/¥:} is positive definite is not re-
strictive. If the following two natural conditions:
(i) the probability mass of the distribution of the random vector X ;_; does not reduce
to a lower dimensional space (less than k),
(i) {X:} is a nondeterministic process,
are satisfied, then the assumption holds.

4.2 Vector case

In the previous subsection, we described the estimation procedure for the scalar
RCA models in the case when nuisance parameters are known. This section generalizes
such estimation procedure of more general RCA models to a multivariate case.

Let {X;} be a p-vector time series generated by

k
(4.6) Xe =Y (Bi+Bi(t) Xei + e,

=1



132 S. AJAY CHANDRA AND MASANOBU TANIGUCHI

which satisfies the following assumption.

AssuMpTION 2. (i) Bi,i=1,...,k, is a p X p constant matrix to be estimated;
(ii) {e;} is a sequence of i.i.d. p-vector random variables with zero mean and covariance
matrix T

(i) {By = (vec'(Bi(t)),...,vec'(Bk(t)))'} is a sequence of i.i.d. ¢ x 1 (¢ = kp?®) random
vectors with mean zero and covariance matrix E(B;Bj) =

(iv) {e:} and {B;} are possibly correlated i.e., Cov(e;, B;) = pop where og isapxgq
matrix and p is a constant with |p| < ||T|"/?;

(v) B = (vec'(B1),...,vec'(Bx)) and € satisfy A\(BB’ + €2) < 1 so that {X,} is sta-
tionary and ergodic.

Based on an observed stretch (X1,...,X,) from {X.}, we shall estimate the pa-
rameter 3 of interest using Theorem 3.1 and assuming the parameters (p,T,€2) are
known. The true value of 3 is denoted by B°. Define a kp x 1 random vector by
Y1 = (X}_q,...,Xi_;)- Applying the formula in (4.3), we can rewrite (4.6) as
Xt = (Y;—l ® Ip),B+ W, where wy = (Y:‘,—l ®Ip)Bt + &;.

By analogy with the arguments set out for the univariate case, the asymptotically
OE estimator (in Godambe’s sense) for 3 is given by

n -1 n
BB = ( S (Ve @ L)YTY(Y, ®Ip)) ( Y (Y1 ®I)Y; lXt)

t=k+1 t=k+1

where Y; = Viw + 2Z, + T, with V; = Dy[vec(Y ;1Y ;_) ® I,2], w = vech§? and
Z;=p(Y;_,®I,)0', and D, is a constant (g(g + 1)/2) x ¢* matrix corresponding to
D in (4.3).

We can establish the asymptotic properties of B%OE) via the ergodic theorem and
Billingsley’s theorem (1961) for martingales similarly as in Theorem 4.1.

THEOREM 4.2. Suppose that the process {X:} given by (4.6) satisfies Assump-
tion 2 and E{[|X.|?} < 0o. If E[(Yi—1 ® I,)Y;71(Y,_, ® I,,)] is a positive definite
matriz with bounded elements, then:

(i) there exists a sequence of estimators {B%OE)} such that [B;OE )—>“-5-[30.

(i) vA(BLE) — BN (0,{E[(Yi-1 ® Ip) Y1 (Y , ® I)]} 7).

5. Proposed estimation procedure

In Section 4, we constructed the asymptotically optimal estimators g £,°E) and
under the assumption that the nuisance parameters are known. However, it is often the
case that the nuisance parameters are unknown.

pe®

5.1 Scalar case

In this subsection, we consider the case when the nuisance parameters of (4.1) are
unknown. Estimating the nuisance parameters by the classical method of moments and
CLS estimator we propose an estimated version of the OE estimator.

For simplicity, we consider the model

(51) Xt = (9 + bt)Xt—l + &
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where 6 is an unknown parameter, and {b;} and {e;} are sequences of i.i.d. random
variables with zero mean and unknown variances 0 < 02 < oo and 0 < 02 < o0,
respectively. In addition, {b;} and {e;} are possibly correlated i.e., Cov(bs,e:) = poy
where p is an unknown constant with |p| < oe.

For (5 1), Nicholls and Quinn (1982) obtained the fourth moment condition, namely
64+66%02%+303 < 1, in the case when independent sequences {e:} and {b;} are Gaussian.
Our target is to estimate the unknown parameters (6, p,o2,02) on the basis of observed

stretch X,,..., X,.
Write

R(h) = E[X:Xi-p], h=0,%£1,..., and
R(Sl,SQ) ZE[Xt-Xt—sl-Xt—3217 81, S2 =0,i1,
Natural moment estimators of R(h) and R(s), s2) are, respectively, given by
X 1 n=|h|
R(h) = Z X X,_n, and R(s1,s2) Z X Xt—s, Xt—sy, 7 =max(0,s),5).
t=1

Under the condition 6% + 02 < 1, it can be shown that

(5.2) R(0) = E[X}] = 02/{1 - (6 + o})},
(5.3) R(0,1) = E[X2X;-1] = (6® + 02)R(0,0) + 2¢'R(0),  and
(5.4) R(0,2) = E[X2X,_o] = (6% + 02)R(0,1) + 29’ R(1).

For (5.1), the CLS estimator of ¢ is given by
. n n
(5.5) HSZCL) = ZXtXt-l/ZXtZ—l'
t=2 =2

If we substitute R(), R(-,) and ISe into the corresponding quantities in (5.2)-(5.4),
we can get the moment estlmators of 62, 02 and p. We explain the procedure below.

Estimation of 67 and o2 requires ehmmatlon of the third term from (5.3) and (5.4).
To do this, multiply both sides of (5.3) by R(1)/R(0), then

(5.6) R(1)R(0,1)/R(0) = [(6? + o3)R(0,0)/R(0) + 20'|R(1).

Subtracting (5.6) from (5.4), and substituting osen), R(h) and R(s, s3) for the corre-

sponding quantities, and solving for 2, we obtain the estimator 67

(5.7) &3 = &6—(05°H)?
where 6 = (b — d)/(a — &), with & = R(0)R(0,1), b = R(0)R(0,2), & = R(1)R(0,0) and

d = R(1)R(0,1). Using (5.7) and the respective estimators, we get from (5.2) and (5.3)
the estimators of ¢2 and p:

= (1-8)R(0), p=C_""R(0,0)[R(0,1) - §]

where ¢ = 26, R(0).
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Recalling L8 of (4.5) in the case that the nuisance parameters are known, we can
propose the estimated optimal estimator (EOE) of 6 in the closed form:

spomy _ N~ XeXe1 /<~ X S S 52 32
(5.8)6FCD) = 3" S, with L =62 425/ X + 60 X7

t=2 1L, t=2
If o' = 0, the estimator becomes simple. In fact, from (5.3), we can estimate of by
52 = ¢ — (B2 where ¢ = R(0,1)/R(0,0). Thus, from (5.2) the estimator of o2 i
given by 6% = (1 — ¢)R(0). Hence, if p’ = 0, the estimated optimal estimator (EOE)*
in the closed form is given by

A o XX X2 .
(5.9)  6EOB :Z il Z i 1, with &, =62 +62X2 .
t=2

5.2 Vector case

In the previous subsection, we obtained explicit expressions of the estimators in
(5.8) and (5.9). This section proposes an asymptotically optimal procedure based on the
previous estimation procedure for the model X; = X;_,(8 + b;) + &;. Here, {b;} and
{e¢} are supposed to be Gaussian and mutually independent.

The second-order moments of {X;} is given by

(5.10) E[X?] = tr[T(86' + )] + 02

where I' = E[X;_1 X;_;]. T and E[X?] are estimable by the method of moments.
Since Xy is symmetric, we need only ! = k(k + 1)/2 dimension vector denoted by
vechXl,. Next, it is easily seen that

E[RiX}] = E[R{X} 1(6 +b;) +e}{(6' + V) X1 +1}]
= E[VGC{R[.XQ_leeIXt_l }] + E[VGC{RlX;_lszt_l}]
where Ry = (X¢~1,...,X¢—1)". Noting the formula in (4.3), we can write
(5.11) E[R; X2
N —

(@)

= E[(X}{_, ® Ry X;_;)] D} vech(66') + E[(X;_, ® R, X;_,)] DjvechX,
- -~ s H,—.—/ ~ -~ s/
(b) (c) (d)

where {(a), (b),(d)} and (c) are estimable by the method of moments and CLS estimator
respectively, and D; and Dy are constant [ x k? matrices corresponding to D in (4.3).
Suppose that an observed stretch Xi,..., X, is available. Then, from (5.11)

(5.12)  vechS, = [E[(X,_, @ RiX,_,)| D}
x[E[R X7 - E[(X}_, ® R!XQ—1)]D/1V6Ch(é(CL)éEcL))]
where

n -1 n
o) = (th—lxi_l) (Z Xt‘IX‘>’
t=2

t=2
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and []’s are moment estimators of [-]. Substituting (5.12) into (5.10) yields
52 = E[X?] - tr[[(8(cry¥(cr) + o).

Thus, we propose the EOE (in Godame’s sense) of 8 in the closed form:

-~ n —1 =
B(EOE) ( Z Xt—-lxlt——l/\II:) ( Z Xt_1Xt/\I/f>

t=k+1 t=k+1
where U7 = 42 + KvechS; with K; = Davec{(X:-1X,_,)}.
6. Estimation for autoregressive conditional heteroskedastic models

In this section, we discuss the problem of estimating another important class of
nonlinear time series models which is considered to be extremely useful in financial
engineering. A time series {X, } is said to follow an ARCH process of order m introduced
by Engle (1982), if X; satisfies

(61) Xt =&t Ut

m
where U, evolves according to U; = o + Y, o X2 ;.
i=1
For this model, we impose the following conditions.

AssuMPTION 3. (i) The parameter a = (@, 01, .., 0m)’ is to be estimated where
o9 >0and o; >0, ¢=1,...,m being the constraints on «a to ensure that the variance

remains positive;
(i) {e:} is a sequence of i.i.d. (0,1) random variables with fourth-order cumulant x4,
and ¢; is independent of X, s < t;
(iif) i, @ < 1 so that {X,} is strictly stationary and ergodic.

The model in (6.1) can be rewritten in an alternative form that is easy to compare
with an autoregressive representation:

(6.2) Vi=aYia+m, Ui=aY,,

where V; = X2, Yy = (1,Ys-1,...,Yi—m) and n, = U(e? — 1). Henceforth, denote
by F; the o-field generated by {Y;,Y;_1,...}. We note that the disturbance term, n;, in
(6.2) is a martingale difference since E[n; | F;—1] = 0. Thus, from (3.4) we can set

(63) ht = },t — E[}ft l ft—l] = },t - a’Yt_l.
Then,
(64) E[(Bht/aa) I ft—l] =-Y,; 1, and E[h? | ft—l] = (K}4 + 2)Ut2

Now, we shall consider the OE estimator for the parameter « of interest in the following
two cases I and II. The true value of « is denoted by a®. Suppose that an observed

stretch Y7,...,Y, from {Y;} is available.
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Case I. Estimator based on U;.

By virtue of Theorem 3.1, (6.3) and (6.4), the OE (in Godame’s sense) for « is
given by

n -1 n
(6.5) &P = ( > Yt_lY;-l/Uf) ( > Yt_m/Uf)-

t=m-+1 t=m+1

The following theorem establishes the asymptotic properties of a(OE)

THEOREM 6.1. Suppose that the process {Y;} given by (6.2) satisfies Assumption 3
and E(Y?) < co. If E{Y ;1Y ;_,/U?} is a positive definite matriz with bounded ele-
ments, then:

(i) there exists a sequence of estimators {a(o )} such that &{°%) 5.0,

(i) vn(ed’® — a®)—IN(0, (ke + 2)[E{Y 1 Y_ /UZ}] ).

Proor. Note that

-1 n
(6.6) a(OE) { Z Yi-1Y, l/Ut2} Z Yt—lnt/Uiz‘

t=m-+1 t=m+1

Consider the first factor on the right side of (6.6). As in Section 4, by the ergodic theorem

n
(n=m) S Y Y UR— S E(Y Y, JUD).
t=m+1

Since Y';—; and 7, are strictly stationary and ergodic, so is Y;_1n;/U?. Hence, by the
ergodic theorem we obtain

(n—m)™ > Yiam/Ul—*>E{(Y,-1m/UP)} = 0,

t=m+1

which implies a(OE)—>‘1's'a

Next turn to derive the asymptotic distribution of a(o ). For any given vector ¢ =
(c1,---,¢me1) # 0, noting the central limit theorem for stationa,ry ergodic martingale
difference (see Billingsley (1961)), and Cramer-Wold device, we observe that

0

(n—m)~1/? Z (Y1 /U~ N(0, (ka + 2)CE{Y:.1Y}_,/U?}c) as n — oo.
t=m-+1

Hence, by Slutsky’s theorem

V(&) — a®) N0, (ks + 2{E(Y 1Y, /UP)} ). O
Since a(o depends on U; through the unknown parameter o namely, & (OE)
d%OE)(a), we cannot use as an estimator of a. So we consider an estimated version of

A EOE) = 408 (d%CL)) where &{°" is the CLS estimator of a.

it, an



ESTIMATING FUNCTIONS FOR NONLINEAR MODELS 137

Case 1I. Estimated version of dSLOE).

For (6.2), the CLS estimator &l of ais given by

n -1 n
(6.7) &T(LCL) = (Z Yt—lyé—l) (Z Yt—1Yt> .
=2

t=2

We note that the asymptotic properties of (6.7) follow readily from Tjgstheim’s (1986)

results.
Now, we can propose the EOE (in Godambe’s sense) of a in the closed form:

n -1 n
(6.8) &(FOF) - ( Z Yt—1Y£_1/0?> ( Z Yt—lyt/fj?>,

t=m+1 t=m+1

A

where U, = &I(CL)Yt—l' Recall (6.7) that a%CL)—ﬂLS'aO, as n — oo. Hence, we

understand that U, behaves like Uy, for t =m+1,...,n.
To establish the limiting distribution of (6.8), we impose the following condition.

ASSUMPTION 4. EY? < oo,

A sufficient condition for Assumption 4 is given by Engle ((1982), Theorem 1) in the
case of m = 1.

THEOREM 6.2. Under the Assumptions 3 and 4, we have, as n — oo,

VA(GEOE) — a®) AN (0, (54 + 2)[E{Y 1Y, JUZHTY).

PRrRoOOF. If we show that, as n — oo,

n
(69)  (-m) Y (VY ){(@CR)Y, Y&l

t=m+1
n

~(n—m)™t > (VY )@Y Y0} = o0,(1),
t=m+1

(620)  (n=m)7? 37 (V) {(@P)Y Y 6P}
t=m+1

—(n—m)7'/? Z (Ve ){@®Y 1Y} _1a®} 7! = 0,(1),
t=m+1
the proof is reduced to that of Theorem 6.1. Since the proof of (6.9) is similar to that of
(6.10) we prove (6.10) only. Recall &%CL)—W'S'O(O, hence, for any € > 0 there exists N,
such that H&ELCL) —a®|| < ¢, for all n > N, with probability one. Expanding the left
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hand side of (6.10) in Taylor expansion with respect to d;CL) at a®, we can see that it

is dominated by

1 < B} _ - )
=3 Yemdl (Y Yo {8 Y1 Vi@ 72 x Op{va(&l"? - a)},

t=m-+1

(6.11)

where &, is nonrandom and lies in the ball {a: ||a — a®|| < €}. It is easily shown that
the term in the absolute value of (6.11) converges to zero a.s. Hence we get the desired
result. O

In the first-order ARCH model
(6.12) Ye=Qyi1 +m, U=y,
it is easy to see that the EOE of « is given by
n -1 n
(6.13) &FOF) = (Z yt—lyi_l/ﬁf) (Z yt—lyt/ﬁf> :
t=2 =2

where a = (@, 1)', ¥i-1 = (1, ¥1-1), e = &lop)¥i-1,
n -1 n

(6.14) alft) = (Zyt-lyi_l) <ZYt—1yt)~
t=2 t=2

Remark 4. Combined with the conditional least squares and classical moment es-
timators we applied the estimation method proposed by Godambe (1985) to the RCA
and ARCH models. As pointed out by an anonymous referee, the score function in
(3.2) is given by the GMM formulation (e.g., Hansen (1982)) in the discrete time series
framework. As we said in Introduction, the estimation method by Godambe and GMM
method are essentially the same. However, these two methods have been developed
independently in mathematical statistics and econometrics, respectively.

7. Simulation study

Some simulations are performed to give some ideas about the asymptotic efficiency
of the proposed estimators and algorithm in Subsection 5.1 and Section 6 through the
models (5.1) and (6.12) respectively, for several sets of data of different sizes. We consider
the simulation of these models separately.

Example 1. (RCA model) Consider the model
X = (0 + bt)Xt~1 + &, X;=0 for t<O.

Let {&, = (¢0,9)'} be a sequence of i.i.d. random vectors distributed as

“|@e- ()]
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Table 1. Table 2.
6 =10.2,06 6=0.20.6
x B 0'30 0'20 p a B 0'30 0'30 p
0.2 03 1 0.16 0.1740 -0.3 0.6 1 0.16 —0.5220
0.36 0.1360 0.36 —0.4080

Table 3. MSE of the estimators and average estimates of p.

Replication=100, 6 = 0.2, 0%, = 1
Estimator p n=200 n=>500 n=1000
P 0.1360 0.1100  0.1151  0.1290
0.1740  0.1342  0.1437  0.1650
IS 0.1360  0.0280  0.0095 0.0091
0.1740  0.0251  0.0092  0.0089
9EOE)" 1360 00272  0.0088  0.0086
0.1740  0.0265  0.0086  0.0082
9EOE) 1360 00252  0.0081  0.0084
0.1740  0.0245  0.0080  0.0082
Replication=100, § = 0.6, 030 =1
Estimator p n=200 n=>500 n=1000
P 0.1360 0.1080  0.1124  0.1265
0.1740 0.1275  0.1399  0.1640
6 01360 0.0310  0.0096  0.0094
0.1740  0.0271  0.0093  0.0090
gLEOE)” 01360 0.0285  0.0090  0.0088
0.1740  0.0278  0.0087  0.0085

9EOE) 01360 0.0263  0.0084  0.0085
0.1740 0.0258  0.0080  0.0083

Then, define 1, = (¢, b:)’ by A'€, where A = (g g ), which implies that the covariance
matrix of 7, is A’QA. Thus, p = aB(1 + 0k)/op.

In this example, we consider two cases of Tables 1 and 2: Here, (a, 8) and (6, o0)
are chosen so that |p| < 0.0 and 62 + 07, < 1 respectively.

For each case, the process is simulated for the sample sizes of 200, 500 and 1000, of
which hundred replications are performed. The sample mean square error (MSE) of the
estimators (5.5), (5.8), (5.9) and average estimates of p are given in each case. These
results are summarized in Tables 3 and 4. It is seen from these tables that é%EOE) is
more efficient than the other estimators, and that the efficiency of ésLEOE) increases as
the sample size n increases, or § and p decrease. The results are found to be satisfactory
and agree well with the theoretical results.
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Table 4. MSE of the estimators and average estimates of p.

Replication=100, 6 = 0.2, 02, = 1

Estimator p n=200 n=>500 n=1000
P) —0.5220 —0.4685 —0.4751 —0.4931
—0.4080 —0.3552 —0.3615 —0.3782
ISR —0.5220  0.0292  0.0094  0.0090
—0.4080 0.0286  0.0091  0.0088
gEOE)" 05220  0.0289  0.0092 0.0087
~0.4080  0.0273  0.0089  0.0086
0FOE) 5020 00274  0.0090  0.0085

—0.4080 0.0268 0.0088 0.0084
Replication=100, § = 0.6, azo =1

Estimator p n=200 n=500 n=1000
P) —0.5220 —0.4354 —0.4542 —0.4851
—-0.4080 —0.3340 —0.3610 —0.3725
oCY  _05220 00312 0.0095  0.0093
—0.4080  0.0295  0.0092  0.0091
gLEOE)" 05220  0.0290  0.0092 0.0089
—0.4080  0.0289  0.0091  0.0088
0(FOE) 05220  0.0271  0.0092  0.0087

—0.4080 0.0268 0.0090 0.0086

Table 5. MSE of the estimators. Table 6. MSE of the estimators.
Replication=100, ag = 1, @ = 0.8, 02 = 1 Replication=100, ag = 20, o = 0.8, 02 = 1
Estimator n =200 n=500 n = 1000 Estimator mn =200 n =500 == 1000
alcr 0.0410  0.0082  0.0051 alen 0.0443  0.0086  0.0053
&FOE) 00382  0.0071  0.0049 &F°F)  0.0412 00079  0.0051
Replication=100, ap = 1, a = 0.2, 62 = 1 Replication=100,ag = 20, a = 0.2, 02 = 1
Estimator n =200 n =500 n = 1000 Estimator mn =200 n =500 n=1000
aley 0.0390  0.0076  0.0048 &t 0.0420  0.0078  0.0050
&FCB) 00350  0.0072  0.0047 &FOF) (0381  0.0074  0.0048

Ezample 2. (ARCH model) In this example we consider the model
(71) Xt =& Ut, Ut = qao + aXf_l, Xt = 0, for t <0

where {¢;} is a sequence of i.i.d. (0,1) random variables, ap >0 and 0 < a < 1.

For o = (1,20) and a = (0.2,0.8), we generated realizations from (7.1) with n =
200, 500, 1000. Each simulation was replicated hundred times and the sample MSE was
calculated for the estimators in (6.13) and (6.14). Tables 5 and 6 summarize these results.

It can be seen that &SLEOE) is more efficient than d%CL). The efficiency of the former
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estimator increases against its counterpart as ag or « decreases. These results confirm
the theoretical results given in Section 6.
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