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Abstract. We develop methods for performing maximum a posteriori (MAP) se-
quence estimation in non-linear non-Gaussian dynamic models. The methods rely
on a particle cloud representation of the filtering distribution which evolves through
time using importance sampling and resampling ideas. MAP sequence estimation
is then performed using a classical dynamic programming technique applied to the
discretised version of the state space. In contrast with standard approaches to the
problem which essentially compare only the trajectories generated directly during
the filtering stage, our method efficiently computes the optimal trajectory over all
combinations of the filtered states. A particular strength of the method is that MAP
sequence estimation is performed sequentially in one single forwards pass through the
data without the requirement of an additional backward sweep. An application to es-
timation of a non-linear time series model and to spectral estimation for time-varying
autoregressions is described.
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1. Introduction

Let t € N* be a discrete time index. Consider the standard Markovian state-space
model

(1.1) zy ~ f(zy | Te-1) State evolution density
(1.2) v ~ 9(ys | Te) Observation density

where z; € R™ are unobserved states of the system and 3, € R™ are observations
made over some time interval. f(- | -) and g(- | -) are pre-specified state evolution and
observation densities which may be non-Gaussian and involve non-linearity. We assume
that both f(- | -) and g(- | -) can be evaluated pointwise up to a normalizing constant
for any states and observations z; and y;. The marginal distribution of the initial states

is denoted by f(z;) and where convenient we will adopt the notation f(z; | z0)2f(z1).

*This work was performed under partial support of EPSRC grant ‘Dynamic Sequential simulation
methodology’ (UK) and NSF grant DMS-9704432 (USA).
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xl;té(xl, ..., z¢) and yué(yu ..., ¥¢) denote collections of observations and states
from time 1 through t. Given yy., all inference on the states z;.; is based on the
joint posterior distribution p(z1.; | y1.:). The Markov assumptions lead to the following
expression for the joint distribution of states and observations by the probability chain
rule

(1.3) p(T1:e | Y1:t) o Hf(xz‘ | zi1)g (Wi | z2)-

One can obtain easily a recursion for this joint distribution

(Z1:¢ | yl-t)g(y“'l | Ze41) f(ze41 | zt).

1.4 1. it41) =P
(1.4) P(Z1:041 | Y1ot41) p(Ye1 | v1:t)

In practice, computing (1.4) can only be performed in closed form for linear Gaussian
models using the Kalman filter-smoother and for finite state-space hidden Markov mod-
els. In other cases approximate numerical techniques must be employed, such as the
extended Kalman filter, Gaussian sum methods and general numerical integration pro-
cedures (Kitagawa (1987)). Here we focus on Monte Carlo particle filters (Doucet et
al. (2001), Doucet et al. (2000a), Gordon et al. (1993), Kitagawa (1996), Liu and Chen
(1998)). These particle filters can be viewed as a randomized adaptive grid approxi-
mation where the particles (values of the grid) evolve randomly in time according to a
simulation-based rule. One makes at time ¢ the following approximation

N
(1.5) P(are | yie) & Y wi?8 o (dw1e)
i=1 't

where 8, (dz) denotes the Dirac delta functlon located at zo and w() is the weight
attached to particle a:l b wt(’) > 0 and 21 1 w]t = 1. Particles at time ¢ can be updated
efficiently to particles at time t+ 1 using sequential importance sampling and resampling
methods, see Doucet et al. (2000a) for a review of the current methodology.

From (1.5), one can in principle estimate any feature of interest such as the filtering
distribution p(z; | y1.¢) ~ va 1 Wy o) RO (dz;), the minimum mean square error (MMSE)

state estimate Elz; | y1d] =~ Yong wg%ﬁz), the fixed-interval smoothing distribution
p(xk | y1e) = 21111 wt(l) 5z(i)(dxk), etc. However, in practice the use of a resampling
k

procedure is such that estimates which involve any significant element of smoothing (that
is, anything except estimates based on the approximation of the marginal distribution

p(z¢ | y1.¢)) will suffer from a severe depletion of samples over time and be unreliable,
since in the approximation (1.5) there are only a few distinct paths 931 3 fork <t as
these paths have been resampled many times (Doucet et al. (2000a)). In the case of fixed-
interval smoothing, this problem has led researchers to develop alternative methods based
either on the two-filter formula (Kitagawa (1996)) or the forward filtering-backward
smoothing formula (Hiirzeler and Kiinsch (2000), Doucet et al. (2000a)).

In this paper, we focus on the estimation of the MAP sequence

A
(1.6) 217 (t) = arg max p(z1:e | Y1.e)
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and the marginal fixed-lag MAP sequence

(1.7) x%%fl’?t(t) = arg max p(Ti—r+1:¢ | Yi:e),
Tt—L+1:t
where the dependency upon y.; is indicated by (t)’.

In this paper we do not make any general claim that MAP estimation is preferable
to MMSE or other estimators. Rather, the choice of estimator will be determined by the
demands of the application. However, we do note that while the MMSE estimate is more
popular in the statistical literature, it will not always make good sense. In some cases,
for example, the posterior distribution might be multimodal and the MMSE estimate
located between the modes, possibly in a region of very low probability. This is quite
commonly the case when tracking multiple targets (Bar-Shalom and Li (1995)) and for
deconvolution of impulsive processes (Mendel (1990)). In such cases, it is more useful to
be able to estimate sequentially in time the MAP sequence estimate {44 (t) given by
(1.6) or zMMAF (t) given by (1.7). Moreover, in many target tracking problems, a zero-
one loss function is appropriate, in which case there is no choice but to perform MAP
estimation. It may be argued that marginal filtering or smoothing densities provide an
adequate analysis of the data for most purposes. We maintain, however, that for many
applications it is important to capture the sequence-specific interactions of the states
over time in order to make successful inferences.

Except in a few special cases, estimating {44 (t) or zMMAF (t) does not admit any
analytical solution. In Section 2, we review standard methods to compute these estimates
and then describe a method based on dynamic programming. In Section 3, we apply
this algorithm to a standard non-linear time series and to time-varying autoregressions.

2. Maximum a posteriori sequence estimation

We first focus on the estimation of z}4AP(t) and discuss subsequently how to es-
timate z}/¥ AL (t). Computing 2P (t) requires the solution of a complex global op-
timization problem. Many standard global optimization methods such as simulated
annealing or genetic algorithms are available in the literature and could be applied to
this problem. However, most of these methods cannot readily be adapted to sequential
estimation of AP (t) as t increases. We describe here several stochastic methods for

performing this sequential task.

2.1 Standard methods
A simple sequential optimization method consists of sampling (sequentially in time)

some paths xﬁ, i =1,...,N according to a distribution, say ¢(z1.¢). Then one can
select 2MAP(t) = arg max p(zﬁ | 1:¢). As long as the support of g(z1.;) includes
1:t

the support of p(:rﬁ | ¥1:¢) then this estimate converges asymptotically (N — oo0) to
zMAF (). However, the choice of g(z;.;) will have a huge influence on the performance of
the algorithm. The construction of an “optimal” distribution ¢(z;.;) is clearly very diffi-
cult. At a given time ¢, it would consist of a distribution whose support is concentrated
on the set of the unknown global maxima of p(z1.¢ | y1.¢)-

A reasonable choice for g(z1.) is the posterior distribution p(z1.¢ | ¥1.¢) or any
distribution g(x;.;) that has the same global maxima as p(z1.; | y1.¢), such as g(z1.¢)
p(z1:¢ | y1:¢)Y (v > 0). Direct sampling from p(z1.¢ | y1.¢) is usually impossible but based
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on the particle filtering approximation (1.5), one obtains the following approximation of
~MAP (4.
Ty (t)
(2.1) FMAP(4) = arg — max p(T1e | Y1:t)-

xl;te{xifi;izl,...,N}
A clear advantage of this method is that it is very easy to implement and has compu-
tational complexity and storage requirements of order O(NT), but a severe drawback is
that, because of the degeneracy phenomenon discussed in the introduction, the perfor-
mance of this estimate will get worse as time ¢ increases. Similar problems would occur
while estimating zM ¥ fli(t) as soon as L is large. It is possible to derive other sampling
schemes focusing on the regions of high posterior values using ideas from the genetic
algorithms literature (Higuchi (1997)) but we do not pursue this here.

Another way to consider the problems with basic procedures such as the above is
that the trajectories compared are limited to be those which were generated directly by
the Monte Carlo filter. These by their very nature will generally be far more random than
the true MAP sequence. Hence a huge number of trajectories is required for reasonable
performance, especially for large datasets.

2.2 Optimization via dynamic programming.
We now describe our dynamic programming approach to MAP estimation. Assume
the filtering distribution p(zg | y1.x) = Zlek)(S @ y(dzy) has been computed and

stored at each time k£ = 1,...,¢t. The filtering procedure has thus generated a finite
grid approximation of the state space at each time k, that is =y € {xfcz);i =1,...,N}L

Though this grid is not optimal for MAP estimation, it is a sensible discretization of
the state-space as long as the weights have a small variance, a basic requirement of any
particle filtering algorithm.

2.2.1 Mazimization of p(x1.¢ | y1t)

An approximation to z}44F(¢) can be obtained as
jthAP(t) - a'rg max p(zl:t I yl:t)~
z11t€®2=1{1§§:), i=1,2,...,N}

A brute-force evaluation of this MAP state sequence estimate would involve an exhaus-
tive search of all possible state trajectories in this discrete state space model. However,
the function to maximize is additive as, thanks to (1.3), one has

AP (t) £ arg max Z[logg Uk | zk) +10g f (k| Tp-1)]-
Tre gy

This property allows us to use a standard dynamic programming (DP) technique, the
Viterbi algorithm (Viterbi (1967)), so as to compute

t
(2.2) 2MAP() = arg max Z llog g(yk | zx) + log f(zk | Tk—-1)]-
z1: ‘€®k l{xiz),z-— } k=1

The Viterbi algorithm is a well known technique for the estimation of discrete state-
space hidden Markov models, and has been particularly associated with speech recogni-
tion (Levinson et al. (1983)) and decoding of convolutional codes in information theory
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(Forney (1973)). The originality of our work lies in the observation that the Viterbi al-

gorithm can be employed for estimation of a continuous state-space Markov model via a

discrete approximation of the state space using particle filters. Furthermore, in contrast

with standard applications of the Viterbi algorithm, the discretization of the state-space

is time-dependent and generated automatically using any particle filtering method.
The algorithm proceeds as follows for computation of

N AN N N
AP () = @470, 8347 (1), 2P ()T

Viterbi algorithm
(i) Imitialization. For1<i< N

81(3) = log f(1?) + log (1 | z1)

(ii) Recursion. For2<k<tand1<j<N

6(3) = log g(yk | o)) + max(8e—1(i) + log £ (=} | 2} )]
$i(5) = argmax[8e_1 (i) + log f(a | o|2))]
(iii) Termination.
iy = arg max 8:(%)

AP () = o ()
(iv) Backtracking. Fork=t-1,t-2,...,1

ik = k1 (ix+1)
i.’i\/IAP(t) _ z,’(clk)

This algorithm has a computational complexity O(N?t) and memory requirements
of order O(N't) as it requires storage at each time k£ € {1,...,t} of the particle filter
approximation ((w,(;'), a:,(cl)); i=1,...,N). Now assume a new data point y;; is available,
then one only needs to compute &;+1(j) and ¥:+1(j). If one is interested in estimating
only 4%, , .1 (t+1) and not the whole path oMAP (t+1), then the memory requirements
are only of order O(Np) and the computational complexity of order O(N?) (computation
of 6;41(j) and ¥s4+1(j) + O(p) (backtracking)): one can discard the past history of the
simulated paths. In this case the storage requirements of the algorithm do not increase
over time.

An important point (o note is that the general procedure here is guaranteed to give
an estimate with at least as high posterior probability as the standard method, when
applied to the same particle set. This is as a result of the optimality of the Viterbi
algorithm which exactly solves the discrete state problem (2.2). In practice we expect
it to significantly out-perform the standard methods, especially for large datasets; see
examples later.
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2.2.2 Mazimization of p(Ts—r+1: | Y1:¢)
The algorithm to estimate zMAP(t) can be easily modified to estimate zM ¥ AL, (t).

« . MMAP . . . .
Obtaining " 7' /i, (t) requires maximization of

log p(z¢—r41 | Yr:e~r) +108 g(Ye—r+1 | Te—r+1)

+ > (logg(yk | zx) +log f(zk | Tk-1)]
k=t—L+2

where the initial marginal p(z;—r4+1 | ¥1..—1) can be computed pointwise through the
particle filtering approximation of p(z¢—p, | ¥1.4—r) via

N
P(Te—r41 | Yr4-L) & ngl_)Lf(fL't—-L+1 |2),).

i=1
The algorithm then proceeds exactly as before, but starting at time ¢ — L+1 and replacing
the initial state distribution with p(z;— 41 | y1.t—1). This algorithm has a computational
complexity O(N?(L + 1)) and memory requirements of order O(N(L + 1)): it requires
storage at each time £k = ¢t — L + 1 to t the approximation of the filtering density

(0 L0y, -1 N

((wkvrk )al— 3y )

3. Examples

3.1 A non-linear time series
We consider here the following non-linear reference model (Doucet et al. (2000a),
Gordon et al. (1993), Kitagawa (1996))

1 Tt—1
= I 25 ——————
oors 22?1; 1+ 51+ ?

+ 8cos(1.2t) + v,
i1

—x—§+w
Yt = 9 T W

— -+
20-
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-10
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20 40 60 8o 100 120 140 160 180 200
25 T —T T T — T
201
15}
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Fig. 1. Simulated signal (top) and observations (bottom).
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Fig. 2. Filtering distribution p(z; | y1.¢) at time ¢ = 14.

X s o Time (1)

Fig. 3. Evolution of the filtering distribution p(z: | y1:¢) over time t.

where £1 ~ N(0, 0%), v; and w; are mutually independent white Gaussian noise sequences
with vg ~ N(0,02) and wi, ~ N(0,02) where 0? =5, 02 = 10 and 02 = 1.

In Fig. 1, we present the simulated state sequence z; and the observations y;. As
illustrated in Figs. 2 and 3, because the observation equation is a function of zZ, the
filtering distribution p(x; | y1.¢) is often bimodal so that the MMSE estimate is located
between two modes.

In Fig. 4, we illustrate the differences between the MMSE and the MAP sequence
estimate obtained using the Viterbi algorithm with N = 1000 particles. At time ¢t =
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2 4 L] 8 10 12 14 18 18

Fig. 4. Simulated sequence z: (solid line), MMSE estimate (dotted line), MAP sequence
estimate (dashed line).

Table 1. Mean log-posterior values of the MAP estimate over 10 data realizations.

Particles u (Viterbi)  u (standard method)

N =100 —79.2 -84.3
N =250 -77.3 —82.1
N =500 —75.2 XXX
N = 1000 —74.9 XXX

Table 2. Sample mean log-posterior values and standard deviations over 25 simulations with
the same data.

Particles p (Viterbi)  p (standard method) o (Viterbi) o (standard method)

N =100 —81.09 —85.36 1.14 3.98
N = 250 —76.67 —82.24 0.58 3.09
N =500 ~75.42 XXX 0.42 XXX
N = 1000 —74.92 XXX 0.23 XXX

14, the MMSE estimate averages the two modes whereas the MAP value corresponds
approximately to a mode of p(z; | y1.¢), which is closer to the true value. We do not
however claim that MAP estimation is always the point estimate to use, rather that in
some settings such as this the MAP estimate may be more relevant than other estimators
such as the MMSE estimator.

As the computational complexity of the standard estimate (2.1) described in 2.1
and of the Viterbi algorithms described in 2.2 are significantly different, it is of interest
to compare for an approximately fixed computational complexity the performance of
the estimates. That is, when we ran the Viterbi algorithm for N particles, we ran
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the standard methods with N? particles. We present in Table 1 the average, over 10
different realizations of the data, of the log-posterior probability values of the MAP
estimate. In Table 2 the sample variation of the procedure is tested by performing 25
particle filtering and smoothing estimations on one single realization of the data and
measuring the mean and standard deviations of the estimated log-posterior probability.
It was impractical to perform the standard procedure for N > 500 (that is N2 > 2.5.10°)
as the memory requirements O(N2T') were too great for a standard computer, and these
cases are marked with crosses.

It is clear that the Viterbi algorithm outperforms the standard method and that
the robustness in terms of sample variability improves as the number of particles in-
creases. Because of the degeneracy phenomenon inherent in the standard method, this
improvement over the standard methods will get larger and larger as t increases.

3.2 Time-varying autoregressive models

Our second example of MAP sequence estimation is for the time-varying autore-
gressive (TVAR) model (see for example Kitagawa and Gersch (1996) and Prado et
al. (1999)), which can be used to model parametrically a signal with time-varying fre-
quency content. These models are of very wide utility and importance in engineering,
scientific and socio-economic applications. It is assumed that the TVAR signal is ob-
served in additive white Gaussian noise, which models any background noise present in
the measurement environment. This aspect of the model is important in many applica-
tions where measurements are noisy, including the field of speech and audio processing
(Godsill and Rayner (1998a, 1998b), Godsill (1997), Vermaak et al. (1999)). The TVAR
signal process {2:} is generated as a linear weighted sum of previous signal values:

P
_ T
2 = E Qi t2t—; + € = 0 2t—1.t1—p + €.

=1

Here a; = (a1,4,a24,...,ap¢)" is the P-dimensional AR coefficient vector at time t. The
innovation sequence {e;} is assumed independent and Gaussian with time-varying vari-
ance o2,. Hence we may write the conditional density for 2; as: f(z | 2¢—1.4—p, as, 02) =
N(afz-1:4-p,02,). The signal is assumed to be observed in independent Gaussian
noise, i.e., yr = 2 + v, so that we may write the density for the observation y;
as g(vs | 2,00) = N(z,02). For our simulations, a Gaussian random walk model
is assumed for the log-standard deviation ¢., = log(de,), i.e., f(¢e, | e, 05,) =
N (¢et_1’02€)- The model now requires specification of the time variation in a, itself.
One of the simplest choices of all is a first order autoregression directly on the coefficients
flat | az-1,02) = N(aa;—1,0%Ip) where a is a constant just less than 1.

More elaborate schemes of this sort are possible, such as a smoothed random walk
involving AR coeflicients from further in the past, or a non-diagonal covariance matrix,
but none of these modifications make a significant difference to the computations required
for the particle filter. In this paper we do not consider the stability of the TVAR model;
see Doucet et al. (2000b) and Godsill et al. (2000) for models which explicitly deal with
this aspect.

The state space TVAR model is now fully specified. The unobserved state vector is
Ty = (24:4— P41, Q¢, Pe, ). Hyperparameters o2, o2 and aie are assumed pre-specified and
fixed in all of the simulations. The initial state probability is specified as Gaussian.
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3.2.1 Filtering and MAP estimation

The first step in analysing the data is to perform a complete forwards sweep of a
Monte Carlo filtering algorithm to produce weighted particles ((wgl),mgl));i =1,...,N)
for t = 1,2,...,T, drawn approximately according to p(z; | yi:¢). Filtering is carried
out using a version of the auziliary particle filter (Pitt and Shephard (1999)). We do
not describe all of the details here as the aim of this paper is to develop new smoothing
methodology. However, full details of the filter used and a study of some alternatives
applied to the TVAR model can be found in Godsill and Clapp (2001). Following the
filtering pass, the MAP state sequence is estimated using the dynamic programming
method described above and compared with the standard scheme.
3.2.2 Results

Results are presented initially for a simulated TVAR model with order P = 3.
The fixed hyperparameters are o, = 1, 0, = 0.01 and o4, = 0.01. The initial states
are assigned independent, diffuse Gaussian priors with zero mean. T = 50 data points
are generated synthetically from the TVAR model as described above and filtered with
N = 500 particles. A typical result showing the estimated MAP AR parameters is
plotted in Fig. 5, comparing the proposed dynamic programming method with the true
parameters which generated the data. The log-posterior probability of this estimate
was 1290, compared with 819 for the sequence estimated by the standard scheme—a
hugely significant improvement. Finally, a Monte Carlo experiment was carried out in
which 100 independent realizations of AR processes with the same hyperparameters were
estimated. In every case there was a large and sometimes a dramatic improvement in
posterior probability from using the dynamic programming method as compared with
the standard method.

We now apply the methodology to estimation of the same TVAR model in a real
speech signal observed in white Gaussian background noise. The noisy data can be seen

Fig. 5. Typical results for a third order TVAR model - AR coefficients. True values (dotted)
and estimated MAP sequence (solid)
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Fig. 6. Noisy speech data. TIMIT database, male speaker, sampling rate 16kHz, resolution 16-bit.
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Fig. 7. Noisy speech: data points 701,...,800.

in Fig. 6. The application of these models in this field is useful both for performing
signal extraction from noise and also for examination of the underlying time-varying
spectral structure of the data, which may then be used to aid speech recognition, speaker
identification or for more general scientific study of the speech generation process. A
TVAR model with order P = 4 is chosen, in accordance with empirical performance
evaluation using a variety of model orders (see e.g., Vermaak et al. (1999) for more
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Fig. 9. Estimated TVAR coefficients

detail). The fixed hyperparameters are ¢, = 0.01, g, = 0.005 and g4, = 0.001, chosen
to match the known background noise statistics and expected characteristics of speech
signals. T = 800 data points are filtered using N = 1000 particles and the final 100
states are estimated using the fixed-lag MAP procedure outlined in section 2.2.2 (in
this way we aim to ensure that the effects of the Gaussian prior on the initial states
at t = 1 are negligible). Fig. 7 shows the noisy speech data over the region for MAP
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Table 3. Speech data: sample mean and standard deviation of the MAP probability over 50
simulations, N = 1000.

Method 7 o
Viterbi 3180 11.1
Standard 2830 26.9

estimation. Figure 8 shows the signal sequence extracted from the estimated MAP
state sequence, demonstrating a good fit to the data and a degree of smoothness typical
of speech signals. Figure 9 shows the estimated TVAR coefficient sequence, which is
slowly varying in this region of fairly steady signal characteristics. In order to test the
robustness of the procedure once again, 50 repetitions of the entire estimation procedure
were carried out on this same piece of data. The Viterbi-based method achieved a
significant improvement, both in terms of mean probability and variability, compared
with the standard method, see Table 3. Note that the number of particles used for both
methods here was 1000, as the memory requirements of the standard method become
prohibitive for much larger numbers, as discussed earlier.

4. Discussion

Recent years have seen a huge surge of interest in particle filtering, motivated by
practical problems of sequential analysis in dynamic models in many areas of engineering,
the natural science and socio-economics (Doucet et al. (2001)). Our work here is not
specific to any one algorithm, and takes the established notion of sequentially updated
particulate representations of posterior distributions in state space models as the starting
point for smoothing. In speech processing as in other applications, it is often critically
important to “look back over time” for several or many time steps in order to assess and
evaluate how new data revises the view of the recent past. Hence smoothing algorithms
are key, and our work here develops effective approaches that apply whatever filtering
method is adopted.

We have developed and presented fairly simple methods for generation of MAP
estimates of joint smoothing densities in a general model context. Smoothing has not
been stressed by earlier authors in the sequential simulation literature, and where it has
been studied approaches have been limited to approximating the time-specific marginal
smoothing distributions for individual states. We forcefully argue that patterns of
changes in historical states should focus on the joint trajectories of past states and hence
necessarily involve consideration of joint smoothing densities. Here we have presented
an advance in this direction by showing how to make MAP estimates of entire state tra-
jectories. As already discussed and illustrated with the non-linear model example, the
MAP sequence estimate is likely to be a valuable quantity in inference for models with
strongly multimodal characteristics. Another important challenge for many statistical
contexts is in generating sampled realizations from the joint smoothing density; this is
an area which we have also explored within a particle simulation framework (Doucet et
al. (2000b), Godsill et al. (2000)).

There are current research challenges in many aspects of the sequential simulation
arena, including real needs for improved particle filtering algorithms, and reconciliation of
the several variants of sequential importance sampling, resampling, and auxiliary particle
methods. The current paper ignores issues of learning on fixed model parameters in
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addition to time-varying states, a broader problem also ignored by most other authors in
the field, but critical in many applications (e.g., as in the challenging multifactor models
of Aguilar and West (2000)). In our current work with TVAR models we are developing
analyses for both parameters and states using the auziliary particle plus methods of Liu
and West (2001). It should be noted that the MAP smoothing method developed and
illustrated here applies directly in this context also.
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