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Abstract. Properties and examples of continuous-time ARMA (CARMA) pro-
cesses driven by Lévy processes are examined. By allowing Lévy processes to replace
Brownian motion in the definition of a Gaussian CARMA process, we obtain a much
richer class of possibly heavy-tailed continuous-time stationary processes with many
potential applications in finance, where such heavy tails are frequently observed in
practice. If the Lévy process has finite second moments, the correlation structure
of the CARMA process is the same as that of a corresponding Gaussian CARMA
process. In this paper we make use of the properties of general Lévy processes to
investigate CARMA processes driven by Lévy processes {W(t)} without the restric-
tion to finite second moments. We assume only that W (1) has finite r-th absolute
moment for some strictly positive 7. The processes so obtained include CARMA
processes with marginal symmetric stable distributions.

Key words and phrases: Lévy process, CARMA process, stochastic differential equa-
tion, stable process.

1. Introduction

A zero-mean Gaussian CARMA((p, q) process {Y (t)} with 0 < ¢ < p and coefficients
ai,-.-,ap, bo, ..., by, is defined (see e.g. Brockwell and Davis (1996)) to be a stationary
solution of the (suitably interpreted) p-th order linear differential equation,

(1.1) a(D)Y (t) = b(D)DW(t), t=>0,
where D denotes differentiation with respect to ¢, {W(t)} is standard Brownian motion,

a(z) == 2P +a12P" 4+ -+ ay,
b(z) =bg+brz 4 -+ bp2?,
and the coefficients b; satisfy by # 0 and b; = 0 for ¢ < j < p. Since the derivatives

DIW (t) do not exist in the usual sense, we interpret (1.1) as being equivalent to the
observation and state equations,

(1.2) Y(t) =b'X(1),
and
(1.3) dX (t) — AX (t)dt = edW (t),

*This research was partially suported by NSF Grant DMS 9972015.

113



114 P. J. BROCKWELL

where
[0 1 0 0 7 [0 [ by ]
0 0 0 by
A= : T : . ’ e=|11, b= :
0 0 0o --- 1 0 bp—2
| ~ap —Gp_1 —Gp—2 -+ —01 ] | 1] | bp—-1

and we assume that X (0) is a Gaussian random vector such that
(1.4) X (0) is independent of {W(¢),t > 0}.

The state equation (1.3) is an Ito differential equation for X (¢). If p = 1, A is defined
to be —a;. Because of the linearity of (1.3), its solution has the simple form,

t
(1.5) X(t) =X (0) + / eAt=WedW (u),
0
where the integral is defined as the L? limit of approximating Riemann-Stieltjes sums.
The process {X (u),u > 0} also satisfies the relations,

t
(1.6) X (t) = eAt=9 X (5) + / eAt~WedW(u), forall t>s>0,
-3
which clearly show (by the independence of increments of {W(t)}) that {X(u)} is
Markov.
It is well-known (see e.g. Brockwell (2000a)) that the equations (1.4) and (1.6) have
a weakly stationary solution if and only if the eigenvalues A1,...,A, of A (which are
the same as the zeroes of the autoregressive polynomial 2? + a3 27! + - - 4 a,) all have
negative real parts, i.e. if and only if

(1.7) RO) <0, i=1,...,p.

If {X (¢)} is such a solution then it is easy to show that

(1.8) E(X(0))=0

and o

(1.9) E(X(0)X'(0)) =% := / e“Vee et Vdy.
0

Conversely if (1.4), (1.7), (1.8) and (1.9) are satisfied, then the process {X(t)} defined
by (1.5) is weakly stationary and satisfies the relations,

E[X(t)) =0, t>0,

and
EX(t+h)X(1)]=e*E, h>0.

From (1.2) the mean and autocovariance function of the CARMA(p, ¢) process {Y (t)}
are then given by

E[Y(t)] =0, t>0

and
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(1.10) vy (h) = E[Y(t+ h)Y(t)] = b'eAl* b,

If in addition the zeroes of the autoregressive polynomial are all distinct then the auto-
covariance function of {Y(¢)} has the simple form (see Brockwell (20004)),

_ eMPp(A)b(—N)
m0= I

If X (0) satisfies (1.4), (1.8) and (1.9) and is also Gaussian, then {X (¢)} and {Y(¢)} are
strictly stationary and Gaussian.

The aim of this paper is to extend these results to CARMA processes driven by
general Lévy processes instead of Brownian motion. CARMA processes driven by second-
order Lévy processes have been treated by Brockwell (2000b). They are defined as
follows.

DEFINITION 1.1. If {W(¢t)} is a second order Lévy process, and p and ¢ are integers
such that 0 < ¢ < p, then {Y'(t),t > 0} is a second-order Lévy-driven CARMA (p, q)
process with parameters a1, ..., ap, bo,...,bq, if and only if {Y'(¢)} satisfies (1.2) with
{X(t)} a strictly stationary second-order solution of the equations (1.4) and (1.6).

It was shown by Brockwell (20005) that conditions (1.7) are necessary and sufficient
for the existence of such a process. Under these conditions the finite dimensional joint
characteristic functions of the process were determined. If {W(t)} is scaled so that
EW(t) = ct and E[(W(t) — W(s))?] =t —s for t > s > 0, then EY(t) = boc/a,
and vy (h) is given by (1.10). Notice that with this scaling, vy depends only on the
coeflicients ay,...,ap and by, ..., bg.

In this paper we drop the second-order assumption on {W(¢)}, and show that the
conditions (1.7) and E|W(1)|" < oo for some r > 0 are sufficient for the existence of a
general (possibly infinite variance) Lévy-driven CARMA process defined as follows.

DEeFINITION 1.2. If {W(¢)} is a Lévy process and p and g are integers such that 0 <
q < p, then {Y(¢),t > 0} is a Lévy-driven CARMA (p, q) process with parameters
a1,...,0ap, bo, ..., b, if and only if {Y'(t)} satisfies (1.2) with {X(¢)} a strictly stationary
solution of the equations (1.4) and (1.6).

Under the same conditions we also derive the joint characteristic functions of such
processes, which include CARMA processes with symmetric stable marginal distribu-
tions.

The results rely on properties of stochastic integrals with respect to Lévy processes.
An excellent account of these processes emphasizing the properties most relevant to
stochastic integration is contained in the book of Protter (1991). Some of these properties
are briefly outlined in the following section. Further useful references on the properties
of Lévy processes are the lecture notes of Ito (1969) and the books of Bertoin (1996) and
Kiichler and Sgrensen (1997).

First order stochastic differential equations with non-negative Lévy input process
have been widely used in storage theory (Cinlar and Pinsky (1972), Harrison and Resnick
(1976), Brockwell et al. (1982)) and more recently as a basis for non-Gaussian stochastic
volatility models by Barndorff-Nielsen and Shephard (1999), who consider a wide variety
of such models and their financial applications. Second-order Lévy-driven CARMA pro-
cesses are of particular interest because they have the same autocovariance functions as
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corresponding Gaussian processes but exhibit a wide range of non-Gaussian marginal dis-
tributions such as the more heavy tailed distributions frequently encountered in financial
data.

2. Lévy-driven CARMA processes

2.1 Lévy Processes

For a detailed account of the pertinent properties of Lévy processes see Protter
(1991). We give here an account of the bare essentials needed for our results. Suppose
we are given a filtered probability space (@, F, (Fi)o<t<oo, P), where Fy contains all the
P-null sets of F and (F;) is right-continuous.

DEFINITION 2.1. An adapted process {W (¢) }o<t<oo With W(0) = 0 a.s. is said to
be a Lévy process if
(i) W(t) — W(s) is independent of F,, 0 < s <t < 00,
(ii) W(t) — W(s) has the same distribution as W;_, and
(iii) W (t) is continuous in probability.

Every Lévy process has a unique modification which is cadlag (right continuous with
left limits) and which is also a Lévy process. We shall therefore assume that our Lévy
process has these properties.

The characteristic function of W (t), ¢4(8) := E[exp(:6W (t))], has the form

(2.1) ¢:(0) = exp(8£(0)), O€R,
where
(2.2) £(6) = ifm — %9202 + /Ro (ewz -1- %) v(dz),

for some m € R, ¢ > 0, and measure v on the Borel subsets of Ry = R\{0}. The measure
v is called the Lévy measure of the process W and has the property,

u2
——v(du) < 0.
/Rol—l—u2 (du)

If v is the zero measure then {W(t)} is Brownian motion with E(W(t)) = mt and
Var(W(t)) = 0t. If m = 02 = 0 and v(Rg) < oo, then W (t) = at + P(t), where {P(t)}
is a compound Poisson process with jump-rate v(Ro), jump-size distribution v/v(Ry),

and @ = — [p ozv(du). Another important example is the gamma process (W)},
for which
(2.3) €0)= | (%% —w(da),

Ro

v(du) = au"le P%du, u > 0, and W(t) has probability density function given by
Betget=1e=P% /T (at), z > 0. This is an example of a Lévy process whose sample-paths
have (a.s.) infinitely many jumps in every interval of positive length. If {W;(t)} and
{Wa(t)} are two independent and identically distributed gamma processes then Wy —W»
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is a symmetrized gamma process with Lévy measure, v(du) = Saju|~te~Pdu. For the
non-decreasing stable process X (t) with

Elexp(i6X (t))] = exp[-tB8(—i6)*/T(1 - )], B>0, 0<a<l,
¢ also has the form (2.3), but with
v(du) = afu™'"%du, u>0.

This is another example of a Lévy process which in each finite interval has infinitely
many jumps with probability 1. Moreover it has infinite moments of all orders greater
than or equal to .

The most crucial result from the point of view of stochastic integration is Theorem

40 of Protter (1991), namely,

THEOREM 2.1. Let W be a Lévy process. Then W(t) =Y (t) + Z(t) where Y and
Z are Lévy processes, Y is a martingale with bounded jumps, Y € LP for allp > 1 and
Z has paths of bounded variation on compacts.

PROOF. See Protter (1991), p. 31.

2.2 Ezistence of the Lévy driven CARMA process

THEOREM 2.2. If {W(t)} is a Lévy process with characteristic function (2.1) and
E\W(1)]" < oo for some r > 0, then the Lévy-driven CARMA process specified by
Definition 1.2 exists if condition (1.7) is satisfied, in which case the cumulant generating
function of Y(t1),Y (t2),...,Y(tn), (0<t1 <ta < -+ <ty,) is

(24) InE[exp(iiY (t1) + - - +i0,Y (£,))]

[es] n 11 n
= / ¢ (z Gib’eA(t"Jr“)) edu + / 3 (Z Oib'eA(ti‘“)) edu

i=1

0:b et edu+~~+/ f;b' et =)
/ (z tn—1 Z

In particular, the marginal distribution of Y (t) has cqgf,

(2.5) In E[exp(ifY (t))] = /O Oof(ab’eA“e)du.

ProoF. If (1.7) is satisfied and X (0) is any p x 1 random vector, then the first
term on the right of (1.5) converges in probability to zero as t — oo and the integral
term, by Theorem 2.1, can be expressed as

t t t
V(t) = / At WedW (v) = / eAtYedy (u) + / eAt"YedZ(u),
0 0 0

where the first integral is defined as the L? limit of approximating Riemann-Stieltjes
sums and the second is defined pathwise. The time-homogeneity of the Lévy process
implies that V'(t) has the same distribution as

(2.6) Ut) = /t eAtedW (u) = /t eedY (u) + /t e edZ(u).
0 0 0
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The first integral, U (¢) in (2.6), converges in L? as t — oo to a random vector U (since
for all t > s, E|[U1(t) — Ui(s)[|® < ¢ f.” [le*e||*du where c is independent of s, and
the last expression converges to zero as s — oo by (1.7)). We show next that the second
integral, Ux(t) in (2.6), converges in probability as t — 0o to a random vector Us. To
do this we write

[t] t
(2.7) Us(t) =) ¢, + / eedZ (u),
j=1 [t]
where [t] denotes the integer part of ¢ and §;, j = 1,2,..., are the i.i.d. random vectors,

i )
§; =[ eAw=DedZ (u).
j-1

By (1.7), the integral on the right of (2.7) converges to zero in probability as t — co. The
sum on the right of (2.7) converges almost surely as ¢ — oo since the i-th component,
S;;(t), of the j-th summand satisfies

1S5 ()] < KX [njl,
where K is a positive constant, A < 0, and {7, } is an i.i.d. sequence with E|n;|™ = M <

oo for some m € (0,1). Hence

m m
[e o]

o0 oo
E ZIS,(t)I <K™E Zej’\lnjl SMKmZej’\m<oo.

j=1 j=1 j=1

Thus each component of the sum in (2.7) converges absolutely with probability 1 and so
U, (t) converges in probability as t — oo.

The arguments of the preceding paragraph show that U () and hence X (t) converge
in distribution as t — oo to Uy + Us. The cgf of U(t) is easily calculated since

U(t)=p Jim > exp(Aui)e(W (u;) - W(ui-1)),
i=1

where 0 =ug <uy < -+ < U, =t and A = max(u; — u;—1). Hence, for all 8 € R?,

In Elexp(i6'U (t))] = lim > &(6e*"e)(ui - ui-1)

¢
/ £(0' e e)du,
0
and so X (t) converges in distribution as t — oo to a random vector with cgf,
(2.8) K(0) = / £(0'e*e)du.
: 0

This implies that the distribution defined by (2.8) is the unique stationary distribution
for the Markov process { X (t)} defined by (1.4) and (1.6). Hence if X (0) has cgf (2.8),
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the process {X(t)} is strictly stationary. Since Y (t) = b'X (), the process {Y(t)} is
then strictly stationary with cgf (2.5).

To determine the joint stationary distribution of X (1), X (t2),..., X (t,), 0 <t <
ty < -+ < t,, we write

n n ty M
(29) S i0LX(t) = i3 0,X(0)+ / S 0 e ()
k=1 k=1 0 k=1

tp T tn
+/ ZO;eA(t"_“)edW(u) + - +/ 0. At~V edW (u).
tn—1

t1 k=2

Since the terms on the right are independent, we find, by the same calculations which
led to (2.8), that the joint cgf of X (¢1),...,X (¢,) is

(2.10) InE[exp(i€] X (t1) + - -- +i60;, X (t,,))]

[e's) n t1 n
=/ 13 (z 026’4(“"'“)) edu +/ ¢ (Z OgeA(t"_“)> edu
0 0

i=1 i=1

t2 n tn n
+/ ¢ (2 ogef‘<ti-“)> edu+ - +/ ¢ (z ogeA(ti—u>) edu.
t]_ tn—l

1=2 =2

Since Y (t;) = ¥'X(t;), i = 1,2,...,n, we find at once from (2.10) that the joint cgf of
Y (t1),...,Y(t,) is as specified in (2.4). O

3. Examples

Ezample 1. In the special case when v is the zero measure, {o~1[Y(t) — born/ay|}
is the Gaussian CARMA((p, ¢) process defined in Section 1.

Ezample 2. If {W(t)} is a compound Poisson process with finite jump-rate A and

bilateral exponential jump-size distribution with probability density, f(z) = %ﬂe‘mx‘,
then by Theorem 2.1, the corresponding CAR(1) process has marginal cgf,

w(6) = /0 ~ (0 1)du,

where £(0) = A\02/(6? + 62). Straightforward evaluation of the integral gives

showing that Y (t) is distributed as the difference between two independent gamma dis-
tributed random variables with exponent A/(2a;) and scale parameter 3. In particular,
if A = 2ay, the marginal distribution is bilateral exponential.

Ezample 3. If {W(t)} is a symmetric stable process, then

In Ee®W®) = —ctlf|*, ¢>0, O0<a<2
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Since E|W(1)|” < oo for r < a, we can apply Theorem 2.1 to deduce that if (1.7) holds
then the corresponding Lévy-driven CARMA process Y (t) exists and has the symmetric
stable marginal distribution determined by

o0
In EeY®) = —ct]9|°‘/ b’ e e|* du.
0

Ezample 4. Numerous examples of marginal distributions for CAR(1) processes
driven by non-negative Lévy processes can be found in the paper of Barndorff-Nielsen
and Shephard (1999) who use them in conjunction with stochastic volatility models.
Some other examples with applications in storage theory can be found in the papers
of Cinlar and Pinsky (1972), Harrison and Resnick (1976) and Brockwell et al. (1982).
By modelling non-negative processes {Y () } as CARMA (rather than CAR(1)) processes
driven by second-order non-negative Lévy processes, we can enlarge the class of potential
autocorrelation functions, but at the same time the CARMA parameters are constrained
by the non-negativity of {Y(¢)} to satisfy the condition,

(3.1) beite >0 forall t>0.

An interesting problem in this connection (raised by Neil Shephard) is to characterize
the class of possible CARMA correlation functions,

(3.2) py(h) =b AP b/(b'E b),
when the constraint (3.2) is imposed.

Ezxample 5. On the left side of Fig. 1 are the histogram and sample autocorrelation
function of the absolute daily returns (1001In(P(¢)/P(t — 1))) on the Hang Seng Index
for the period July 1st, 1997-April 9th, 1999. It has been observed by Granger et
al. (1999) that, as in this example, such absolute daily returns frequently follow an
approximately exponential distribution with a slowly decaying positive autocorrelation
function. The sample autocorrelation function can be well approximated by that of a
CARMA(2,1) model with coefficients a; = 2.66, a; = .30, by = 1.0 and b; = 2.80,
estimated by maximization of the Gaussian likelihood. In an attempt to approximate
the empirical marginal distribution, the two parameters of a gamma process {W(t)}
were adjusted so that the simulated marginal distribution of the corresponding gamma-
driven CARMA(2,1) process had approximately the appropriate shape. A good match
(shown on the right side of Fig. 1) was obtained by choosing the distribution of W (1) to
have exponent .060 and scale parameter 10. A more systematic approach to maximum
likelihood estimation for such models is described in Section 4. The lack of evidence for
long memory in the sample autocorrelation function of this data is very likely due to its
relatively short length and is consistent with the suggestion of Granger et al. (1999) that
the long memory observed in longer realizations of these series may be due to shifting
levels.

Although the ad hoc procedure used in Example 5 gives a good match between
the model and empirical marginal distributions and autocorrelation functions, this does
not necessarily mean that the model gives a good representation of the dynamics of the
process. A more systematic approach to the fitting of such models is needed. In the
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Fig. 1. The figures on the left show the histogram (top) and sample autocorrelation function
of the absolute daily returns on the Hang Seng Index, July 1, 1997-April 9, 1999. The figures
on the right are the corresponding graphs for the model defined in Example 5. The top right
graph is based on 10,000 simulated values generated by the model.

following section we describe a simulation-based method for computing the likelihood
under a Lévy-driven CARMA model for cases where the state vector has absolutely
continuous transition function.

4. Inference for Lévy-driven CARMA processes

For linear CARMA processes, maximization of the Gaussian likelihood based on
observations Y(t1),...,Y(tn) can be carried out very conveniently using the Kalman
recursions and the innovations form of the likelihood (see Jones (1981, 1985)). However
in order to distinguish between CARMA processes driven by different Lévy processes, it
is important to develop estimation methods based on the ezact as opposed to Gaussian
likelihood.

A simulation-based method is described below. It is closely analogous to the method
used by Brockwell and Williams (1997) to model daily returns on the Australian All-
ordinaries Index using a threshold CAR(2) process. (A comparison in terms of AIC of
the performance of such non-linear models with ARCH and GARCH models is given by
Brockwell (20000).)

To compute the likelihood for a linear Lévy-driven CARMA process we first observe
that the state-space representation of the process can be reexpressed as

(4.1) Y(#)=[10---0]Y(t), t>0,
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where Y'(t) = BX (t) is a stationary solution of the vector AR(1) equation,

(4.2) dY (t) = BAB™'Y (t)dt + Be dW(t), t>0
and ) _
bo by by -+ bpy
010--- 0
B=|001:-- 0 if bo #0.
Dol 0
(000 - 1 |

(If bo = 0 and i is the smallest integer such that b; # 0, then we replace the first
component of the (i + 1)-th row in the definition of B by 1.)
The state process in the representation (4.1) and (4.2),

Y () = {5((?)} ,

is Markov. If {Y(¢)} has a transition density with respect to Lebesgue measure and if
we denote by p(Yri1, Vrs1,trt1 — tr | Yr, vr), the density of (Y (t,41), V(tr41))’, given
that Y (¢,) = (yr,v.), then the joint probability density f, of the random variables,
Y(t),V(t),Y(tr-1),Y (tr—2), ..., Y(t1) satisfies the recursions,

(4.3) fra1Ur 41, Vr 41, Y, Yr—1, - -+ Y1)

= /p(yr-i-ly V41, tr+1 - tr l Yr, 'vr)fr(yra UryYr—15---, yl)d'vr'
For a given set of observed values yi, ..., yn, at times ¢y, ..., tn, the functions fo,..., fv
are functions of vs, ..., vy respectively. These functions can easily be computed recur-

sively from (4.3) in terms of f; and the functions p(Yr41, -, tr+1—1tr | ¥r, ). The likelihood
of the observations ¥1,...,yn, is then clearly

(4.4) L@y, ... un) = / fn (Wn) v

The filtered value of the unobserved vector V'(¢.), r =1,..., N, (i.e. the conditional
expectation of V'(¢.) given Y (¢;) = v, ¢ = 1,...,7) is readily obtained from the function

fr as

__ [ufr(v)dv
(4.5) Uy = W

The Markov property of {Y'(¢)} then gives the predictor of Y (t,41),
(4.6) Gre1 = m((Yr, 07) s trer — tr)-

The preceding calculations are all dependent on the determination of the transition
densities, p(Yry1,Vr+1,tr+1 — tr | Yr, ¥r) With yry1 and y, equal to the observations at
times t,41 and ¢, 7 = 1,..., N — 1 respectively, and the evaluation of the successive
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(p — 1)-dimensional integrals appearing in the recursions (4.3). For p = 2, these are
one-dimensional integrals and, by discretizing v, can be evaluated as a sequence of ma-
trix multiplications. Since v; is not observed, we take fi(y,v) to be the Dirac delta
function assigning mass one to (y1,0’)’. The likelihood in (4.4) is then the density of
Y(t2),...,Y(tn), conditional on Y(t1) =y and V(t1) = 0.

The method used by Brockwell and Williams (1997) for fitting Gaussian non-linear
CAR(2) models was to replace p(Yr+1, Upt1,tre1 — tr | Yr, ¥r) by a Gaussian transition
density with moments calculated by Euler approximation.

However the transition density itself (provided it exists) can be replaced by a
simulation-based kernel estimate and the likelihood as computed from (4.4) maximized
numerically with respect to the unknown parameters. Work in this direction is currently
in progress.

5. Concluding remarks

This work was motivated by the widely recognized need in financial modelling for
the use of heavy-tailed models. Such heavy tails can also be generated by non-linear
models driven by Gaussian noise. In fact it was shown by Ozaki (1985), Section 3.2,
that for any generalized Pearson density W (i.e. satisfying W'(z) = c(z)W (z)/d(z) with
¢ and d analytic), there is a corresponding non-linear diffusion model with W as its
limiting density. This provides an alternative method for generating continuous-time
stationary time series models with prescribed marginal density. The linear structure of
Lévy-driven CARMA models and (in the second-order case) the simple characterization
of their second-order properties does however give them some advantages in the modelling
of empirical data. A natural further extension is to allow non-linearity (e.g. of threshold
type) in the definition of the Lévy driven CARMA processes. This raises a host of further
questions which will be considered at a later date.
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